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1 – Introduction

Experimental and statistical approaches aiming at providing the relations between pave-
ment characteristics and tire-road noise ( [1]) are mixed with physical models to obtain
more accurate prediction tools which do not depend on the type of the considered pave-
ments ( [2], [3], [4]).

It is acknowledged that the road texture profile plays a fundamental role in the tire
road noise generation. The same is true for the tire tread pattern. It can be intuitively
reckoned that tires with ”aggressive” tread patterns rolling on tather smooth road surfaces
will generate a tire road noise somewhat independently of the road texture profile, while
tires with non ”aggressive” tread patterns rolling on highly texture roads, will generate a
tire road noise almost independently of their tread patterns. This must be kept in mind
when evaluating the road texture influence on tire noise: below a certain road texture
level, the influence of the tire pattern becomes predominant.

The characterisation of the road texture is not as simple as it may seem: taking
abruptly the spectrum of the measured profile gives as much weight to the ridges as
it does to the valleys. No difference is made in particular between two mirror profiles.
The profiles shematised in figure 1.1 would correspond to an alert band mark painting
(left graph) and a cobblestone type pavement (right graph). The first is considered more
aggressive and noisy than the second. On a texture spectrum basis they are identical. This

Figure 1.1: Illustration of two mirror images of a road profile

means that tire noise predictions based on the road spectrum would wrongly conclude that
both pavements are acoustically identical. The other way around, comparison between the
noise and road spectra would as wrongly conclude that tire noise does not depend on road
texture, since two identical road spectra result in two different noise spectra.

It is believed that this may be part of the problems encountered with porous pavements,
which show pronounced dips. Beyond some depth, the tire vibrations are no more affected
by a further depth increase, while the texture level still is.

A possibility to take this into account is to ”envelope” the road profile before evaluating
the spectrum. A simple smoothing of the data has been suggested but does not seem to
have given entire satisfaction to its authors [2]. It seems that the envelopment should
somewhat reflect the actual deformation of the tread gum in the contact zone as the
contact model proposed by Clapp [3]. These two approaches are briefly described in Part
2.
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Chapter 1 – Introduction

The contact model developed and used at INRETS is then presented in Part 3 and
applied to some road pavements [5] in Part 4.
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2 – State of the art

Here we briefly describe two envelopment procedures used for tire-road noise purpose. The
first one was proposed by von Meier and al. [2] and the second by Clapp [3].

2.1 Von Meier and al. procedure

This envelopment method is not based on a physical model. It is an empirical procedure
based on the mathematical limitation of the second-order derivative of the discretized
texture sample as follows

yi −
yi−1+yi+1

2

dx2
≤ d∗ ,

where yi is the amplitude of the profile for index i, dx the sampling step and d∗ the
parameter which characterises the tire stiffness. It results in a parabola shape penetration
of the rubber into the texture cavities (see figure 2.1).

Figure 2.1: Example of enveloped profiles obtained by Von Meier and al. algorithm for
different values of d∗ (from [2])

The output of this procedure is an enveloped profile: no information is given on the
contact forces developed at the interface.

Von Meier and al. [2] used these enveloped profiles to perform an approach similar to
that performed by Sandberg and Descornet [1] for finding enveloped-texture/noise rela-
tionships. The value of the parameter d∗ was obtained from measurements of the defor-
mation of a tire pressed onto different profiles. This value was chosen for this study to be
d∗ = .054mm−1.

2.2 Clapp’s model

Clapp’s envelopment procedure [3] is based on a physical model. It consists in evaluating
the contact between a rigid body (indentor) and a semi-infinite elastic body.
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Chapter 2 – State of the art

2.2.1 The contact problem

The semi-infinite elastic body is characterized by its Young modulus E and Poisson coeffi-
cient ν. Assuming that the elastic body has rubber characteristics, ν is taken to be equal
to 0.5.

The problem consists in finding the displacement of the frontier of the elasic body
when an indentor is applied with a given normal load (see figure 2.2). According to the
linear road texture description, the problem to be solved is bi-dimensionnal.

y

Elastic
medium
(E, ν)

x

F

Figure 2.2: The indentation problem - Notations

2.2.2 Clapp’s formulation and algorithm

The vertical displacement u(x) of the frontier of the elastic body due to a pressure distri-
bution p(x) 1 is obtained by using the linear elasticity equations:

πEu(x)

2(1 − ν2)
+ c0 = −

∫ b

a

p(ξ)ln|ξ − x|dξ , (2.1)

where c0 is a constant to be determined and a and b the limits of the contact zone.
The global equilibrium of the system is written as

1

b − a

∫ b

a

p(x)dx = P , (2.2)

where P is the mean pressure applied on the elastic body.
The difficulty for solving the problem lies in its geometrical non-linearity which means

that the part of the indentor in contact with the rubber is unknown.
The principle of Clapp’s algorithm is based on two procedures.
The first procedure permits to obtain the texture-induced pressure distribution using

equation 2.1 assuming that the rubber displacement u(x) is known. This so-called approx-
imation method consists in cubic spline discretization of the interface and the inversion of
equation 2.1 to determine the pressure distribution from u(x).

The second procedure permits to evaluate the mean penetration depth of the rubber
into texture asperities using equation 2.2 to get an approximated rubber displacement to
be used in the approximation method.

Computing limitation requires each profile to be divided in sub-profiles with over-
lapping sections. The method permits to determine the pressure distribution along the
texture profile. To get the enveloped profile, straight lines are drawn between consecutive

1All equations are written for a unitary width in the direction perpendicular to the plane (x,y). The
factor 1 is omitted.
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Chapter 2 – State of the art

asperities of non totally enveloped valley . The true rubber displacement is never reached,
it seems that the pressure distribution is obtained only approximately. An example of
result is given in figure 2.3.

Figure 2.3: Example of pressure distribution and enveloped profile obtained by Clapp’s
algorithm (from [3])

The contact information used by Clapp to study the texture/noise relationship was
the pressure distribution spectra. The distance scale of texture profiles was transformed
to time scale introducing the velocity V of the vehicle to obtain pressure spectra as a
function of time frequency ftime = V/λtexture.
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3 – INRETS model

3.1 Formulation

The vertical displacement δu of the frontier of the elastic body due to a normal punctual
force δF at point x = 0 can be calculated as (see figure 2.2 for the notations)

δu(x) = −
2(1 − ν2)

πE
ln |x|δF + α .

Green’s formalism is here used to express the displacement at point x with respect to
the displacement of a reference point x0 as

u(x) − u(x0) =

∫
(C)

[g(x, ξ) − g(x0, ξ)] p(ξ)dξ , (3.1)

where (C) is the contact zone, p the pressure distribution on (C) and g the Green’s function
of the problem given by

g(x, ξ) = −
2(1 − ν2)

πE
ln |x − ξ| .

The global equilibrium of the system is written as

1

L

∫
(C)

p(x)dx = P , (3.2)

where P is the mean pressure applied on the elastic body, L the length of the sample.

3.2 Algorithm

The interface is discretized in elements of equal length. According to Green’s formalism,
equation 3.1 permits to calculate influence coefficients giving the displacement of each
element when a unit force is applied on any one. The contact zone (C), the pressure
distribution p(x) and the rubber displacement u(x) are determined using an iterative
algorithm which ensures that the contact forces balance the prescribed load and that p(x)
is positive when the contact occurs. The algorithm rapidly converges and guarantees a
perfect fitting between the pressure distribution and the displacement through equation
3.1.

3.3 Edge effect

Edge effect appears when using finite length samples. This can be seen in the pressure
distribution over a smooth plane profile (figure 3.1): whatever the length of the profile
numerical evaluations using a finite length profile yields overpressures at the edges and a
corresponding underpressure in the middle of the profile.
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Chapter 3 – INRETS model

0

numeric
analytic

Figure 3.1: Pressure distribution for a smooth plane profile

3.4 The periodic contact model

To avoid edge effects the problem is periodicized. This comes down to consider a periodic
profile created by an infinite repetition of the given profile. It means that each point is
influenced by the pressure acting on the main profile and on all repeated profiles. It is
equivalent to consider a Green’s function G as the sum of contributions of the Green’s
function g shifted of integer multiple of L:

G(x, ξ) =
+∞∑

n=−∞

g(x, ξ − nL) . (3.3)

L0 ξ x

F F F F

Figure 3.2: Calculation of the periodicized Green’s function
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4 – Application of INRETS model to texture

profiles

INRETS model yields the pressure distribution as well as the rubber displacement. Three
examples are given in figures 4.1 and 4.2 corresponding to a cement concrete, a bitumi-
nous concrete and a porous asphalt. The smaller the Young’s modulus, the deeper the
penetration, the larger the contact area and the smoother the pressure distribution.
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Figure 4.1: Enveloped profiles for three road pavements and different values of Young’s
modulus

A comparison of the rubber displacement as obtained with von Meier and al. [2] proce-
dure and with INRETS procedure is given figure 4.3. As can be seen the hierarchy between
the depth of penetration obtained with both procedures is not always the same along the
profile. It depends on the width of the valley between two consecutive asperities. For the
widest valleys the penetration depth obtained with von Meier and al. procedure ranges
between the penetration depth obtained with INRETS procedure with Young’s modulus
values of E = 5N/mm2 and E = 10N/mm2 while for the narrowest it ranges between
those obtained with E = 1N/mm2 and E = 2N/mm2.

4.1 Influence on texture spectra

To assess the influence of the envelopment procedure on texture profiles in terms of spectral
components, texture spectra are calculated from the enveloped profiles and drawn figure
4.4. Differences with respect to the road texture profile are also drawn. It clearly appears
that the envelopment procedure reduces the ”depth effect” on pavements like porous as-
phalts: on these pavements the presence of pores yields high texture levels in the entire
range of interest.
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Chapter 4 – Application of INRETS model to texture profiles
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Figure 4.2: Pressure distributions for three road pavements and different values of Young’s
modulus
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Figure 4.3: Comparison between von Meier’s procedure (d∗ = .054mm−1) and INRETS
procedure (different values of E)

4.2 Enveloped texture or contact forces?

The envelopment procedure provides two informations: the enveloped profile which is
seen by the tire (rubber displacement) and the pressure distribution (or contact forces)
developed at the interface. What is the most relevant information to be related to rolling
noise spectra? The calculated pressure spectra corresponding to the enveloped profiles are
drawn figure 4.5.

For each frequency band, the pressure levels are drawn figure 4.6 as a function of the
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Chapter 4 – Application of INRETS model to texture profiles
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Figure 4.4: Texture spectra of enveloped profiles. Top: Absolute values - Bottom: Differ-
ences with respect to the original road texture profile
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Figure 4.5: Pressure spectra of enveloped profiles.

texture levels (each point represents one road pavement). For each given value of the
Young’s modulus used in the envelopment, there is a linear relationship between pressure
and texture levels of the enveloped profiles (for this set of pavements). This means that
either texture or pressure spectra could be used to find the relationship between texture
and noise.

Using texture spectra instead of pressure spectra permits the comparison between
enveloped and original road profiles spectra and yields a better information about the
benefit of the envelopment procedure.
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Chapter 4 – Application of INRETS model to texture profiles
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5 – Conclusion

The static contact model described in this report was developed to extend the texture-
noise relationships to surfaces such as porous asphalt in the frequency range where tire belt
vibration noise predominates. It could be also helpful to evaluate the strengh of sources
due to air-pumping phenomenon ( [6] and [7]).

Using this model requires the determination of a single parameter: the Young’s mod-
ulus E (the prescribed mean pressure is given by the tire inflation pressure). It can be
taken as being the tire rubber Young’s modulus. Another approach consists in finding the
parameter value wich gives the best texture/noise correlations in noise frequency ranges
where the acoustical absorption properties of the road pavements have no significant effect.
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