N

N
N

HAL

open science

Modelling Statecharts and Activitycharts as Signal
equations

Jean-René Beauvais, Eric Rutten, Thierry Gautier, Roland Houdebine, Paul

Le Guernic, Yan-Mei Tang

» To cite this version:

Jean-René Beauvais, Eric Rutten, Thierry Gautier, Roland Houdebine, Paul Le Guernic, et al.. Mod-
elling Statecharts and Activitycharts as Signal equations. ACM Transactions on Software Engineering

and Methodology, 2001, 10 (4), pp.397-451. hal-00546080

HAL Id: hal-00546080
https://hal.science/hal-00546080
Submitted on 13 Dec 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-00546080
https://hal.archives-ouvertes.fr

Modelling Statecharts and Activitycharts as Signal
equations

J.-R. Beauvais, E. Rutten, T. Gautier, R. Houdebine, P. Le Guernic and Y.-M. Tang
INRIA

The languages for modelling reactive systems are of different styles, like the imperative, state-based
ones and the declarative, data-flow ones. They are adapted to different application domains. This
paper, through the example of the languages Statecharts and Signal, shows a way to give a model
of an imperative specification (Statecharts) in a declarative, equational one (Signal). This model
constitutes a formal model of the Statemate semantics of Statecharts, upon which formal analysis
techniques can be applied. Being a transformation from an imperative to a declarative structure,
it involves the definition of generic models for the explicit management of state (in the case of
control as well as of data). In order to obtain a structural construction of the model, a hierarchical
and modular organization is proposed, including proper management and propagation of control
along the hierarchy. The results presented here cover the essential features of Statecharts as well
as of another language of Statemate: Activitycharts. As a translation, it makes multi-formalism
specification possible, and provides support for the integrated operation of the languages. The
motivation lies also in the perspective of gaining access to the various formal analysis and imple-
mentation tools of the synchronous technology, using the DC+ exchange format, as in the Sacres
programming environment.

Categories and Subject Descriptors: D.2 [Software]: Software Engineering; F.3.2 [Logics and
Meanings of Programs]|: Semantics of programming Languages

General Terms: Languages

Additional Key Words and Phrases: Behavioral modelling, reactive systems, statechart, STATE-
MATE, synchronous languages, SIGNAL

1. INTRODUCTION
1.1 Context and objective

Different languages exist for the design of reactive systems: the languages Lustre
[Halbwachs et al. 1991] and Signal [Le Guernic et al. 1991] are declarative and
equational data flow languages, while others are imperative sequencing languages:

This work was partially supported by the Esprit Project EP 20897 SACRES.

Authors’ addresses: EP-ATR project, IRISA/INRIA-Rennes, 35052 RENNES cedex, France; E.
Rutten, BIP project, INRIA Rhone-Alpes, 655 avenue de I’Europe, F-38330 MONTBONNOT
SAINT MARTIN, France

Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must
be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on
servers, to redistribute to lists, or to use any component of this work in other works, requires prior
specific permission and/or a fee. Permissions may be requested from Publications Dept, ACM
Inc., 1515 Broadway, New York, NY 10036 USA, fax +1 (212) 869-0481, or permissionsQacm.org.



2 . J.-R. Beauvais, E. Rutten, T. Gautier, R. Houdebine, P. Le Guernic, Y.-M. Tang

textual like Esterel [Berry and Gonthier 1992] and ELECTRE [Perraud et al. 1992],
or graphical like Statecharts [Harel 1987] and Argos [Maraninchi and Halbwachs
1996]. The choice between the declarative and the imperative approach has an
influence upon the facility with which a given application area can be handled.
For instance, declarative languages easily handle applications like signal process-
ing, while imperative formalisms are often used for sequential control systems. The
need for a control mechanism such as task management, for example, appears in ap-
plication domains involving the control of physical processes. For complex systems
involving the two aspects, a multi-formalism specification can be useful.

This paper presents a translation from the essential features of Statecharts and
Activitycharts to the equational language Signal. Among the different semantics
of Statecharts [M. von der Beeck 1994], the translation presented here follows the
Statemate one [Harel and Naamad 1996]. This scheme yields a formal model of the
Statemate semantics of Statecharts, upon which formal analysis techniques can be
applied. Being a transformation from an imperative to a declarative structure, it
involves the definition of generic techniques for the explicit management of state (in
the case of control as well as of data). In order to obtain a structural construction
of the model, a hierarchical and modular organization is proposed, including proper
management and propagation of control along the hierarchy. The results presented
here cover the essential features of Statecharts as well as of another language of
Statemate: Activitycharts. This work was implemented in a prototype translator,
covering only the most substantial parts of the Statemate languages (the control
part of Activitycharts and Statecharts, and the simple actions). This prototype was
used to treat examples of small to medium size (i.e., several activities, associated
with Statecharts of several hierarchical levels), either made up or inspired by sample
specifications from partners in the ESPRIT project Sacres.

1.2 Motivation

The primary motivation for this work is to make more widely available a corpus of
results in the synchronous approach to reactive and real-time systems. Signal being
a representative of the class of declarative synchronous languages, this translation:

—provides a way to merge imperative and declarative synchronous languages by
simply composing equations (composition of Signal processes),

—remedies the lack of imperative features of Signal,

—gives a compositional definition of Statecharts semantics,

—opens a direct connection from a Statecharts design to the synchronous technol-
ogy tools of the Signal environment, and moreover to the tools compatible with
the DC+ format [SACRES Consortium 1997a]: compilers, simulators, verification
systems,

—in particular, it gives direct access to the Signal code generator, which can pro-
duce efficient and compact code from a Statecharts specification, using the clock
calculus available in Signal. It can also generate distributed and architecture-
dependent code [Benveniste et al. 1998].

We believe that, on the one hand, the graphical readability of Statecharts makes
it good for the designing an imperative specification. On the other hand, the Sig-
nal compiler uses an elaborate clock calculus, which makes it a good choice for



Modelling Statecharts and Activitycharts as Signal equations . 3

Specification tools
. Timing
Satemate Sildex SsL Diagrams
Code Generation Verification
(optimisations, DC+ common format (components,
distribution) systems)
Proof Scripts
Code Validation

C, Ada

Fig. 1. Global architecture of the Sacres environment

extracting clock properties from a specification, in order to get efficiency in code
generation and in verification. Hence, keeping the structural information through
the translation, and not simply coding, is a key issue for understanding interactions
between components from different sources. The traceable links between the ini-
tial specification and the generated code potentially allow us to route information
extracted from the verification tools back to the specification, for user feedback
(diagnostic, counter-example). In the other direction, from the specification to the
generated code, traceability may be used to add, at specification time, directives
for the partitioning into tasks or distributed processes.

This work constitutes part of the Sacres programming environment [Grazebrook
1997]. The purpose of the Esprit project Sacres (SAfety CRitical Embedded Sys-
tems: from requirements to system architecture) is to integrate into a unified and
complete environment a variety of tools for specification, verification, code genera-
tion and validation of the code produced'. Among the application domains targeted
are avionics and process control. The question of certification and validation is in-
tegrated into the environment. Figure 1 illustrates the architecture of the Sacres
toolset. It shows information flows between the elements of the toolset, and the
central position of the format between the tools of the environment. Translators to
and from DC+ are developed in the framework of the project, and enable the con-
nection of all the representations specific to the different tools, using the common
format. The translation from Statecharts to DC+ is one of them.

DC+ is an exchange format that supports the representation of Signal; as such,
they are quite similar: both are defined in terms of systems of equations over flows
or signals. Signal being a programming language, it is prefereable to use it for

!Member partners of the Sacres project are: British Aerospace (UK), aircraft builder; i-Logix
(UK), developing and distributing StateMate, the environment for designing in Statecharts; IN-
RIA (France), a research institute where new technologies are defined and developed around the
synchronous language Signal [Gautier et al. 1994]; OFFIS (Germany), research institute bringing
verification technology; Siemens (Germany), where controllers for industrial processes are devel-
oped; SNECMA (France), builder of aircraft engines; TNI (France), developing and distributing
the SILDEX tool and the Signal language; the Weizmann Institute (Israel), as regards semantic
aspects and the validation of code.



4 . J.-R. Beauvais, E. Rutten, T. Gautier, R. Houdebine, P. Le Guernic, Y.-M. Tang

readability purposes, hence this paper presents the translation in terms of Signal
rather that DC+.

1.3 Organization of the paper

Sections 2 and 3 describe the Signal and Statecharts formalisms. Section 4 describes
the model on which the translation is based. Section 5 describes how each of
the major constructs of Statecharts are translated, and gives illustrative examples.
It covers the essential features of Statecharts and Activitycharts; it concentrates
on the behavioral aspects, in the framework of the step semantics; Other aspects
like elaborate data-types, the superstep semantics, and some particular aspects of
actions, are part of the perspectives. Section 6 describes the translation schemes
for Activitycharts. Section 7 describes how the relational aspects of Signal can
be used to model execution schemes and nondeterminism, and indicates how the
translation can be modified accordingly.

2. SIGNAL: A DECLARATIVE SYNCHRONOUS LANGUAGE

Signal is a synchronous real-time language, declarative, data flow oriented and built
around a minimal kernel of operators [Le Guernic et al. 1991].

The idea of the synchronous model is very simple: it assumes that a program,
embedded in some environment, interacts with this environment through a finite set
of communication links. At any particular instant, more than one event (reception
or emission of messages, calculations) may occur, in which case they are simulta-
neous and they have the same temporal index. The evolution of the computation
results from the sequences of these communications, but also from explicit changes
expressed in the program (for example, for an equation y; = f(x;—1), the output y
will be simultaneous with each one of the next occurrences of the input ). Without
such an explicit change, the outputs are considered simultaneous with the inputs
that have been used in their computation, like in Esterel, Lustre or Signal, or they
are produced at the next instant, like in Statemate for instance.

The Signal language is also a data flow language, where a program is a system of
equations. Unlike in Lustre (which is also data flow), the system of equations of a
Signal program describes a relation between the inputs and outputs of the system
(not necessarily a function): this makes it possible to describe, in Signal, partial
specifications or non deterministic behaviors.

A Signal program specifies a real-time system in terms of a collection of equations
defining signals. The collections of equations can be organized hierarchically in sub-
systems (or processes). A signal is a sequence of values of a given type, with which
is associated an implicit clock which defines the discrete set of instants at which
these values are present. The different clocks are not necessarily linked together
by fixed sampling frequencies: they can have occurrences depending on local data
or external events (like interruptions for example). Among the types of the signals
(which are the types of their values), there are classical types—Booleans, integers,
etc.—and a special type called event, which is a subtype of the Boolean type with
the single value true: it allows the representation of pure signals, and it is used in
particular to represent in the language the clocks of the signals.

The Signal language is built on a small number of primitives, the semantics of
which is described informally below. In order to give this semantics, we add a



Modelling Statecharts and Activitycharts as Signal equations . 5

distinguished symbol, denoted L, to the considered domain of values of the signals:
this symbol represents the absence of value (note that it is not manipulated in
the language). The semantics of a program is described by the set of acceptable
sequences of valuations of the variables of the program in the domain of values
completed by L. The notation X; represents the value of the variable (or signal)
X at the instant t in some sequence of valuations of some subset of variables (we
call such a sequence a flow).

The kernel of Signal is composed of the following primitives, which define ele-
mentary processes:

—PFunctions or relations extended to sequences:

vt,Yt: 1l = Xlt:...:Xnt:J_

Y= f(Xl""’Xn):{Vt,Yﬁé L = Yy =£(X1,...,Xny)

Examples of such operators are classical arithmetic operators (+, *...), relations
(=, <...), Boolean operators (not, or...).

—Delay:

VEY, = L = X =1
Y := X $1 init v0:< Yp# L = Yy =v0
Vt>0,Yt7é 1L = Yy=Xs 1

This operator expresses an explicit consumption of time (dynamic equation).
—Extraction on Boolean condition:

B, # true = Yy= 1

Y := X when B:
when W’{Bt =true = Y, =X

—DMerge with priority:

U, 7é 1l = Yy =0,

Y := U default V:Vt,{Ut =1 = Y=V

The composition of two processes (|P|@]) is defined by the set of all the flows
respecting, in particular on common variables, the set of constraints respectively
imposed by P and @ (the composition is commutative and associative).

Finally, the restriction of visibility of a signal X, denoted P where X, is the
projection of the set of flows associated with P on the set of variables of P minus
X.

As it can be seen on the above description of the primitives, each signal has its
own temporal reference (its clock, or set of instants at which it is different from
1). For example, the first two primitives are single-clocked: they constrain all the
implied signals so that they have the same clock. On the other hand, the third and
fourth ones are multiple-clocked, the signals may have different clocks.

The following table illustrates each of the primitives with a trace:

n 4 3 2 1 0 4 3 2 1 0 4
zn := n$1 init O 0 4 3 2 1 0 4 3 2 1 0
p := zn-1 -1 3 2 1 o -1 3 2 1 0 -1
fill := true when zn=0 t t
empty := true when (n=0) f t f t f
default (not f£ill)




6 . J.-R. Beauvais, E. Rutten, T. Gautier, R. Houdebine, P. Le Guernic, Y.-M. Tang

The rest of the language is built upon this kernel. Derived operators have been
defined from the primitive operators, providing programming comfort. We describe
now those we use in this paper.

If X is a signal of any type, Y := “X defines the event type signal which is present
(with the value true) whenever X is present: it is used to represent the clock of the
signal X.

A special case of an event type signal is the signal denoted ~0, which is, by
definition, never present.

The following special case of the extraction, Y := when B, where B is a Boolean
signal, defines also an event type signal, which is present whenever B has the value
true.

For any two signals U and V, the intersection and the union of their clocks,
represented by event type signals, can be obtained respectively by the equations
Y :=U "x Vand Y := U "+ V (these equations are more specific notations for
respectively Y := U when “Vand Y := U default “V).

Finally, constraints between clocks of signals can be specified by using clock
equations such as X1 “= ... “= Xn, which asserts that the signals X1, ..., Xn
have the same clock (i.e., are present at the same instants).

The Signal compiler mainly consists of a formal system which is able to reason
about clocks, logics and dependence graphs. In particular, the clock calculus and
the dependence calculus [Amagbegnon et al. 1995] provide a synthesis of the global
synchronization of the program from the specification of the local synchronizations
(given by the Signal equations), and a synthesis of the global scheduling of the
specified calculations. Contradictions and inconsistencies can be detected by these
calculi. The clock calculus using BDD techniques, synthesizes a hierarchy of clocks
(based on inclusion of presence instants), which constitutes, together with the de-
pendence graph, the basis on which a number of tools can be applied. These tools
can perform automatic transformations in order to reorganize the program or to
get specific optimizations, they can generate inputs for verification tools such as
model checkers, they can generate sequential code or distribute the application on
some architecture, they can evaluate the time consumption of the program on a
given architecture, etc.

process tank = {integer capacity;}

( ? event fill;
! boolean empty;)

(I when(zn=0) ~= fill
| zn :=n $1 init O
| p:=2zn -1
| n (capacity when £ill) default p
| empty := when (n=0) default (not fill)
1

where integer n, zn, p;

end;

Fig. 2. A refillable tank



Modelling Statecharts and Activitycharts as Signal equations . 7

0 0 0 0
T Y T Sy
0 0 0 0
T T T R
x x x x fill

tf tf ot f tf
H T - empty

Fig. 3. The clocks of the tank process

Figure 2 shows an example of a Signal program describing a refillable tank. This
process named tank has a constant parameter capacity, an input signal: f£ill
(pure event), an output signal empty (Boolean) and a list of equations defining
the body of the process. The behavior described in this process is the following:
whenever the tank is filled, with input signal £i11 set, the level of water in the
tank starts to decrease (n) until the level reaches 0. At this time, the output empty
signal is set to true. Then, the next £ill can refill the tank and set the empty
signal to false.

The present instants (clocks) of the signals in this program are illustrated in
Figure 3. One can notice that the clock of local (internal) signals is faster than
(i.e., includes) that of inputs and outputs: in that sense it is possible to specify
oversamplings in Signal, i.e., processes which are not necessarily strictly reactive
to their inputs. This particularity will be explored in the modelling of Statemate,
particularly in Section 7.

3. STATEMATE: STATECHARTS AND ACTIVITYCHARTS

The Statecharts formalism was introduced by Harel [Harel 1987]. It is a graphical
language based on automata. It is integrated into the Statemate environment, along
with another language called Activitycharts, which is block-diagram oriented. It is
implemented in the tool Magnum, designed by i-Logix.

The specification of a model in Statemate is composed of charts. To each chart
is associated the declaration of data-items (i.e., variables with a given type) and
events, hence defining their scope: these are known inside the chart. Other data-
items and/or events can be exchanged with the environment. The chart is further
defined by either an Activitychart or a Statechart, which can be itself decomposed
hierarchically into sub-charts. The entry point for a model is an Activitychart,
which describes a structural decomposition by being divided into sub-activities,
recursively. Some sub-activities, called control activities, can be defined by a Stat-
echart.

Hierarchical parallel automata. A Statecharts design essentially consists of
states and transitions like a finite automaton. In order to model depth, a state can
be refined and contain sub-states and internal transitions. Two such refinements
are available: and and or states, that give a state hierarchy. At the bottom of
the hierarchy, Basic-states are not further refined. If the system specified by a
Statechart resides in an or state, then it also resides in exactly one of its direct
sub-states. Staying in an and state implies staying in all of its direct sub-states
and models concurrency. When a state is left, each sub-state is also left, thereby



8 . J.-R. Beauvais, E. Rutten, T. Gautier, R. Houdebine, P. Le Guernic, Y.-M. Tang

modelling preemption. Sub-states of an and state may contain transitions which
can be executed simultaneously. The configuration of a Statechart is defined by the
hierarchy of states and sub-states in which it stays. The different and parts of a
state may communicate by internal events which are broadcast all over the scope
of the events. For instance, the emission of an event on a transition may be sensed
somewhere else in the design and trigger a new transition.

In the Statechart example of Figure 4, the basic components are states and
transitions, some states clustered in or composition (Sub_Running_Up is an or
state containing S1 and S2) while some other groups in and composition (Running
is an and state containing Sub_Running_Up and Sub_Running_Down).

When entering a state containing sub-states, different possibilities are available
for specifying the behavior: when entering a state by a transition pointing to the
boundary of the state, the state targeted by the default connector (a transition
without origin) is activated. When reentering a state through a history connector
(H), the sub-state activated is the one that was active when the state was left. When
entering for the first time a state containing a history connector, the transition
leaving this history connector is used to find the sub-state to activate. Finally,
deep-history (H*) is a connector that acts similarly to the history connector but
applies to all the sub-states in the hierarchy. Note that the same state can have
all the three ways of being entered, hence the corresponding mechanism is applied,
according to the transition through which it is entered.

Transitions and actions in a step. The transitions between states are labeled
by reactions of the form: e[C]/a, where e is an event that possibly triggers the
transition, C is a Boolean guard condition that has to be true for the transition
to fire. The previous event and the Boolean together give the trigger part of the
transition while the right part of the “/” (a) contains the actions that are carried
out if and when the transition is fired. As a special kind of transition, Statemate
offers the possibility to associate such labels to a state. Whenever this state is
active, the trigger part of the transition is evaluated and possibly the action is
carried out. Such transitions are called static reactions.

The basic evolution of Statecharts proceeds in steps, where given the events
currently present and the current values of variables, triggers and conditions are

("sub_Running_Up h
a
e
alb ¢

Running

2]
y
a

b/d

\_Sub_Running_Down )

Fig. 4. A Statechart ezample



Modelling Statecharts and Activitycharts as Signal equations . 9

Al A2
All

Al2

A3

Fig. 5. An activities hierarchy

evaluated, and actions are carried out. In Statemate the effects (event generation,
variable modifications) of the actions carried out in one step are sensed only at the
following step. This distinguishes Statemate from other semantics of Statecharts-
like languages [M. von der Beeck 1994], e.g., the strictly synchronous one as in
Argos [Maraninchi and Halbwachs 1996], where effects are sensed in the very same
reaction: in the example, the reception of the fourth occurrence of a would result
in emitting b and d in the same reaction.

The step semantics is the interpretation of a Statemate specification where inputs
from the environment are considered at each step, taking part in the current events
and variables. Another semantics is the superstep intepretation: here, inputs take
part only in the first of a series of steps, called a superstep. There, the following
steps take in consideration only the effects of the previous one (i.e., locally emitted
events and changed values), until there is no transition to take anymore, i.e., no step
to make. This situation, called stable, is the end of the superstep, and inputs are
acquired from the environment anew. This mechanism is close to the semantics of
Sequential Function Charts with search for stability [IEC 1993; Marcé and Le Parc
1993].

There is a textual language, of a classical imperative form, a la Pascal, for con-
structing actions. For actions which consist of assigning values to variables, the
same variable can be referenced in assignments associated with different transi-
tions: each provides a contributed value, and the variable takes its values from the
action contributing in the current step. The actions can feature a form of variable
called context variables, local to the action, which can take several values within
one step. Iteration constructs include the unbounded while loop, thereby incurring
the risk of non-termination. Also, a timeout and a schedule action are available.

Activities. Besides the Statecharts, another language of the Statemate envi-
ronment is Activitycharts [Harel and Naamad 1991]: it provides the designer with
a notion of multi-level data-flow diagrams, as illustrated in Figure 5. Each of the
blocks in the hierarchy represents an activity. The activities can be used to con-
struct a structure decomposed hierarchically.

At each level, one of the activities, designated in the graphical syntax by a round-
cornered box, can be a control activity (e.g., activiy A2 in Fig.5). It is associated
with a Statechart defining its behavior. The latter can start, stop, suspend and
resume the activity, as well as sense its current status. Activities can be associated



10 . J.-R. Beauvais, E. Rutten, T. Gautier, R. Houdebine, P. Le Guernic, Y.-M. Tang

with states in Statecharts, in one of two ways: within and throughout, depending
on the way they can be started (see Section 6).

Actions with a trigger can be associated with an activity, they are called mini-
specs, and have the same form as the labels seen associated with transitions or
static reactions with states in Statecharts. Another form of actions of activities is
called combinational assignments: the difference with mini-specs is that the values
they compute are available within the same step.

Links between activities represent the data or control exchanges between activi-
ties. This aspect of the language is, however, based on the fact that variables and
events are known globally in a chart (the scope of their definition). Therefore it will
not be handled explicitly in the translation. The data flow links are an optional
explicit representation of communications that exist anyway.

Finally, a concept of ModuleCharts also exists in Statemate, handling the asso-
ciation of a specification with an execution architecture. This point is not covered
by the present work.

The languages of Statemate form a set of languages with a full spectrum of fea-
tures, in different styles, and elaborate actions and data types. They allow for
the specification and simulation of designs with such an expressiveness that even
designs presenting potential risks can be written. Especially in the framework of
safety-critical embedded systems, it is considered very risk-prone to use unbounded
instructions or structures like, e.g., the while loop in actions, or queue data struc-
tures. Also, some features do not follow the overall structured quality of the lan-
guage, like the possibility of drawing transitions crossing several levels of and- and
or-nodes.

Proposals concerning the safe use of Statemate have been described, called Safe-
chart [Armstrong 1996], which consisted first in directives and advices in using
Statemate, rather than strict interdictions. They advise for example to avoid cross-
level transitions, avoid using the negation on events, etc. Later on, a formally
defined syntactic sub-language was identified, and it was formalized by a function
mapping it to an axiomatization in Real Time Logic [Armstrong 1998].

In the following, we will restrict ourselves to a sub-language of Statecharts that
we model in Signal, where all aspects covered are bounded.

4. TRANSLATION PRINCIPLES

This section presents the overall approach to the structural translation, and some
useful basic elements. First, we introduce a reactive box model, and the way it
is featured in the hierarchical model. Then, in order to simplify and to structure
the translation from Statecharts to Signal, some predefined processes useful for the
translation are given. They correspond to the basic features of the Statecharts.

4.1 The reactive box

As a common framework for reactive specification, we define a model of a reactive
box with a normalized interface. Each part of the design to translate will have this
interface scheme represented as a process in Signal. In particular, and-nodes and
or-nodes will each be translated into a process with this structure. The hierarchical
propagation of control signals such as clocks and resets will follow these interfaces.

An interesting property of the Signal language, is that the behavior of the com-



Modelling Statecharts and Activitycharts as Signal equations . 11

l'TthT ||| YTy LocaClock y Comal g Time

FTTTTTI

+ Stable
Outputs

Fig. 6. The reactive box model

position of two processes is the intersection of the behaviors of the constituent
processes. This is similar to the solutions of an equational system. This reactive
box model is compositional in the same sense and gives a compositional semantics
for Statecharts.

A reactive box is a box with input and output signals. Some of these interface
signals are common to every box:

—Tick is the clock of the whole design. It has been added because in Statemate,
the events generated by a step are sensed only at the beginning of the following
step (generated events are shifted). This signal is the reference clock used for the
purpose of shifting these events and value changes by one instant of the global
clock?.

—ULocalClock is the clock of the box. This clock is present whenever the corre-
sponding Statecharts component is active.

—Control is an enumerated-typed signal with values in {Start, Stop, Resume,
LocalResume}. This type is called tcontrol. It is used inside the box to know
when and how the box is (re)entered. If its value is Start, all the (sub)levels of
the box need to be reset. If its value is LocalResume (e.g., the corresponding
state is activated through a history connector) the box needs to be reset for
all the levels apart from the level where the LocalResume connector belongs.
Resume means that the box is activated but no reset has to be performed. The
Resume value is useful because, for instance, in Statemate, a state may contain
entering in the trigger part of a static reaction that enables the static reaction
when the state is entered. Similarly with exiting, the value Stop is used when
leaving a state in Statemate.

—Time is a signal recording the passing of the outside time. It can be given by
impulses of the event type, or by values of dates.

—Stable is a Boolean signal that is true when the inner box has completed its job
for the current reaction to inputs, and is ready to synchronize with its environ-
ment in order to accept new input. The clock of Stable is the clock of the box.
Stable is used to cope with superstep semantics.

?Note that, however, memorization associated with the shifting process will be managed with
optimizations w.r.t inactive sub-Statecharts



12 . J.-R. Beauvais, E. Rutten, T. Gautier, R. Houdebine, P. Le Guernic, Y.-M. Tang

4.2 Hierarchical model

The reactive box is used in a hierarchical manner to build the model, which has
consequences in the compilation.

4.2.1 Structural translation. As was presented in Section 3, a Statemate speci-
fication is a hierarchy of Statemate entities (Activitycharts ot Statecharts), each
with associated actions, and sub-components (sub-activities of an activity, possibly
a control activity, and subcharts of a Statecharts And- or Or-state).

The structural translation proposed here follows the top-down approach where, at
each level of this Statemate hierarchy, we have a reactive box. At the highest level,
its interface is connected to the environment (see Section 7.1). Such a box contains
representations of the local behaviour, of sub-components and their interactions:

—for each variable declared at that level or scope, a model of a memory (see
Section 4.6),

—a model of the local behaviour, which can involve state and transitions (see
Sections 4.4 and 4.5),

—for each sub-component, a reactive box, with the appropriate input-output pro-
file, and for each of them:

—the global tick and time are transmitted as such,

—a local clock is computed from that of the current level component, and can
depend on its state and actions,

—a control signal is computed from that received from the upper level by the
current one, and can depend on its state, actions, and transitions.

—the stability signals from all sub-components models are collected and compute
a stability value for the current level.

The aspects specific to hierarchies in Statecharts and Activitycharts are further
described respectively in Sections 5.1.2 and 6.1.

4.2.2 Hierarchy of clocks. In Signal, basic objects are signals which always have
a clock, while in Statemate, only events are clocked. Variables in Statemate are of
two kinds: events or data-items. Data-items are valued and always present, while
events are only present or absent. In order to reach compositionality, during the
translation, we need to associate a clock with each Statemate variable. The clocks
of the data-items will be computed from the signals Tick and LocalClock.

It is important to note that this is where the hierarchy of the Statemate structure
is reflected in a hierarchy of clocks in Signal: the local clock passed to the lower
levels of the hierarchy is a sub-sampling of the local clock of the current level,
according to the state of activity of that lower level. Besides this hierarchical
aspect, a formal analysis of the clock system is performed during the compilation
of Signal. It consists in arranging clocks in a hierarchical structure depending on
the definition of the ones as expressions of the others, especially as extractions
defining sub-clocks. This might improve the global clock hierarchy by establishing
relations between clocks not coming from this structural aspect.



Modelling Statecharts and Activitycharts as Signal equations . 13

4.3 Testing absence

Whereas in Statecharts conditions are always available, in Signal they have their
own clock. This is why in the translation we mix the event and the condition guard
of the transition in the trigger signal.

e | Statecharts not e | Signal not e
t f f
Absent t Absent

Fig. 7. Differences between Statemate not and Signal not. In Statecharts, not e means: e did
not occur, while in Signal it is a conservative extension of the not operator on the Booleans.

Statecharts offers the possibility to check whether an event is present or not
because it is single clocked while in Signal (multi clocking), asking for absence is
with regard to a reference clock. The not of the two languages have a different
behavior (see Figure 7). For a Statechart design using the not feature a Signal
process is used:

process not_event =
( 7 event el, ref_clock;
! boolean e2;)
(| e2 := not(el) default ref_clock |)
This process takes an event el and a clock ref _clock and returns a Boolean true
when ref_clock is present and not el. Otherwise, the process returns false.
The Statecharts event el and e2 occurs when both el and e2 occurred simulta-
neously. It is translated into Signal: el when e2. The Statecharts event el or e2
occurs when either el or e2 occurred. It is translated into Signal: el default e2.
Statecharts use and, or, not also for conditions. These ones are translated
using the Boolean primitives and, or, not of Signal.

4.4 Transition

To check if a transition is triggered, a specific process is designed that is instantiated

for each transition.
c]/a
statel elc] state2

Fig. 8. A transition in Statecharts

4.4.1 Signal encoding:

process transition = {state statel, state2;}
( 7 state origin; event trigger;
! state target;)
(| target := state2 when trigger when (origin=statel)

1



14 . J.-R. Beauvais, E. Rutten, T. Gautier, R. Houdebine, P. Le Guernic, Y.-M. Tang

’

where the constant parameters do not need to be typed, the Signal compiler being
provided with a type inference mechanism.

4.4.2 Interface:. statel is the initial state of the transition (a value of an enu-
merated type called state), state2 is the target state of the transition (a value of
the same enumerated type), origin is a signal containing the current active state
of the level where statel belongs (see the Section 4.5 about configuration signal),
trigger is the signal which triggers the transition, target gives the new state
chosen when the transition is fired.

4.4.3 Behavior:. To use this process, one needs to instantiate {statel,state2}
with the initial and the target state of the actual transition. It outputs a new state
value whenever the transition it describes is fired. Presence of an output means
that the transition is enabled, its value shows the new state (which is state2) that
will be reached if the transition is actually taken.

This output signal for each transition is then used to compute the new config-
uration. The choice between possibly several enabled transitions handles solving
priority between conflicting transitions (see Section 5.1 and, for the case of non-
determinism, Section 7.2). The result is fed into the new configuration, managed
by the predefined process described next.

4.5 State

The configuration of a Statechart is the list of its active states at a given point in
time. For a n-states flat automaton, the configuration (i.e., which state is active) is
handled by a signal ranging on an enumerated type (state) of n different values:
one value for one sub-state.

For Figure 4, if s, t, u are respectively the configuration variables of the top
level, and of sub-states Sub_Running_ Up and Sub_Running_Down, then legal con-
figurations are:

s t u

Idle absent | absent
Running | S1 S3
Running | S1 S4
Running | S2 S3
Running | S2 sS4

This encoding ensures a basic Statecharts property: A configuration cannot be
simultaneously in two different sub-states of an or-state. This is ensured by the fact
that the configuration at each level of the hierarchy is stored in one signal having
at most one value at each instant.

Because a state could be refined also into sub-states, a new configuration signal
(ranging in a new enumerated type) will be associated with each sub-state. The
states of a Statechart form a tree, hence we have a signal tree. The clock calculus
of the Signal compiler uses this information to produce optimized code: whenever
a state is not active, the signal associated with it is not present and hence all the



Modelling Statecharts and Activitycharts as Signal equations . 15

sub-states in the tree will not be calculated. The clock hierarchy maps the state
encapsulation.

In this paper, we define a structural translation from Statecharts to Signal where
we follow the hierarchy for a double purpose. On the one hand, it favours readabilty
and traceability in the produced Signal mode. On the other hand, this hierarchical
structure involves the control of the activity of sub-charts, and this can be encoded
in a hierarchy of clocks, hence enabling the use of the clock calculus.

For every level of the Statecharts hierarchy, an instance of the following process
is used to update the configuration variable.

4.5.1 Signal encoding:

process nextstate = {state initial_state;}
( ? event tick, localclock; tcontrol Control; event Time; state new;
! boolean Stable; state zconfiguration, configuration;)

(| configuration := (initial_state when control=Start)
default new default zconfiguration
| zconfiguration := configuration $1 init initial_state
| configuration “= localclock "+ Control
| Stable := (configuration = zconfiguration)

1

’

4.5.2 Interface:. localclock is the clock at which the state is active, as defined
in Section 5.1.3; it is local to each configuration variable. new is the new value of the
configuration variable computed with processes transition. control is a signal of
type tcontrol as defined in setcion 4.1, and used to reinitialize the configuration
when its value is Start. Stable is a Boolean indicating whether stability is reached
or not

In order to conform with the reactive box structure, inputs Time and Tick are
added, though unused.

4.5.3 Behavior:. This process is used to memorize the current configuration of
the Statechart when no transition occurs (or a transition occurs somewhere else in
the design). The parameter initial_state gives the default state of the or-state.
When this process is used, three situations can occur:

—if control=Start, the current state takes the initial value given as the default
parameter initial_state (this re-initialization is of greater priority with regard
to possibly enabled transitions which would produce a value of new); else:

—if a new value occurs (new is present), configuration takes it as a new value;
else:

—if localclock occurs alone, configuration remains unchanged (copied from its
previous value).

The output Stable is true when the configuration remains unchanged. The clock
of Stable is that of the configuration.



16 . J.-R. Beauvais, E. Rutten, T. Gautier, R. Houdebine, P. Le Guernic, Y.-M. Tang

4.6 Shift

The Statemate semantics of Statecharts [Harel and Naamad 1996] states that ”cal-
culation in one step is based on the situation at the beginning of the step” and
”Reactions to external and internal events, and changes that occur in a step, can
be sensed only after completion of the step”. We hence need to postpone the result
of the current calculation (generated events for instance) to the next ”step”. The
process shift aims at that.

4.6.1 Signal encoding:

process shift =
(7 x;
event tick;
! y; boolean Stable; )
(I value_x := x default y
| value_x "= "x default tick
| vy := value_x $1
| Stable := not "“x default tick
D)
where value_x;
end;

4.6.2 Interface:. x is the signal to be shifted, y the shifted signal (their types
will be inferred for each instantiation), tick the clock of the Statemate step, and
Stable the stability Boolean.

4.6.3 Behavior:. A trace example with integer values for x is shown Figure 9.

Tick t t t ¢t t t t t t
X 1 2 3 4 5
valuex 1 1 2 2 2 2 3 4 5
y 11 2 2 2 2 3 4

Fig. 9. A trace of the shift process with x integer

Given a signal and a clock (usually the fastest clock), it shifts the new values of
the signal to the next ‘tick’ of the clock, while memorizing the last new value.

All variables (except configuration variables) are encoded in signals at the fastest
clock so that their value is always available. Hence shift is with respect to the
fastest clock.

If one wants to have a perfect synchrony hypothesis [M. von der Beeck 1994], the
shift would have to be be removed and then input and corresponding output would
occur at the same time. Solving causality cycles would be left (when possible) to
the Signal compiler and this would correspond to a synchronous semantics of the
Statecharts. The case of events is detailed in Section A.1.

Associated with each variable X are some control events, signalling, e.g., changes
of values, which can be featured in triggers (see Section 5.2.2). The process shift is
the right place to define them, as it is there that memorization of values takes place:
hence it can be extended to manage these features, as presented in Section A.2.



Modelling Statecharts and Activitycharts as Signal equations . 17

5. TRANSLATION FROM STATECHARTS TO SIGNAL

This Section introduces the general translation of the main Statecharts features
into Signal, by illustrating them with an example, and outlining an overview of the
hierarchical structure of the model, before giving the translation scheme.

5.1 Or-states and And-states

5.1.1 Ezample. As we said in Section 4.2.1, for each Statecharts component, a
box process as defined above is created. The structural hierarchy of the Statecharts
design is preserved through the hierarchy of the Signal processes. We will follow
the structure of the example in Figure 4, introducing some important features as
we go. An Or-state is at the top-level, with two states and two transitions. One
of its states is refined into a subchart, which is an And-state. This latter is also
refined into two Or-states, with different history connectors.

5.1.1.1 Or-states.. For the top-level, we define a configuration signal giving the
next configuration (nc) of the Statechart, in function of its current configuration c.
However, in Statemate, transitions can not be taken at the instants when entering
or exiting the corresponding or-node. The latter is given by the signal Control.
Hence, the configuration input conditioning them has to be restricted to instants
excluding the presence of control. This is done by defining c_t, which is given as
the correct under-sampling of the configuration for transitions.

| t1 := transition {Idle, Running} (c_t, e)
| t2 := transition {Running, Idle} (c_t, f)
| Control "= "0
| c_t := c when ( (not “Control) default LocalClock)
| (Stable,c,nc) := nextstate {Idle}
(Tick, LocalClock, Control, Time, tl1 default t2)

This process, corresponding to the top level, will compute its internal configura-
tion (values Running or Idle) at the local clock, which is, at the top level, the clock
tick of the Statemate step. The signal t1 corresponds to the transition from Idle
to Running and t2 to the transition from Running to Idle. They are of enumerated
type and get the value of the target of the transition when the corresponding transi-
tion is enabled. In case several transitions are enabled, the default between them
will make a deterministic choice. The handling of non-determinism is described in
Section 7.2, where Signal is used to build an explicit representation of the possible
cases. The transition taken is then fed into the process nextstate.

The Control input to nextstate is the null clock ~0 because there is no ex-
plicit entering or exiting of the top-level. The parameter Idle of the subprocess
nextstate is given because Idle is the default entrance state of the whole State-
chart. To summarize, at the clock of the step, t1 and t2 are computed from the
current value of the configuration signal c and the result is used in nextstate to
compute the next configuration nc.

5.1.1.2 State refinement.. The state Running of the top level is now refined as
being the process running. Its interface is built according to the reactive box
scheme introduced in Section 4.1. Its single input variable is a since e and f are



18 . J.-R. Beauvais, E. Rutten, T. Gautier, R. Houdebine, P. Le Guernic, Y.-M. Tang

Tick t t t t t t t t t
Toplevel LocalClock | t t t t t t t t t
(future) nc I R R R R R R I I
(present) c I I R R R R R R I
ct 1 1 R R R R R R I
e t
f t
a t t
b t
Sub_ LocalClock t t t t t t
Running_ Control Start Stop
Up nc S1 ST S2 S1 S1  S1 S1
c S1 S1 S1 S2 S1 S1 S1
ct S1 S1 S2 S1 S1
Sub_ LocalClock t t t t t t
Running_ Control Start Stop
Down nc S3 S3 S3 S3 S4 o4 S4
c S3 S3 S3 S3 S3 S4 S4
ct S3 S3 S3 S3 o4

Fig. 10. Ezecution trace for the example in Figure 4

not used inside. Its outputs are b and d. The clock of the configuration variables
refining Running is defined as follows:

localclock_running:= when (c=Running)

It is defined by the instants when the next configuration is in the state Running.
This way, at the instant of entering a state, its sub-state configuration variable is
present, which is needed in case it has to be re-initialized. On the other hand, the
sub-state variable is not present at the instant when the state is exited. This down-
sampling of the clock of the configuration variable nc into subclocks according to its
value is the way the clock hierarchy of the configuration signals is built. The clock
localclock of the sub-states is less frequent than the clock of the local localclock.

The subcontrol_running signal is used to reinitialize the subprocess to its de-
fault configuration at the instants of entrance. In the case of the example, the
sub-node Running starts again when transition t1 is taken, hence:

subcontrol_running := Start when "t1

We choose to reset an or-state to its default configuration at the instants of
entrance and not at the instants of exit because the semantics offers the possibility
executing actions upon entering. Resetting when exiting like in [Maraninchi and
Halbwachs 1996] would execute actions at the wrong instants according to the
Statemate semantics.

Putting all this information together gives the parameters of the box running:

d := running(tick, localclock_running, subcontrol_running, a, b)

Figure 10 illustrates the different clocks in presence, where I is for state Idle, and
R for Running.

5.1.1.3 And-states.. The Running state is the and composition of two or-states,
called: sub_running_ up and sub_running_down. It can be modeled as the syn-



Modelling Statecharts and Activitycharts as Signal equations . 19

chronous composition of the processes sub_running_up and sub_running_down,
detailed further, which model the two sub-states:

process running =
( 7 event Tick, LocalClock; tcontrol Control; event Time;
event a, b;
! boolean Stable; event b, d;)
(| (Stable_up,b) :=
sub_running_up(Tick, LocalClock, Control, Time, a)
| (Stable_dn,d) :=
sub_running_down (Tick, LocalClock, Control, Time, b)
| Stable := Stable_up and Stable_dn
D)
H

The clocks transmitted to the sub-processes are the same as for the and-state.

5.1.1.4 Sub-states.. Using the or-state translation scheme we obtain the signal
equations for the translation of sub_running_up except for a few differences with
the top-level example given above. The clock of sub-state variables is defined in
order to have an instant where re-initialization can be performed.

The process sub_running_up encoding the corresponding state is as follows:

process sub_running_up =
{ 7 event Tick, LocalClock; tcontrol Control; event Time;
event a;
! boolean Stable; event b;}

(| t3 := transition {S1, S2} (c_t, a)
| t4 := transition {S2, S1} (c_t, a)
| c_t := c when ((not “Control) default LocalClock)
| (Stable,c,nc) := nextstate {S1}
(Tick, LocalClock, "0, Time, t3 default t4)
| b := ... (see translation of actions)

1

Equations for state sub_running_down are looking very similar. The difference
is in the control of reinitialization. sub_running_up has a history connector, hence
should not be reinitialized when Running is re-entered. Therefore the control
input is set to the null clock ~0. In a different way, sub_running_up has no history
connector. therefore its control input must be adequately controlled, as explained
below.

5.1.1.5 History and deep history.. When the event f is generated, it preempts
the sub-automata of Running and in the sub-automaton sub_running_up the last
active state will be re-established whenever event e occurs. In Signal, the $ operator
is related to the last present value of a signal. Therefore, keeping the value of the
last active state in this way deals with deep-history in the translation. Indeed, the
suspension of the sub-process is achieved by the absence of the configuration signal
for sub_running_up between £ and e. When re-entering Running, the clock of the



20 . J.-R. Beauvais, E. Rutten, T. Gautier, R. Houdebine, P. Le Guernic, Y.-M. Tang

configuration signal is present again, and the delayed signal encoding it takes its
values from where it was suspended.

The situation for the default entrance behavior, e.g., sub_running_down, is more
complicated, because the configuration has to be reinitialized to S3 when the tran-
sition from Idle to Running is taken (t1). In order to achieve this, the input signal
control of the process encoding running is set to Start when ~t1.

2

Fig. 11. Three ways to enter a state

More generally, three ways are used to enter a state (see Figure 11): Normal (t1),
History (t2), Deep-History (t3). Depending on the entry chosen, the configuration
signal of state S1 must be reset and possibly the configuration signals of the sub-
states S2, S3. The table shown on Figure 12 gives the configuration variables that
have to be reset and the value of the enumerated signal control.

Reset S1 7 | Reset 52, S3 7 | Control Signal
tl | Normal yes yes Start
t2 H no yes LocalResume
t3 H* no no Resume

Fig. 12.  Which configuration variables to reset?

5.1.2 Owverview of the structure of the model. In this Section we give an overview
of the structure of the model, illustrating how the equations and processes exam-
plified before, and explained further, are grouped into a global model.

Figure 13 illustrates the simplified structure of the model for an OR-node (not
detailing all the interface of the reactive box). It has the structure of the example in
Figure 4: it has two states, and two transitions. For more generality, we represent
the model for two transitions each labeled with a trigger trig; and an action act;,
the latter computing values contrib; of a variable var.

—memorization of variables is handled by instances of the process shift, taking
as inputs contributed values from the actions (see 5.2.1);

—they serve to evaluate triggers, as modelled according to the translation a of
Section 5.2.2;



Modelling Statecharts and Activitycharts as Signal equations . 21

. memory
: shift |- (o
e e e e e e m = = = - 1
e e~ _ ocal e Ysubconwol _ _ _ _ _ _
_____ R 1
—-e | state |
|
‘ 1
‘ L ‘ I :
tick  loc_clk ctrl time ! |
new zconf|© : 1
1
nextstate{ldle} conf | "¢1 |
stable : contribly
. i
e iegeggfgfegegegogegoy I contri2
value ! 1
actions ' !
< ! 1
Lazes et
1 1
! I
1
1
1
1

Fig. 13. An overview of the model for an OR-node

—the triggers, combined with configuration c_t, are used to determine whether each
transition is fireable, using instances of the process transition of Section 4.4;

—an instance of the process nextstate manages the value of the configuration of
Section 4.5;

—transitions and the next state serve to evaluate clocks of actions,

—the actions themselves are translated according to function 8 of Section 5.2.3,
and produce values contrib;.

Figure 14 illustrates the hierarchical structure, and particularly how at each level
the previous OR-node pattern is re-used (here the outputs s and t correspond,
respectively, to the state and to the transition signals involved in the computation
of subcontr, detailed in the following), and how the control is propagated to sub-
processes (modelling sub-nodes) following the hierarchy of OR-nodes. In the case of
AND-nodes, inputs and control signals are forwarded as such to each of the models
of sub-nodes, and contribution outputs are gathered. In the example of Figure 14,
the OR-node has two states S1 and S2, each of them refined by other OR-nodes.
In Figure 14 it appears that for each sub-node:

—the local clock of the refined S1 is the downsampling of the incoming clock at the
condition s = S1;

—the local control ctrl; is computed as a function subctrl of the control signal
received from upper layers, and the actual firing of the transition t which can
cause reinitialisation of the sub-node;

—in the model of the AND-node, the two latter control signals are forwarded as
such to each of the models of the sub-states;



22 . J.-R. Beauvais, E. Rutten, T. Gautier, R. Houdebine, P. Le Guernic, Y.-M. Tang

clk ctrl
e N SR S
> OR-node :s ->subctrl > subctrl
when when
s=S1 s=S2
clkl ctril clk2 ctrl2
1 OR-node E 1 OR-node
é - r -

Fig. 14. An overview of the hierarchical structure of the model

—it has the structure of the model of an OR~node;
—inputs are forwarded to the or-node as well as to all its sub-nodes.

Not shown in the Figure, for clarity, is that the outputs towards the memory are
grouping all contributions from all levels.

Instantaneous states are treated using the general framework, as explained in
Section A.3.

5.1.3 General translation scheme. The previous example introduced the general
translation scheme given here.

Let default(ay,...,a,) defined as: a; default a, default ... default a,.

Signals Tick, Localclock, Control and Time are considered to be contained in
the inputs of the process encoding the state under translation, according to the
reactive box structure described in Section 4.1.

Given a state:

—named statename,
—where OR(statename)=true if it is an or-state (otherwise, it is an and-state),
—with nbss sub-states named Sub;,i = 1..nbss,

—with nbtr transitions between these sub-states, i = 1..nbtr, each from state
origin; to state target; with label;,

—with sub-state subdefault as default entrance state (i.e., initial state),

—where H(statename)=true if the default arrow has the H connector for target,
—where H*(statename)=true if the default arrow has the H* connector for target,
—where e;1,...,e;p are the indexes of the transitions with target (i.e., entering) Sub;.
—where z;1,...,x;q are the indexes of the transitions with origin (i.e., exiting) Sub;.



Modelling Statecharts and Activitycharts as Signal equations . 23

—where h;1,....h;r are the indexes of the transitions with target the H connector
in Sub;.

—where k;1,...,k;s are the indexes of the transitions with target the H* connector
in Sub,-,

—input;, output; are the inputs and outputs of the process Sub; as defined in Section
5.3,

The translation of this state in Signal is a process of the same name, made of the
composition of the following equations:

—for each transition ¢;,¢ = 1..nbtr:

‘ti := transition{origin;, target;} (c_t,a(label;)) ‘

where «a(label;) is the translation of the trigger and condition of the label of the
transition, as described further (see Section 5.2.2).
—concerning state (Or-nodes), in all cases:
‘ c.t := ¢ when ( (not “Control) default LocalClock) ‘
if H*(statename) or H(statename) then:

(Stable,,c,nc) :=nextstate{subdefault} (Tick, LocalClock,
"0, Time, default(ty,...,tnpe))

else:
(Stable,,c,nc) :=nextstate{subdefault} (Tick, LocalClock,
Control, Time, default(ty,...,tnper))

—if H*(statename) then Vi = 1..nbss:
‘subcontroli 1= ”O‘
else Vi = 1..nbss:
subcontrol; := Start when (Control=LocalResume)
default Start when (T+(te;1,...,;te;p))
default Stop when ("+(tg;1,...,t0:q))
default LocalResume when ("+(tpi1,-..,thir))
default Resume when ("+(tg1,---, tris))
default Control

—in_S, en_S and ex_S are special events signalling respectively activity, activa-
tion and desactivation of state S. Their occurrence instants are represented in
Figure 22.

(en_S,Stablel)

shift (when Control=Start default
when Control=Resume default
when Control=LocalResume,Tick)
(ex_S,Stable2) := shift(when Control=Stop, Tick)

—if OR(statename) then Vi = 1..nbss:
in_Sub_i := when (c=Sub;)
(Stable;,output;) :=
Sub; (tick, in_Sub_i, subcontrol;, input;)

else if it is an And-node Vi = 1..nbss:
(Stable;,output;) := Sub;(tick, localclock, control, input;)




24 . J.-R. Beauvais, E. Rutten, T. Gautier, R. Houdebine, P. Le Guernic, Y.-M. Tang

(there are no sub-processes for nodes that are leaves in the hierarchy).

—Concerning the combination of Stable signals from sub-nodes and shifts, the
part of the design is considered stable if its sub-nodes are stable, and locally
memorized signals are; hence,

—for an And-node a conjunction has to be made (using the synchronous operator
and is possible, because all sub-nodes have the same clock; alternaltely when
works t00)

—for an Or-node, only one sub-node at a time is active, hence signals Stable;
have differnet clocks (even exclusive, actually), therefore, instead of conjunc-
tion, default must be used, giving to the local Stable the value of that of the
currently active sub-node.

5.2 Transition labels: triggers and actions
The general syntax of the label on a transition in Statecharts is as follows:

(label)y — (Trigger) | (Action)

The trigger as well as the action on a transition are making reference to the
value of variables and events. The way they are handled in the Signal translation
is presented next, then the handling of triggers, and then that of actions.

The same form as for transition labels is also used in static reaction, associating
labels to the presence in a state, or mini-specs, associating them to the active status
of an Activity in Activitycharts: the translation presented here is valid also in those
cases.

5.2.1 Variables. They are declared at the level of a state statename. They have
to be managed in such a way that they comply with their definition:

—they are assigned their new value (if any)

—their value is carried to the next step coming from different possible actions

The scope of a Statechart variable is the chart where it is defined, as mentioned
in Section 3. In our translation, each chart is translated into a Signal process, itself
decomposed into sub-processes. All the signals representing variables are given as
inputs to all the sub-processes in order to obtain a broadcasting.

Given a state named statename, as before:

—where variables aq, ..., @npoer are declared locally,

—where variable a; has a;,,...a; ., contributed values,

The translation of this state in Signal features the following equations concerning
variables:

Vi = 1..nbvar:

‘ a; := shift(default(ay,,...a;,,,), tick)

The variables is translated into an invocation of the process shift, the input of
which is the merging of all contributed values; If we want to represent explicitly the
possibility of racing conditions, i.e., presence of two contributed values at the same
instant, it would be possible to apply the techniques described in Section 7.2. The
process shift carries the value to the next step, which is given by the clock tick.




Modelling Statecharts and Activitycharts as Signal equations . 25

Actually, a less frequent clock might be used, if the chart in question is sometimes
deactivated.

In the translation, there is a set of intermediate signals carrying the contributed
values; they have to be given different names, which are derived from the variable
name a; by adding a subscript j to it: a;;. These names are used in the translation
of the actions producing these values for a;, which is described further. We use
two functions in order to deliver integer indexes associated to variable name a;:
current(a;) gives the current value of the index associated to a; and nezxt(a;) the
incremented value of this index. The indexes associated to each variable start
at 1. This way we can have as much as necessary intermediate signals carrying
intermediate contributions in a transition; the fact that a variables can only appear
a bounded number of times in an actions insures that the indexes will remain
bounded.

Concerning the extension with control events mentioned in Sections 4.6 and A.2,
we follow the same scheme, i.e., for a variable a; (with n1 the number of contributing
sources for read_data_a;, and n2 the same for written data a;):

‘read_data_ai := default(read data a;;, ... readdata.a;,;) ‘

‘written_data_ai := default(writtendata a;;, ... written data_a;,»)

5.2.2 Triggers

5.2.2.1 Syntax of triggers.. Triggers of transition label can be of the following
form:

(T'rigger) — ¢

| (EventName)
| (T'rigger)[{Condition)]
| not(Trigger)

| (Triggerlyand(Trigger2)
| (Triggerlyor(Trigger2)
| in((State))

| entered((State))

| exited((State))

| true({Condition))

| false((Condition))

| read((Variable))

| written((V ariable))

| changed((Variable))

(Condition) — (Expressionl){Rel){Expression2)
| not(Condition)
| (Conditionlyand(Condition?2)
| (Conditionl)or(Condition?2)
| (Variable)

(Op) = +[ =[x/



26 . J.-R. Beauvais, E. Rutten, T. Gautier, R. Houdebine, P. Le Guernic, Y.-M. Tang

(Rel) — =|<>| <|>|<|>

(Variable)

(Expression) — (Expression){Op)(Expression)
|
| (Number)

5.2.2.2 General translation scheme.. Translating triggers into Signal amounts to
evaluating the trigger event and condition parts, and feeding them as input to the
transition process defined earlier. The translation function « delivers the Signal
expression (of type event) translating the trigger of the transition label. It is
defined as follows:

—in the reactions a handles the translation of the trigger only (see further function
B for actions):

a((Trigger)/(Action)) = | a((Trigger))

—expressions on triggers:
—the empty trigger is satisfied at the global clock:

ale) =

—presence of an event (EventName):

a((EventName)) = | (EventName)
—combined event and condition trigger:

a((Trigger)(Condition)) = ‘ a((Trigger)) when o((Condition)) ‘
—Ilogical expressions on triggers:

a(not (T'rigger)) = ‘ when not_event(a((T'rigger)), tick) ‘

a((Triggerl) and (T'rigger2)) =|a({Triggerl)) when a((Trigger2))

a((Triggerl) or (I'rigger2)) = ‘ a({(T'riggerl)) default a((T'rigger2)) ‘

—dynamic triggers:
—on variables: for a (Variable) named X:

a(read(X)) =
a(written(X)) =
a(changed(X)) =

where these events are produced in relation with the management of the vari-
able X (see Section 4.6).

—on conditions: for a (Condition) (which can be an expression) computed in a
variable C' (which can be an intermediate variable for computing the expres-
sion):
a(true(C)) =
a(false(C)) =
where these events are produced in relation with the management of the
Boolean variable C' (see Section 4.6).

—on states:
a(in(9)) =

a(entered(S)) =|en.S



Modelling Statecharts and Activitycharts as Signal equations . 27

a(exited(S)=

where these events are produced in relation with the management of the state
S (see Section 4.5).

—expressions on conditions:

a((Expressionl)(Rel)(Expression2)) =

‘(Empressionl) (Rel) (Ea:pression2)‘

a(not(Condition)) = ‘not a({Condition)) ‘

a({Condition1)and(Condition2)) = ‘ a({Conditionl)) and «a((Condition2)) ‘

(
(
a((Condition1)or(Condition2)) = |a({Condition1)) or a({Condition2))]
(
(
(

(67

a({(Variable)) = | (Variable)

(
(
(Expression){Op)(Expression)) = | (Ezpression) (Op) (Expression)|
(
(

a({(Number))

5.2.3 Actions. We present the translation scheme for a sub-set of the actions
language of Statemate. Not integrated yet are, for example, the notions of context
variables (which can take several values within a step) and loops (for or while
loops) which would involve the definition of a microstep [Nebut 1998].

5.2.3.1 The clock of actions.. Actions are activated when the transition is actu-
ally taken; this activation condition defines the clock of the actions. Special cases
like actions on default transitions, on entering or exiting a state, or relative to time,
are described in Section A.4.

Given a state named statename, as before, with a(i) giving the index in i =
1..nbac of the actions on the transitions (as a difference to static reactions actions
i = l..nbsr etc, see further), and tr(a(7)) giving the index in 1..nbtr of the transition
tir(a(i)) Of which it is a label. For each action, we define its clock by the following
equation, with:

—event ty(4(;)) 18 the event that the or-state is neither entering or exiting, and
that the trigger event and condition of the transition are satisfied, and that the
current state is the origin of the transition

—(nc=targety,(qa(s))) tell us that the transition is actually taken as the next state
is its target; this is necessary in order to insure that this transition is the one
that was actually chosen in case several were enabled (see Section 5.1 and, for
the handling of non-determinism: Section 7.2)

ie., Vi = 1l..nbac :

clockactiong,(;) := “typ(q(;)) When (nc=ta1"gettr(a(i))) ‘

5.2.3.2 Syntaz of actions.. Transition label actions can be of the following form:



28 . J.-R. Beauvais, E. Rutten, T. Gautier, R. Houdebine, P. Le Guernic, Y.-M. Tang

(Action) — €

| (EventName)

| (Variable) := (Expression)

| read_data(X)

| write_data(X)

| make_true(C)

| make_false(C)

| when(Event)then(Actionl)else{Action2)]lendwhen
| if(Condition)then(Actionl)[else(Action2)|endif
(Actionl); (Action2)

5.2.3.3 General translation scheme.. The translation of actions amounts to gen-
erating equations for each action, V¢ = 1..nbac:

B({Action),clockactiong(;))

where:

—in a reaction, 8 handles the translation of the actions only:

B((T'rigger)/(Action), Clk) = ‘ﬂ((Action), Clk) ‘

—basic actions:
—empty action: B(e, Clk) is void.
—event emission: if the (EventName) is a:
B({EventName),Clk) = ‘ Anest(a) = Clk‘
where next(a) is the function introduced in Section 5.2.1 for the purpose of
naming signals carrying contributing values for a.
—variable assignment:
B((Variable) := (Expression), Clk) =
Anest(a) = a((Ezpression)) when Clk

where a is the name of the variable, and next(a) is used as explained in Sec-

tion 5.2.1 in order to manage names of signals carrying contributed values.
—variable access:

B(read_data(X), Clk) = ‘ read data_X ,co¢(read_data_x) = Clk ‘

B(write_data(X), Clk) = ‘ written dataX ;i (uristen_data_x) 1= Clk ‘

—action expressions:
—0B(when (Event) then (Actionl) [else (Action2)] end when,Clk) =

B({Actionl), Clk when (FEvent))
[l B((Action2),Clk when not_event ({Event),tick))]

—0B(if (Condition) then (Actionl) [else (Action2)] end if,Clk) =

B({Actionl), Clk when «({Condition)))
[l B((Action2),Clk when not a({Condition}))]

—B((Actionl);{Action2), Clk) =
(1 B((Action1), Clk) | B((Action2),Clk) 1) |




Modelling Statecharts and Activitycharts as Signal equations . 29

5.2.3.4 Static reactions. The labels attached to a state are called static reactions.
They have the same syntax as labels associated with transitions. The general
static reaction construct makes it possible to define the reaction of the system to
a trigger when a particular state is active. As long as the state is active, except
when entering or exiting, the trigger part of the static reaction is evaluated and the
action part possibly carried out. The fact that the state is active can be constructed
from the clock localclock and the signal control, both featured as an input in
the interface of the Signal process encoding the state in question, as described in
Section refreactivebox.

In particular, in the case of an empty trigger (i.e., the left part of the “/” is
empty), actions are to be carried out at each step when the system is in the state
in question. Performing the action is done whenever the trigger part of the static
reaction is enabled and the state associated with the static reaction is active.

For static reactions SR;,i = 1..nbsr:

clockaction,,(;) := a(SR;) when “c_t
| B(SRi,clockaction,,(;)

where sr(i) uniquely identifies static reaction i.

The possibility exists in Statemate to carry out actions upon entering or exiting
a particular state. This is done by associating special static reactions with the
state S, triggered by en_S and ex_S events. Firing these special static reactions in
the translation is done using signal control from the interface of the state being
translated (as described in Section 4.5).

5.3 Input-output profile
The structural translation of the Statemate hierarchy into a hierarchy of Signal
processes involves defining at each level the input-output profile.
Given a state:
—named NV,
—with declvar the set of variables declared in this node,
—with sub-states N;,¢ = 1..nbsn,

—with actionvar the set of variables modified in an action (whether associated
with a transition label or a static reaction) of this node. If an action contains
read_data(x) or write_data(x) then rd_X or wr_X is added to actionvar.

—with transitionvar the set of variables used (all except actionvar) in a trigger
or an action on a transition label or a static-reaction. of this state.

local(N') = declvar

input(N) =
{z|z € transitionvar\local(N)} U {z|3i € (1..nbsn),z € input(N;)\local(N)}

output(N) =
{z|z € actionvar\local(N)} U {z|3i € (1..nbsn),x € outputsc(N;)\local(N)}

Standard inputs for every node are, as described in the reactive box of Section 4.1
(and in this order in the interface): Tick, Localclock, Control, Time, Stable.



30 . J.-R. Beauvais, E. Rutten, T. Gautier, R. Houdebine, P. Le Guernic, Y.-M. Tang

6. TRANSLATION FROM ACTIVITYCHARTS TO SIGNAL
6.1 Status of an activity

The hierarchical structure of activities is translated by following the hierarchical
structure and generating one Signal process for each Activity, following the reactive
box principle described in Section 4.1, with control signals tick, localclock,
control in the inputs of the interface.

Each activity can be controlled (started, stopped, suspended, resumed, and
sensed for status) in response to events emitted by a control activity, itself de-
fined by a Statechart. The status of an activity follows a behavior illustrated by
a Statechart in Figure 15, which shows how an activity A commutes between the
states active, hanging and inactive, according to events st_A, sp_A, sd_A, rs_A.
The suspension and resuming can occur only from the active status; if stopped by
st_A while in the hanging status, an activity goes in status inactive.

'

Inactive StA/startedA

(T1)
spA/stoppedA T2

SpA/stoppedA
sdA and not spA

(T5)

rsA and not spA

Hanging (T6)

StA/startedA

Fig. 15. States of an activity

The translation of each activity hence involves the generation of a Signal pro-
cess encoding this behavior: only in its state active will the activation clock be
transmitted to its actions and/or subactivities, thereby implementing the control
of activities.

Given an Activity:

—named A,
—with sub-activities Subact;,t = 1..nbac
—with mini-specs M S;,t = 1..nbms

the translation follows a scheme similar to that for an or-state (see Section 5.1).
The management of the status is as follows:

| Tl:= transition{Inactive,Active}(c_t, st_A)
| T2:= transition{Active,Inactive}(c_t, sp_A)
| T3:= transition{Hanging,Active}(c_t, rs_A when
Not_Event (sp_A,Tick))
| T4:= transition{Active,Hanging}(c_t, sd_A when

Not_Event (sp_A,Tick))



Modelling Statecharts and Activitycharts as Signal equations . 31

T5:= transition{Hanging,Inactive}(c_t, sp_A)
T6:= transition{Hanging,Active}(c_t, st_A)
c_t := c when ((not ~Control) default LocalClock)
(Stable,c,nc) := nextstate{Inactive}
(Tick,LocalClock,Control,Time, T1 default T2 default T3
default T4 default T5 default T6)
| Started_A := “(T1 default T6) when (nc=Active)
| Stopped_A := “(T2 default T5) when (nc=Inactive)
| SubControl:= (Start when (st_A default (Control=Resume))
default (Stop when sp_A)
default (Resume when rs_A)
default Control) when Activated
| Activated:= when (nc=Active)

where events st_A, sp_A, rs_A, sd_A can be received from a Statechart defining
a control activity. It can be noted that events started A and stopped_A are
produced instantaneously, contrary to the usual event emission mechanism (see
Figure 16).

For sub-activities, the translation is as follows, with input; and output; represent-
ing respectively the lists of inputs and outputs of the sub-activity i: Vi = 1..nbac:
| (Stable;,output;) :=

Subact; (Tick, Activated, SubControl, Time, input;)

where they are transmitted the clock which is a sub-sampling, in the active
status, of the local clock of activity A.
For mini-specs associated with that activity, we have, for each MS; of them,
Vi =1..nbms:
clockaction,(;
a(MS;) when ( (not “control) default localclock)
| B(MS;,clockaction,,))

where ms(7) is an absolute identification of mini-spec number ¢, and functions «
and 3 defined for transition labels are reused. These functions have to be extended
to a few triggers and actions specific to activities.

As shown above, the initial status of an activity is inactive; at the highest level
of a design however, the top-level activity should be constructed according to the
same scheme but be initially active.

Activities can have a controlled termination (meaning controlled by the action
of an external Control Activity), or an automatic termination, meaning that their
Control Activity features a termination connector T, which, when reached, causes
the activity to be stopped. The presence of a termination connector in a control
activity means that when reaching it the activity it controls must be stopped. This
is treated by considering the termination connector like a state, and having the
action stop(A) associated to all transitions leading to it.

Concerning the combination of Stable signals from sub-activities, unlike what
happens with And-nodes and Or-nodes, the relation between clocks of sub-activities
is neither equality nor exclusion, because each of them can be started and stopped
independently. But the stability of an activity is defined by that of all its parts.
So it is considered unstable (i.e., Stable is false) when one of those parts which




32 . J.-R. Beauvais, E. Rutten, T. Gautier, R. Houdebine, P. Le Guernic, Y.-M. Tang

are active is unstable. Considering inactive parts as stable (i.e., contributing true
when Stable; is absent) produces the right value when making the conjunction by
when of, for each of them, Stable; default true.

6.2 Triggers and actions related to activities

A number of triggers and actions related to activities are featured in the language.
Therefore we extend the definitions of functions « and 8 in order to encompass
them.

6.2.1 Triggers on activivites. For each of these dynamic triggers of event or
Boolean type, we give its definition:

—started(A), st(A): activity A is started. This event is issued as a result of action
start(A4).

a(started(4)) =

—stopped(A), sp(A): activity A is stopped. It is issued as a result of action stop(A4).

atstoppn 1) =

—active(A), ac(A): activity A is in the active state.

a(active(4)) =

—hanging(A), hg(A): activity A is in the suspended state.
a(hanging(A)) =

where the two first events are produced as seen above, and the two conditions
are produced in relation with the definition of the status of activity A:

ac_A := (c = active)‘

hg A := (c = hanging)‘

6.2.2 Actions on activities. The actions related to activities concern the control
of their status, i.e., starting, stopping, suspending (putting in hanging status) or
resuming an activity:

—start(A) puts an activity A in status active:
6(Start(A)7 Clk) = ‘ St—Anext(st_A) = Clk‘

where next(st_A) updates the counter of contributing values to variable st_A.

—stop(A) puts an activity A in status inactive:
ﬂ(StOp(A), Clk) = ‘ Sp—Anezt(sp_A) = Clk ‘

—suspend(A) puts an activity A in status hanging:
Blsuspend(4), C1k) = | sd_Ancri(san) := Olk]

—resume(A) puts an activity A in status active:
B(resume(A), Clk) = ‘ r8 Apepi(rs_a) 1= Clk ‘

The way these events occur is illustrated in Figure 16.



Modelling Statecharts and Activitycharts as Signal equations . 33

Tick t t ¢t t t t t ¢t

start(A) t t

stop(A) t t
suspend(A) t
resume(A) t
started(A) | t t
stopped(A) t t

active(A) t ot ot ot
hanging(A) t

Fig. 16. Control of an activity

6.3 Input-output profile

The signals related to activities also contribute to the computation of input-output
profiles: w.r.t. the one described in Section 5.3, if an action on a transition, in a
static reaction or in a mini-spec contains start(A), stop(A4), suspend(A) or resume(A)
then st_A, sp_A, rs_A or sd_A is added to actionvar. Also, variables used in a
mini-spec (except if already in actionvar) are to be added to transitionvar. Events
ac_A and hg_A are featured in the outputs of the activity A.

6.4 Activities throughout or within a state

It is a possible in Statemate to associate an Activitychart A with one state S in a
Statechart, according to two modes: ”throughout” or ”within”. In the ”through-
out” mode, entering state S activates A and exiting S deactivates A. This can be
encoded by adding the following static reactions to S

entering/st.A;;
exiting/sp-A

In the “within” mode, only the deactivation of A when exiting S occurs (the
activation of A is left to other events). This can be encoded by adding the following
static reactions to S

However, a difference with usual events emission is that these special ones are
simultaneously present.

6.5 Combinational assignments

To an activity can be associated combinational assignments, which are equations
on the Activitycharts variables, evaluated instantaneously. Their general syntax is:

X := Y1 when C1 else
Y2 when C2 else

Yn
They are evaluated at the end of the step, taking into account the new values of
variables. If a variable defined by a combinational assignment is modified, then
other combinational assignments where it appears as an operand are re-evaluated.

This can lead to unbounded loops, or even infinite ones (the Magnum environment
puts arbitrary bounds in these cases).



34 . J.-R. Beauvais, E. Rutten, T. Gautier, R. Houdebine, P. Le Guernic, Y.-M. Tang

In the framework for modelling in a synchronous formalism, unbounded features
can not be supported. However for cases such as, for example, the infinite loop X :=
X + 1, or even less trivial ones involving conditionals with when, the dependency
cycle detection constitutes an analysis and diagnostic of possibly infinite loops, and
allows us to recognize them and possibly amend them. The translation of this in
Signal is then:

X := (Y1) when «(C1l) default
a(Y2) when «(C2) default

a(Yn)
where the requirement of being instantaneous is taken care of by using simple
Signal equations.

7. RELATIONAL ASPECTS IN THE TRANSLATION

As was mentioned in Section 2, one of the distinguishing features of Signal among
synchronous languages is that it enables the specification of relations between sig-
nals, i.e., not only functions from inputs and internal state to outputs and a new
internal state.

This Section gives indications as to how this particularity can be used to tackle, in
the framework on a uniform model, a variety of time granularity levels in Statemate,
as well as the representation of non-determinism.

7.1 Execution schemes: superstep, step, microstep

As illustrated in Section 2 with the example of process in Figure 2 and the trace
illustrated in Figure 3, it is possible to construct programs where the internal clock
is faster than that of inputs. In other words, Signal describes not only reactive
systems, but also “pro-active” systems. This feature is homogeneous and can occur
with arbitrary depth inside a Signal specification. It can be called up-sampling, or
internal acceleration. When this is the case, and the internal state of the process is
enough to decide on the synchronization with new inputs, the Signal compiler can
also generate executable code for such programs. In other cases, e.g., when several
internal accelerations are specified, where clocks can be derived from oneanother,
(e.g., two internal clocks at different rates), there is no execution scheme read-
ily available, but the specification can be submitted to the various analysis and
verification techniques like clock calculus and model-checking.

In the framework of modelling Statemate in Signal, this feature of Signal is used to
open perspectives towards the modelling of different time granularities in Statemate
(superstep, step, and microstep inside the actions). It is involved at two different
levels: the relations between superstep and step modes, and the relation between
the step level and the sequence of instructions in an action (which can be called
microsteps), inside a step, especially in case of a while loop. These two levels are
nested in a uniform way, i.e., they both use the same mechanism.

7.1.1 Step and superstep. The superstep mode, as was said in Section 3, consists
in the acquisition of inputs, followed by the launching of a series of steps, each of
them reacting to the effects of the preceding step; this lasts until no transition can
be triggered any more, i.e., until stability. At that point, the systems decides to



Modelling Statecharts and Activitycharts as Signal equations . 35

synchronize again with its environment in order to acquire the next input.

In previous Sections we have seen how the Boolean Stable, standard output
in the reactive box model, is evaluated along the structure of the Signal model.
It becomes true in the absence of internal change, meaning that no new transi-
tion is going to be triggered. We can define, by appropriately relating signals
Tick, Time, Stable, the different execution schemes of Statemate, without chang-
ing the internals of the modelling proposed before.

—1In the step semantics (sometimes also called GO), inputs (clock Go) are considered
at each step(clock Tick), and time is incremented at each step (Time).
[Tick "= Time "= Go|

—In superstep semantics (sometimes also called GO-REPEAT) stability is reached
when no change has occurred at the previous step, implying that no new transi-
tion can be triggered:

ZStable := Stable $1 init false

| when ZStable "= Go
| Tick "= Stable

Signals Stable and Tick (the latter designating the step) are up-samplings w.r.t.
Go

—GO-ADVANCE is different from GO-REPEAT in that time is incremented:
ZStable := Stable $1 init false

| when ZStable "= Go

| Tick "= "Stable

| Time ~= Go

—GO-STEP is similar to GO without incrementing time:
—GO-NEXT counsists in incrementing time without making a step:

7.1.2 Step and microstep. In the action language, there is a sequence operator,
noted classically “;”. Regarding ordinary variables, it does not actually sequence
assignments, as effects of actions are sensed only at the next step. Another kind
of variable, called a context variable, is local to each action, and can take several
values during one step, in the order specified by the sequence. In particular, in the
case of unbounded conditional loops (while), context variables are used, notably in
the loop condition.

The modelling of such actions, when considering only the bounded sub-language
(i.e., involving for loops but no while loop), can be made as an instantaneous
computation, using Signal composition, and encoding the sequence in the data
dependencies between operations [Nebut 1998]. For a while loop, the idea is to have
an up-sampled clock giving one microstep at each iteration, and resynchronizing
with the sequence when the loop condition is false. In a step, there can be a
number of transitions taken in parallel; synchronizing the microstep level with the
step level involves determining the termination of all the corresponding actions.

This refinement of time granularity involves modifications of the modelling as
presented above, in that the management of memorization has to be done differ-



36 . J.-R. Beauvais, E. Rutten, T. Gautier, R. Houdebine, P. Le Guernic, Y.-M. Tang

ently. The process shift is meant to work at a step clock; for microsteps, updates,
memorizing and presence have to dissociated.

This modelling of the sequencing of actions in an unbounded series of instants
can be used in other contexts, e.g., the IEC 1131 international standard, where
Sequential Function Charts can be evaluated with or without stability research,
which is similar to the relation between superstep and step in Statemate, and the
Structured Text language shows unbounded loops, involving microstep [IEC 1993].

7.2 Modelling non-determinism

It is possible to use Signal to model non-determinism, in the sense that it can be
used to define processes with a set of possibilities of behavior. Hence, this can be
applied to the modelling of non-determinism in Statecharts.

7.2.1 Conflicting transitions

One

' a

Three

Fig. 17.  conflict

7.2.1.1 Ezample.. For the Statechart of the Figure 17, if the configuration is (S1,
S6) and t1, t2, t3 and t4 are enabled transitions, the maximal non conflicting sets
of transitions are:

—{t4, t1}
—{t4, t2}
—{t4, t3}

Here, t3 has higher priority over t1 and t2 (Statemate semantics) and t3 is chosen.
This is preserved in the Signal translation since the clock of substates depends on
the transitions of the higher state, where the triggers to the transition labels are
computed before. t3 is chosen as an enabled transition and then, the process Three
will not sense any inputs because the active state is S4.

When t1 and t2 are enabled but not t3, we need to choose one to fire. There is
a non-deterministic conflict and any one of the two transitions could be chosen. If



Modelling Statecharts and Activitycharts as Signal equations . 37

it is preferred to encode an arbitrary choice, as the Magnum simulator can do, then
in the example, to take t1 preferably to t2 in all the cases is what the translation
of previous Sections does:

(Stable,c,nc) := nextstate {S1}
(tick, localclock, control, time, tl1 default t2, ~0)

This is the translation scheme that was developed in this paper. We describe
how it is possible to represent non-deterministic choices explicitly in Signal. The
motivation is to build an exact model of the set of behaviours, for analysis and
verification purposes, and to make explicit a non-determinism that can then be
solved by modification of the specification.

7.2.1.2 Non-conflicting sets.. Here we want to deal with situations where more
than one transition are enabled at the same instant. Following [Harel and Naamad
1996]:

—Two enabled transitions are in conflict if there is some common state that would
be exited if any one of them were to be taken.

—A set of transitions is non conflicting if no two transitions in the set are in conflict.

—Being mazimal for a non-conflicting set of transitions means that each enabled
transition not included in the set is in conflict with at least one transition that
is included in the set. Otherwise, this transition may be added to the set.

At each step, Statemate fires a mazimal non-conflicting set of transitions. When
there is more than one such a set enabled, a non-deterministic choice is performed.
The maximal is reached in the Signal translation because whenever one transition
is enabled in an Or-state, in the corresponding call to the nextstate process, the
default on the transitions will choose one. Not taking a maximal non-conflicting
set in the Signal translation would be to have an enabled transition with its asso-
ciated ti signal present. The default on the list of ti signals is hence present and
at least one transition is taken. In the translation shown in the previous Sections,
a default operator is applied on the t; signals; this way it chooses arbitrarily
between the non-deterministic possibility.

7.2.1.3 Representing non-determinism explicitly.. The non-determinism may be
represented explicitly by adding a Boolean K, that can be called an oracle, to the
Signal equation, which chooses between the different enabled transitions:

(c,nc) := nextstate {S1}(tick, localclock, ~“0, time, t)
| t := t1 when (K default true) default t2
| t1 % t2 "= t1 "% t2 "*x K

The equation on clocks featuring a ~= is used to avoid situations where t1 and t2
are both present and K is absent because these situations could lead to the choice
of transition t1 when no particular (explicit) decision has been made to remove the
non determinism. This way, when K is true, t1 is chosen and when K is false, t2
is chosen. If the signal K is not present, the t1 when (K default true) default
t2 rewrites into t1 default t2 that is the behavior of a deterministic process.

At this stage, we have an exact model of the non-deterministic behavior of this
part of the specification: the clock calculus [Amagbegnon et al. 1995] will compute



38 . J.-R. Beauvais, E. Rutten, T. Gautier, R. Houdebine, P. Le Guernic, Y.-M. Tang

the set of solutions to the system of constraint equations on Booleans and events,
and it will consider oracles as free variables. Hence, in the process of analysing,
e.g., dependency cycles, or of model-checking dynamic behavioural properties, non-
deterministic specifications can be taken into account. When code is generated, no
arbitrary execution scheme is chosen: this avoids making implicit choices without
approval of the designer.

What can then be done in order to solve the non-determinism is the following:

—this process may be composed with other processes that make K useless (e.g.,
composed with a process where t1 and t2 are exclusive),

—the signal K could be explicitly given as an input of the process and the en-
vironment may choose between t1 and t2, hence moving the resolution of the
non-determinism to the environment.

7.2.1.4 Firing the right actions.. There are cases for which the above scheme is
not sufficient to uniquely determine which actions are actually executed as was pro-
posed in Section 5.2.3. Figure 18 illustrates this with an example, where, if e1[c1]
and e2[c2] are not exclusive, then it is possible that both transitions are enabled,
with the same target state. Hence, the latter is not a sufficient discriminating cri-
terion, notably when it has to be decided whether action al or action a2 is to be
executed.

elfcl]/al

e2[c2)/a2

Fig. 18. Conflicting transitions in Statecharts

This requires additional information identifying the transitions: if each of them
is given a name or index i;, an equation similar to the previous one has to produce
the identity of the one actually chosen:

i := i1 when (K default true) default i2

The definition of the clock of the actions associated to a transition then becomes:
clockaction,(; := when (i = i;)

7.2.2 Racing. Another kind of non-determinism is possible in Statecharts, in-
volving the variable assignment: two actions in two parallel components occurring
at the same moment and giving different values to the same variable. Sometimes
called “racing”, this non-determinism could be handled the same way the non-
determinism on transitions is handled: introducing a Boolean K choosing between
the different values of the variable. The different ways to handle non-determinism
mentioned above are also valid for racing.

This model of non-determinism can be related to external functions and simu-
lated, for example, by the following process, where between two integer values X



Modelling Statecharts and Activitycharts as Signal equations . 39

and Y, the choice is made, when they are both present (X “* Y), according to a
Boolean NDCHOICE which is called for from the outside by the function ALEA_BOOL.

process MERGE_INT_EXTERNAL_CHOICE =
( 7 integer X, Y;
! integer Z; )
(| NDCHOICE := ALEA_BOOL{}
| NDCHOICE "= (X "% Y)
| Z := (X when NDCHOICE) default (Y when not NDCHOICE)
default X default Y
1
where
boolean NDCHOICE;
process ALEA_BOOL =
( 7 ! boolean NDCHOICE; ) ;
end;

In summary, our approach allows to statically detect non determinism. If it is
desired to simulate non determinism, either the compiler can make implicit choices,
or the non determinism has to be kept and solved at the execution through oracles.

8. DISCUSSION
8.1 Related work

Related work can be considered from the general point of view of formalizations of
design notations, which is tackled in different ways, using different formalisms; in
the case of our work, focussed on Statecharts and Signal, it is also relevant to refer
to approaches to multiple formalisms in reactive systems, which are close to ours.

8.1.1 Formalizations of design notations. Industrial embedded systems are de-
signed using a number of problem-oriented graphical methods and notations. Some
of them, like SA/RT, explicitly address real-time systems. Others, like the PLC
(Programmable Logic Controller) language GRAFCET, have a broad user-base in
automated manufacturing. A drawback of such notations is that they often lack
any explicit semantics, or if they are provided with one it is informal, ambiguous
and varies from tool to tool, or from paper to paper. Hence the various approaches
to formalizing these notations, which has the advange of stabilizing interpretation,
and of supporting automated and powerful analysis, simulation or verification. The
variety comes from the notations studied, the formal models used (e.g., Petri nets,
finite state automata, process algebra, other high-level languages provided with
a formal semantics, etc.) and the kind of analysis and properties aimed at. The
practical tools, automating the formalization by a translation, involve taking care in
building formal models following structured methods, where composition of models
of parts of a specification is handled well, and complexity of the resulting mod-
els (in terms of, e.g., state space size) is limited. For example, formalizations of
SA/RT feature the one of [Shi and Nixon 1996] in terms of timed Petri nets. It
proposes an automated translation with compositionality and complexity improved
with respect to earlier models. In particular, quite similarly to our work, it stresses
the locality of the translation, where each component of a specification is modelled



40 . J.-R. Beauvais, E. Rutten, T. Gautier, R. Houdebine, P. Le Guernic, Y.-M. Tang

independently, and the composition of subnets has the appropriate effect. Another
one [Fencott et al. 1994] proposes a model of SA/RT essential models in terms of
a process algebra and using the Z formal notation. The semantic function con-
structed makes it possible to have an automated tool, but can only be informally
validated with regard to the definition of SA/RT, the latter being informal.

A more general approach to the problem is given in [Baresi et al. 1997], where the
mapping of popular front-end notations to formal models is examined with a special
care for flexibility, particularly in the sense of coping with various interpretations
of the notations, or various formal models used, and also for back-diagnosis from
the model to the notation. Translations are described by sets of rules, customiz-
able according to different semantics of a notation, based on graph grammars, and
implemented as an interpreter, with tools for simulation and animation.

Similarities between these works and our approach can be found in the motiva-
tions: the clarification of informal or partially formal semantics, and the enabling
of automated tool-support for simulation, analysis, and code generation. We also
share the care taken in building compositional models, with a structural transla-
tion where locally constructed sub-models can be assembled to form the global one.
We address flexibility when we propose possible models of non-determinism and
memory management: it is a particular case of flexibility, where some parameter-
ization is possible; this way, the model is applicable to Statecharts-like notations
with different semantics, as in UML or StateFlow. On the other hand, similarities
also include problems like back-diagnosis: when some error or warning is detected
on the formal model, how do we formulate it back in terms of the original speci-
fication? Also, justifying correctness with regards to the semantics of the original
notation under study is difficult, especially when the latter is informal.

The purpose of the work described in this paper is the construction of a syn-
chronous model of Statecharts, a popular and wide-spread notation, in its indus-
trially relevant semantics, i.e., the Statemate one. As such it places itself as a
particular case among works on the more general problem of translations between
formalisms. Comparisons between StateCharts and other formal notations are also
out of the scope of this paper. Technically, we are placing ourselves in the context
of multiple reactive formalisms detailed next in Section 8.1.2.

8.1.2 Multiple formalisms in reactive systems. Different attempts were made to
mix imperative and declarative synchronous languages. In [Maraninchi and Halb-
wachs 1996], Maraninchi and Halbwachs present a way to compile Argos (a hier-
archical concurrent automata language, which can be considered one of the Stat-
echarts variants) into a Mealy machine implicitly represented by a set of Boolean
equations in the declarative code DC [SYNCHRON 1995]. Each state of the hi-
erarchical automaton is associated with a Boolean signal which is ¢rue when the
state is active and false otherwise. This Boolean signal is updated when, in the
Argos hierarchy, the state to which it belongs is activated. The configuration of a
Statechart (the list of its active states) is hence represented as a tree of Booleans.
Mixing these equations with DC equations generated from other languages (e.g.,
Lustre) provides a way to mix imperative and declarative formalisms. The trans-
lation covers some basic features of the Statecharts: hierarchical parallel automata
with event sending as actions. Then, using the semantics of both languages, Maran-



Modelling Statecharts and Activitycharts as Signal equations . 41

inchi e.a. prove that the translation preserves the behavior from the point of view
of traces. A more recent, and also related work, concerns mode-automata, alter-
nating continuous modes following a discrete automaton [Maraninchi and Rémond
1998]. However, the semantics adopted is the Argos one, which is a kind of purely
synchronous semantics of Statecharts different from the Statemate one [Harel and
Naamad 1996]. Also, many features of the languages of Statemate are absent from
Argos.

In [Berry |, Berry gives a semantics of the Esterel synchronous language in terms
of electric circuits. First, the substatements of an Esterel statement are individually
translated into circuits, then the resulting circuits are combined using appropriate
auxiliary gates and wiring. Some aspects of the translation are close to the one
presented here: particularly the subcircuit interface which is close to the one of
Section 4.1, and the wiring of the control signals between the subcircuits.

A tool for the integration of different synchronous languages is being developed in
the SYNCHRONIE project [Maffels and Poigné 1996]. SYNCHRONIE is a workbench
for synchronous programming. It provides compilation, simulation, testing and
verification tools for various dialects of the synchronous programming paradigm.
In the first instance Esterel, Argos and Lustre compilers are being developed and
integrated. The integration is made through a common semantical representation:
synchronous automata which are essentially Mealy machines. The translation of
Statecharts into an equational synchronous model presented here might eventually
be supported also by SYNCHRONIE.

An extension of the Signal language called Signal GTi offers constructs for hierar-
chical task preemption. In the declarative synchronous language Signal, a process
defines a behavior in terms of an unbounded series of instants. However, there are
no explicit language constructs for handling the starting, termination, interruption
or sequencing of such processes: they are considered to be all active on the whole
duration of the execution. In Signal GTi, tasks are defined as the association of a
data-flow process with a time interval on which it is executed. Both data-flow and
tasking paradigms are available within the same language-level framework. Signal
GTi was implemented by a preprocessor to the Signal environment [Rutten and
Martinez 1995] that generates equations for activity management, using additional
control signal similar to the reactive box model of Section 4.1.

A synchronous model of Statecharts in Esterel [Seshia et al. 1999] gives access to
compilation and verification of specifications with the Statemate semantics; the Es-
terel compiler can serve as a diagnostic tool to detect non-determinism, and other
tools can be used for dynamic properties. An approach to using the declarative
Signal language to model Statemate has been studied [Guéguen 97], dealing with
the control aspect of hierarchical concurrent automata, but not actions nor Ac-
tivitycharts. It models states and the transition relation in the Signal equational
style.

Also related are Sequential Function Charts (also called GRAFCET), a graphical
language with places and transitions, related to Petri nets; they can be modeled in
Signal [Marcé and Le Parc 1993; Marcé et al. 1996]. The Sequential Function Charts
are part of the international standard IEC 1131 [IEC 1993] of the International
Electrotechnical Commission. The norm concerns different aspects of the control
of industrial systems using Programmable Logic Controllers (PLC). Part 3 of this



42 . J.-R. Beauvais, E. Rutten, T. Gautier, R. Houdebine, P. Le Guernic, Y.-M. Tang

norm describes several programming languages corresponding to different aspects
of the design, or to different cultural backgrounds of the designers:

—graphical languages feature:

—Function Block diagrams, a block-diagram-based formalism,

—Ladder Diagrams, inherited from relay ladders with which these industrial
controllers were implemented and designed before the massive introduction of
micro-controllers,

—and the Sequential Function Charts (SFC).

—textual languages:
—Instruction List (IL), an assembly language
—Structured Text (ST), a Pascal-like sequential imperative language.

These styles can be mixed, functions in one language being called from a program in
another language. This mixture of styles, as well as the problems of interoperability
arising from their co-existence in the same framework, and the cyclic, reactive
nature of the overall behaviour, requires that any attempt to model these systems
in a synchronous framework, and in particular Signal [Jiménez-Fraustro and Rutten
2001], should resemble the work presented here on Statemate.

Especially, it should have the same specificities as our approach regarding State-
mate, which is that we use the relational nature of Signal, i.e., its capacity to
represent exactly non-determinism, to be able to handle multi-clocking, and even
up-sampling and “internal acceleration” with regard to inputs and outputs.

8.2 Results

8.2.1 Model and translation.. We have proposed here a way to translate the es-
sential features of Statecharts and Activitycharts into Signal. This translation
gives clocks to every part of a Statechart (states, transitions, actions). It keeps
the structural and hierarchical informations through the translation to permit the
traceability from specification to the generated code. It is expected that this will
have consequences on the compilation process and the optimization algorithms of-
fered by the Signal/DC+ environment, in the perspective of producing efficient
code, for possibly distributed execution architectures, from Statecharts specifica-
tions, using the clock calculus and the BDD’s techniques of the Signal compiler.
Non-determinism may be modelled and handled through Boolean adjunction. Veri-
fication of the behavior is possible using the tools based on the synchronous technol-
ogy. Real-time properties of a Statechart could be checked through timing analysis
of a Signal program. The main contribution of this work is to give access to the
already existing Signal tools from a Statechart design.

This translation provides support for co-execution or co-simulation of Signal and
the languages of Statemate. Interoperability between Signal and Statecharts is
possible by composing the resulting Signal process with any Signal context. The
interaction between the two parts is then managed by the synchronous composition.

The complexity of the translation algorithm, and the size of the constructed
model, in number of equations (or lines of Signal), is linear in the size of the source
specification, in number of states, including hierarchical OR-states, transitions and
variables. In particular, it is not made costly by combinatorial explosion due to
parallel automata, because there is no explicit computation or enumeration of the



Modelling Statecharts and Activitycharts as Signal equations . 43

global state space. This is an advantage of the structural definition of the transla-
tion.

8.2.2 Implementation and code generation.. An implementation of such a trans-
lation has been done in C++ in the context of the SAfety CRitical Embedded
Systems (Sacres) European Project [SACRES Consortium 1998]. The translation
is done in a variant of Signal called DC+ [SACRES Consortium 1997a] which is a
common format of the synchronous languages. The Statemate tool from i-Logix
is used to draw the Statecharts, then the automatic translator uses an API of the
Statemate tools in order to extract the needed information from the Statechart
design and generate the DC+. This translator is at a prototype level, and a set of
small examples have been used for validation of the translation schemes. This work
is evolving following a change of focus towards separate compilation and distribu-
tion of activities, for which the code can be generated by Statemate. Methods and
techniques initially developed for the distribution and semantics-preserving desyn-
chronization of synchronous programs can be applied to Statecharts [Talpin et al.
1999].

Concerning the code generated, we have already described how the translation
into Signal keeps the structural hierarchy present in the Statemate specification.
The communication of control information along this hierarchy is made explicit with
the introduction of new variables, that did not appear explicitly in the Statemate
program. However, we have observed that the size of the resulting Signal model,
in number of defined signals, is linear in the size of the source specification, in
number of states, transitions and defined variables. The code generated from the
Signal program follows the general structure of code generated from synchronous
programs. It is a single loop, and shows no use of recursion (this is a common
requisite for embedded systems). The syntactic structure of the specification is
not preserved during the compilation transformations; this is unless it is explicitly
required by the user that some part of the structure of activities must be kept in
the generated code. Otherwise, it is replaced by the hierarchical semantic structure
resulting from the clock calculus. This allows to compute values of variables only
at the instants where they need to be calculated. In addition, many optimizations,
based on the clock calculus and on rewriting of the conditional dependency graph of
the specification can be applied (e.g., elimination of redundant variables, retiming,
etc.).

8.3 Perspectives

Perspectives presently worked upon concern: extending coverage of the languages,
in order to converge towards a full translator, validating the translation, and treat-
ing real-size applications, in order to analyse quantitatively the complexity of the
translation. Also, the actual connection of the translation to other tools in the
environment brings the question of back-diagnosis, i.e., constructing from the di-
agnosis of an analysis tool (error message, constraint on signals, etc.) a feedback
to the user in terms of the original specification (identifiers, location in the source
specification, etc.). Other features of the Statemate languages that should be con-
sidered are for instance that variables can have different data-types and scopes. In
the actions, mechanisms for timeouts and scheduled events could be encoded as



44 . J.-R. Beauvais, E. Rutten, T. Gautier, R. Houdebine, P. Le Guernic, Y.-M. Tang

counters on the number of steps. Context variables are special variables that can
take several different values within one step: they are used in connection with loops
in the actions.

The proof that the translation is correct from a behavioral point of view is now
needed in the context of safety critical systems. Such a proof may be in terms of
equality of the traces of the initial Statechart and the target Signal program, based
on the semantics of the languages [SACRES Consortium 1997b]. This semantics
defines Signal, and its derived format DC+, as well as the languages of Statemate,
in terms of fair Synchronous Transition Systems (fSTS). This provides a common
basis for comparing the translation to the source, and establishing the correctness.

Using the synchronous technology for code reuse and distributed code genera-
tion is also possible by modelling the coordination of modules of code generated by
Statemate-Magnum, independently of DC+, and represent modules by their input-
output profiles, including control information regarding their clocks [Benveniste
et al. 1998]. The results obtained in experiments, although relatively limited, have
convinced users of the possible industrial validity of the approach: in the ESPRIT
project SafeAir (Advanced Design Tools for Aircraft Systems and Airborne Soft-
ware), which is a successor of the Sacres project, it has been decided to follow
a comparable approach from Statemate to SCADE, the industrial version of the
synchronous language Lustre, to take advantage of the SCADE qualified code gen-
erator.

As mentioned earlier, the results of modelling Statemate can be of use when
considering other contexts where an equational model is useful, i.e., other graphical,
state-based languages, or other contexts where different languages can interoperate;
for example, the languages of the international standard IEC 1131 [IEC 1993] of
the International Electrotechnical Commission. Another perspective of this work,
that follows a comparable but different approach, is to give a semantics of UML
state-machines using the synchronous model [Wang et al. 2000]. This modelling
results in yet another translation of Statecharts into Signal [Wang 2000].

ACKNOWLEDGMENTS

We wish to thank William W. Wadge for reading and discussing the paper with us,
as well as the anonymous reviewers for their contructive comments.

APPENDIX
A. COMPLEMENTS TO THE TRANSLATION OF STATEMATE INTO SIGNAL
A.1 Memorization of events

If shift is used with events where there is no value to memorize, a specific version
is used, called shift_event, where a Boolean is used to memorize presence of the
input event:

process shift_event =
( 7 event x, tick;
! event y; boolean Stable;)
(|l instant_x := x default not tick
| shift_instant_x := instant_x $1 init false



Modelling Statecharts and Activitycharts as Signal equations . 45

| v := when shift_instant_x

| Stable := not "x default tick

D)
where boolean instant_x, shift_instant_x;
end;

Here, the shifted event y is present at the shifted clock shift_instant_x, and
shift_event behaves like:

y := when yb
| (yb,Stable) := shift( (x default not tick), tick )

A.2 Events associated to variables
We have:

—for all variables:

—read(X) (abbreviated in rd(X)) emitted when variable X is read by action
read_data(X): to the basic process shift, we must add an input read_data_X
and the equation:

(read X, Stable) := shift_event(read_data_X, Tick)

—vwritten(X) (abbreviated in wr(X)) emitted when variable X is written by
action write_data(X) or by an assignment (i.e., the clock of presence of X):
the basic process shift needs to be added an input write_data_X and the
equation:

(written_X, Stable) := shift_event(
write_data_X default event X, Tick)

—changed (X) (abbreviated in ch (X)) emitted when variable X has a value differ-
ent from that memorized in the shift process: the basic process shift needs
to be added an output changed_X and the equation:

(changed_X, Stable) := shift_event(
when not (shift_value_x = value_x), Tick)
Concerning the first value of X, it is the initialization of y in the process shift
which decides whether or not there is a change. In Statemate-Magnum, integers
for example are initialized to 0, hence if the first value given to X is different
from 0, then there is a change.
—ifor Booleans only:

—true(C) (abbreviated in tr(C)) emitted when the condition C becomes true:

(true_X, Stable) := shift_event(
when not (shift_value_x when value_x), Tick)

—rfalse(C) (abbreviated in £s(C)) emitted when the condition C becomes false:

false_X := shift_event(
when (shift_value_x when not value_x), Tick)

These control events make as much sense in Signal as in Statemate, and it is
foreseen that future versions of the Signal compiler will support the computation,
based on the clock calculus, of the clocks at which a signal is actually used, or
produced. Having these facilities in the compiler would simplify the modelling of
the Statemate events.



46 . J.-R. Beauvais, E. Rutten, T. Gautier, R. Houdebine, P. Le Guernic, Y.-M. Tang

A.3 Instantaneous States

An instantaneous state may be simultaneously entered and exited (in the same in-
stant). Figure 19 provides an example where states nl1 and n2 are instantaneous.
Some semantics call these states: condition, selection, junction, joint, fork
connectors, depending on the number of transitions entering and leaving the con-
nector and if they apply to and states or not.

t4:04[C4] /a4

t5:e5[C5]/ab
tl:el[Cl]/al
S1

t2:e2[C2)/a2

13:e3[C3]/a3

16:e6[C6]/a6

Fig. 19. A Statechart containing instantaneous states nl and n2

In some Statecharts semantics (Statemate for instance [Harel and Naamad 1996]),
instantaneous states exist ,and we could handle them in the translation as shown
below for the example of Figure 19:

t1 := transition {S1,n1} (c_t, Cl1 when el)
| t2 := transition {S2,n1} (c_t, C2 when e2)
| t3 := transition {n1,383} (t1 default t2, C3 when e3)
| t4 := transition {S3,n2} (c_t, C4 when e4)
| t56 := transition {n2,S1} (t4, C5 when eb)
| t6 := transition {n2,S2} (t4, C6 when e6)
| c_t := c when ((not “control) default localclock)
| (c,nc) := nextstate {Sinit} (tick, localclock, control,

time, t3 default t5 default t6)

We use here the same process transition as the one used between ordinary
states. The difference is in the configuration signal used in the transition pro-
cess. When the origin of a transition is an instantaneous state (like the transition
t3), instead of checking on the value of the configuration variable ¢, we use the
transitions whose target is the considered instantaneous state. On the exemple
Figure 19: t1 default t2. Lastly, in the call of the process nextstate, only ref-
erences to transitions whose target is a non-instantaneous state are given. In the
exemple, t3 default t5 default t6 gives the value of the nextstate.

It occurs however that the Statemate environment does perform an expansion of
transitions going through instantaneous state into a set of transitions going between
non-instantaneous states, combining triggers and actions accordingly. Hence the
translation of this feature need not be studied specifically.



Modelling Statecharts and Activitycharts as Signal equations . 47

A.4 The clock of actions: special cases

Actions on default transitions: these are to be executed on entering the super-
state, i.e., the state of which the automaton considered is a sub-automaton. At
that instant, the state is re-initialized, and the actions on the default transition
executed. This instant is characterized by the Control signal as follows:
|clockaction := when Control=Start|

Actions on entering or exiting a state: these are also related to the Control
signal of the state which is entered or exited. Their mechanism is similar to
that of actions associated with the activation or deactivation of an activity, in
the way shown in Figure 20.

| Activitycharts | Statecharts

mini-spec static reaction
activation started entering
deactivation stopped exiting

Fig. 20. Fwvents emitted upon activation and deactivation

The relation of these events with Control goes as follows:
a(entering) = |when Control=Start|

a(exiting) = ‘when Control=Stop‘

a(started) = |when Control=Start|
a(stopped) = ‘when Control=Stop‘

Figure 21 shows a Statechart with two states, for which Figure 22 shows the
occurrences of these special events.

e M
S

Fig. 21. Ezample of a two-state Statechart

In this example, one sees that:

—LocalClock respectiveley for S1 and for S2 are complementary, i.e., exclusive,
and their union is the LocalClock of S,

—exiting for the state which is left is simultaneous with entering for the
new state,

—in(x) correspond to LocalClock for the process encoding state x,

—entering and exiting are present at the same times as Start and Stop,



48 . J.-R. Beauvais, E. Rutten, T. Gautier, R. Houdebine, P. Le Guernic, Y.-M. Tang

Tick t t t t t t t t t
in S LocalClock t t t t t t t t t
(future) nc S1  S1 S2 S2 S22 S2 S1 S1  S1
(present) c S1  S1 S1 S2  S2  S2 S2 S1  S1
(for transition) ct S1 s1 S1 S2 82  S2 S2 S1 s1
el t
e2 t
in S1 LocalClock t t t t t
Control Stop Start
entering t
exiting t
in(S1) tt t t ot
en(S1) t
ex(S1) t
in S2 LocalClock t t t t
Control Start Stop
entering t
exiting t
in(S2) t ot ot t
en(S2) t
ex(S2) t

Fig. 22.  Occurrences of special events (entering, eziting, etc.) in Figure 21

—events en(x) and ex(x) are shifted of one Tick w.r.t. enteringand exiting
for process x.

Actions relative to time: timeouts and schedules are noted: timeout(e,d) and

schedule(a,d). In Statemate-Magnum, the time referential is given when
generating code; it can be an external physical clock (second, millisecond, etc.).
In order to support different time units, we have introduced a signal Time,
propagated through the structural Signal model.
The translation of timeout (e,d) uses a counter initialized to d upon occurrence
of e, and then decremented by one at each occurrence of Time. The resulting
event timeout (e,d) is emitted when this couter reaches 0. The counter remains
at the value -1 until afterwards. The translation uses instanciations of the
process:

process Timeout =
( 7 event Time, e; integer d;
! event timeout;)

(| timeout := when (counter = 0)
| counter := d when e default
(zcounter - 1) when (zcounter > 0)
default -1
| zcounter := counter $1 init (-1)
| counter "= Time
)

When the environment delivers not an event to be counted but a date, then
the process Dateout should be used instead:



Modelling Statecharts and Activitycharts as Signal equations . 49

process Dateout =
( 7 integer date, e; integer d;
! event dateout;)

(| dateout := when (date >= deadline)

| deadline := (date when e) + (d when e) default

zdeadline when (0 < date < zdeadline) default -1

| zdeadline := deadline $1 init (-1)

| dealine "= date

1
H
Modelling schedule is less simple because they can be started in unbounded
numbers, which falls out of the scope of what can be modelled in a synchronous
framework. However, a restriction allowing for only one schedule at a time
on a given action, makes it possible to have a translation re-using the Timeout
process:

clock_a:=Timeout (Time, schedule, d)

where event schedule is generated when executing the action schedule(a,d).

REFERENCES

AMAGBEGNON, T. P., BESNARD, L., AND LE GUERNIC, P. 1995. Implementation of the
data-flow synchronous language SIGNAL. In Proceedings of the ACM Symp. on Programming
Languages Design and Implementation, PLDI’95 (1995), pp. 163-173. ACM.

ARMSTRONG, J. 1996. Safecharts handbook. Technical Report DCSC/TR/95/7, Dependable
Computing Systems Centre, University of York.

ARMSTRONG, J. 1998. Industrial integration of graphical and formal specification. Journal
of Systems Software 40, 3, 211-225.

BARESI, L., Orso, A., AND PEzzE, M. 1997. Introducing formal specification methods in in-
dustrial practice. In Proceedings of the International Conference on Software Engineering,
ICSE’97, Boston, Massachussets (1997), pp. 56—66.

BENVENISTE, A., GAUTIER, T., LE GUERNIC, P., AND RUTTEN, E. 1998. Distributed
code generation of dataflow synchronous programs: the SACRES approach. In Pro-
ceedings of The FEleventh International Symposium on Languages for Intensional Pro-
gramming, ISLIP’98 (Sun Microsystems, Menlo Park, California (USA), May 1998).
http://www.inria.fr/ep-atr, publications.

BERRY, G. The constructive semantics of pure ESTEREL. Book in preparation, current version
2.0, http://zenon.inria.fr/meije/esterel.

BERRY, G. AND GONTHIER, G. 1992. The ESTEREL synchronous programming language:
design, semantics, implementation. Science of Computer Programming 19, 87-152.

FencorT, P., GALLOWAY, A., LOCKYER, M., O’BRIEN, S., AND PEARSON, S. 1994. For-
malising the semantics of ward/mellor sa/rt essential models using a process algebra. In
Proceedings of Formal Methods Europe, FME’9j, Volume 873 of Lecture Notes in Com-
puter Science (1994), pp. 681-702. Springer-Verlag.

GAUTIER, T., GUERNIC, P. L., AND MAFFEIS, O. 1994. For a new real-time methodology.
Research Report 2364 (Oct.), INRIA.
http://www.inria.fr/RRRT/RR-2364.html.

GRAZEBROOK, A. 1997. Sacres - formalism for real projects. In F. REDMILL AND T'. ANDER-
SON Eds., Safer Systems (London, 1997). Springer-Verlag.

GUEGUEN, H. 97. Mixing statecharts and signal for the specification of control. In IFAC Ed.,
IFAC Workshop AARTCI7 : Algorithm and Architecture for real time control, Vilamoura
(Avril 97).



50 . J.-R. Beauvais, E. Rutten, T. Gautier, R. Houdebine, P. Le Guernic, Y.-M. Tang

HALBWACHS, N., Caspr, P., RAYymOND, P., AND PiLAUD, D. 1991. The synchronous dataflow
programming language Lustre. Proc. of the IEEE 79, 9 (Sept.), 1305-1320.

HAREL, D. 1987. Statecharts: A visual formalism for complex systems. Science of Computer
Programming 8, 231-274.

HAREL, D. AND NAAMAD, A. 1991. The languages of Statemate. i-Logiz Inc.

HAREL, D. AND NAAMAD, A. 1996. The Statemate semantics of Statecharts. ACM Trans-
actions on Software Engineering and Methodology 5, 4 (Oct.), 293-333.

IEC. 1993. International standard for programmable controllers: Programming languages.
Technical Report IEC 1131 part3, IEC (International Electrotechnical Commission).

JIMENEZ-FRAUSTRO, F. AND RUTTEN, E. 2001. A synchronous model of the iec 61131 plc
languages fbd and st. In Proceedings of the 13th Euromicro Conference on Real-Time
Systems, ECRTS’01, June 13th-15th, 2001, Delft, The Netherlands (2001).

LE GUERNIC, P., GAUTIER, T., LE BORGNE, M., AND LE MAIRE, C. 1991. Programming
real-time applications with Signal. Proceedings of the IEEE 79, 9 (Sept.), 1321-1336.

M. VON DER BEECK. 1994. A Comparison of Statecharts Variants. In H. LANGMAACK, W.-
P. DE ROEVER, AND J. VyYTOPIL Eds., Formal Techniques in Real-Time and Fault-Tolerant
Systems, Volume 863 of Lecture Notes in Computer Science (Liibeck, Germany, Sept. 1994),
pp. 128-148. Springer-Verlag.

MAFFEIS, O. AND POIGNE, A. 1996. Synchronous automata for reactive, real-time or em-
bedded systems. Technical report (Jan.), GMD. no 967.

MARANINCHI, F. AND HALBWACHS, N. 1996. Compiling ARGOS into Boolean equations. In
B. JonssoN AND J. PARROW Eds., Formal Techniques in Real-Time and Fault-Tolerant
Systems, Uppsala, Sweden, Volume 1135 of Lecture Notes in Computer Science (Sept.
1996), pp. 72-90. Springer-Verlag.

MARANINCHI, F. AND REMOND, Y. 1998. Mode-automata: about modes and states for re-
active systems. In C. HANKIN Ed., Programming Languages and Systems, Proceedings of
the 7th Eropean Symposium on Programming, ESOP’98, Lisbon, Portugal, march—april
1998, Volume 1381 of Lecture Notes in Computer Science (March 1998), pp. 185-199.
Springer-Verlag.

MARCE, L., L'HER, D., AND LE PArc, P. 1996. Modelling and verification of temporized
grafcet. In Proceedings of The IEEE/SMC Symposium on Discrete Events and Manufac-
turing Systems, Lille (France) (July 1996).

MARCE, L. AND LE PARc, P. 1993. Defining the semantics of languages for programmable
controllers with synchronous processes. Control Engineering Practice 1, 1 (Feb.).

NeBUT, M. 1998. Modélisation de statemate en signal : le langage impératif des actions.
Master’s thesis, Université de Rennes 1, I[FSIC.

PERRAUD, J., Roux, O., AND HUuoN, M. 1992. Operational semantics of a kernel of the
language ELECTRE. Theoretical Computer Science 97, 1 (April), 83-104.

RUTTEN, E. AND MARTINEZ, F. 1995. Signal GTi, implementing task preemption and time
intervals in the synchronous data flow language Signal. In Seventh Euromicro Workshop on
Real-Time Systems (June 1995), pp. 176-183. (IEEE Publ.) http://www.inria.fr/ep-atr,
publications.

SACRES CONSORTIUM. 1997a. The common format of synchronous languages - the declara-
tive code DC+ version 1.4. Technical report (November), Esprit Project SACRES EP 20897.

SACRES CONSORTIUM. 1997b. The semantic foundations of SACRES. Technical report
(March), Esprit Project SACRES EP 20897.

SACRES CONSORTIUM. 1998. Task I1.1.A: Statemate integration — the stm2dcplus transla-
tor. Technical report (Nov.), Esprit Project SACRES EP 20897.

SESHIA, S., SHYAMASUNDAR, R., BHATTACHARJEE, A., AND DHODAPKAR, S. 1999. A trans-
lation of statecharts to esterel. In Proceedings of the World Congress on Formal Methods,
FM’99, Volume II, Toulouse, France, September 20-24, 1999, Number 1709 in Lecture
Notes in Computer Science (LNCS) (1999), pp. 983-1007. Springer Verlag. LNCS nr. 1709.

SHI, L. AND NIXON, P. 1996. An improved translation of SA/RT specifications model to
high-level timed Petri nets. In Proceedings of Formal Methods Europe, FME’96, Volume



Modelling Statecharts and Activitycharts as Signal equations . 51

1051 of Lecture Notes in Computer Science (1996), pp. 518-537. Springer-Verlag.

SYNCHRON. 1995. The common format of synchronous languages - the declarative code
DC version 1.0. Technical report (October), C2A-SYNCHRON project.

TALPIN, J., BENVENISTE, A., CAILLAUD, B., AND GUERNIC, P. L. 1999. Hierarchic normal
forms for desynchronization. Research Report 3822 (Dec.), INRIA.

WANG, Y. 2000. Compilation of state-machines using behavior expression. In Proceedings
of the Workshop PhDOOS2000 in 14th European Conference on Object-Oriented Program-
ming (2000).

WANG, Y., TALPIN, J., BENVENISTE, A., AND GUERNIC, P. L. 2000. Compilation and dis-
tribution of state-machines using SPOTS. In Proceedings of the 16th IFIP World Computer
Congress 2000 (Aug. 2000).



