
HAL Id: hal-00546080
https://hal.science/hal-00546080

Submitted on 13 Dec 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modelling Statecharts and Activitycharts as Signal
equations

Jean-René Beauvais, Eric Rutten, Thierry Gautier, Roland Houdebine, Paul
Le Guernic, Yan-Mei Tang

To cite this version:
Jean-René Beauvais, Eric Rutten, Thierry Gautier, Roland Houdebine, Paul Le Guernic, et al.. Mod-
elling Statecharts and Activitycharts as Signal equations. ACM Transactions on Software Engineering
and Methodology, 2001, 10 (4), pp.397-451. �hal-00546080�

https://hal.science/hal-00546080
https://hal.archives-ouvertes.fr

Modelling Statecharts and Activitycharts as SignalequationsJ.-R. Beauvais, E. Rutten, T. Gautier, R. Houdebine, P. Le Guernic and Y.-M. TangINRIAThe languages for modelling reactive systems are of di�erent styles, like the imperative, state-basedones and the declarative, data-
ow ones. They are adapted to di�erent application domains. Thispaper, through the example of the languages Statecharts and Signal, shows a way to give a modelof an imperative speci�cation (Statecharts) in a declarative, equational one (Signal). This modelconstitutes a formal model of the Statemate semantics of Statecharts, upon which formal analysistechniques can be applied. Being a transformation from an imperative to a declarative structure,it involves the de�nition of generic models for the explicit management of state (in the case ofcontrol as well as of data). In order to obtain a structural construction of the model, a hierarchicaland modular organization is proposed, including proper management and propagation of controlalong the hierarchy. The results presented here cover the essential features of Statecharts as wellas of another language of Statemate: Activitycharts. As a translation, it makes multi-formalismspeci�cation possible, and provides support for the integrated operation of the languages. Themotivation lies also in the perspective of gaining access to the various formal analysis and imple-mentation tools of the synchronous technology, using the DC+ exchange format, as in the Sacresprogramming environment.Categories and Subject Descriptors: D.2 [Software]: Software Engineering; F.3.2 [Logics andMeanings of Programs]: Semantics of programming LanguagesGeneral Terms: LanguagesAdditional Key Words and Phrases: Behavioral modelling, reactive systems, statechart, STATE-MATE, synchronous languages, SIGNAL1. INTRODUCTION1.1 Context and objectiveDi�erent languages exist for the design of reactive systems: the languages Lustre[Halbwachs et al. 1991] and Signal [Le Guernic et al. 1991] are declarative andequational data
ow languages, while others are imperative sequencing languages:This work was partially supported by the Esprit Project EP 20897 Sacres.Authors' addresses: EP-ATR project, IRISA/INRIA-Rennes, 35052 RENNES cedex, France; E.Rutten, BIP project, INRIA Rhône-Alpes, 655 avenue de l'Europe, F-38330 MONTBONNOTSAINT MARTIN, FrancePermission to make digital or hard copies of part or all of this work for personal or classroom use isgranted without fee provided that copies are not made or distributed for pro�t or direct commercialadvantage and that copies show this notice on the �rst page or initial screen of a display alongwith the full citation. Copyrights for components of this work owned by others than ACM mustbe honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post onservers, to redistribute to lists, or to use any component of this work in other works, requires priorspeci�c permission and/or a fee. Permissions may be requested from Publications Dept, ACMInc., 1515 Broadway, New York, NY 10036 USA, fax +1 (212) 869-0481, or permissions@acm.org.

2 � J.-R. Beauvais, E. Rutten, T. Gautier, R. Houdebine, P. Le Guernic, Y.-M. Tangtextual like Esterel [Berry and Gonthier 1992] and Electre [Perraud et al. 1992],or graphical like Statecharts [Harel 1987] and Argos [Maraninchi and Halbwachs1996]. The choice between the declarative and the imperative approach has anin
uence upon the facility with which a given application area can be handled.For instance, declarative languages easily handle applications like signal process-ing, while imperative formalisms are often used for sequential control systems. Theneed for a control mechanism such as task management, for example, appears in ap-plication domains involving the control of physical processes. For complex systemsinvolving the two aspects, a multi-formalism speci�cation can be useful.This paper presents a translation from the essential features of Statecharts andActivitycharts to the equational language Signal. Among the di�erent semanticsof Statecharts [M. von der Beeck 1994], the translation presented here follows theStatemate one [Harel and Naamad 1996]. This scheme yields a formal model of theStatemate semantics of Statecharts, upon which formal analysis techniques can beapplied. Being a transformation from an imperative to a declarative structure, itinvolves the de�nition of generic techniques for the explicit management of state (inthe case of control as well as of data). In order to obtain a structural constructionof the model, a hierarchical and modular organization is proposed, including propermanagement and propagation of control along the hierarchy. The results presentedhere cover the essential features of Statecharts as well as of another language ofStatemate: Activitycharts. This work was implemented in a prototype translator,covering only the most substantial parts of the Statemate languages (the controlpart of Activitycharts and Statecharts, and the simple actions). This prototype wasused to treat examples of small to medium size (i.e., several activities, associatedwith Statecharts of several hierarchical levels), either made up or inspired by samplespeci�cations from partners in the ESPRIT project Sacres.1.2 MotivationThe primary motivation for this work is to make more widely available a corpus ofresults in the synchronous approach to reactive and real-time systems. Signal beinga representative of the class of declarative synchronous languages, this translation:|provides a way to merge imperative and declarative synchronous languages bysimply composing equations (composition of Signal processes),|remedies the lack of imperative features of Signal,|gives a compositional de�nition of Statecharts semantics,|opens a direct connection from a Statecharts design to the synchronous technol-ogy tools of the Signal environment, and moreover to the tools compatible withthe DC+ format [Sacres Consortium 1997a]: compilers, simulators, veri�cationsystems,|in particular, it gives direct access to the Signal code generator, which can pro-duce e�cient and compact code from a Statecharts speci�cation, using the clockcalculus available in Signal. It can also generate distributed and architecture-dependent code [Benveniste et al. 1998].We believe that, on the one hand, the graphical readability of Statecharts makesit good for the designing an imperative speci�cation. On the other hand, the Sig-nal compiler uses an elaborate clock calculus, which makes it a good choice for

Modelling Statecharts and Activitycharts as Signal equations � 3
Timing

Diagrams

C, Ada

DC+ common format

Specification tools

Code Generation

Satemate Sildex SSL

systems)
(components,

Code Validation

distribution)
(optimisations,

Verification

Proof ScriptsFig. 1. Global architecture of the Sacres environmentextracting clock properties from a speci�cation, in order to get e�ciency in codegeneration and in veri�cation. Hence, keeping the structural information throughthe translation, and not simply coding, is a key issue for understanding interactionsbetween components from di�erent sources. The traceable links between the ini-tial speci�cation and the generated code potentially allow us to route informationextracted from the veri�cation tools back to the speci�cation, for user feedback(diagnostic, counter-example). In the other direction, from the speci�cation to thegenerated code, traceability may be used to add, at speci�cation time, directivesfor the partitioning into tasks or distributed processes.This work constitutes part of the Sacres programming environment [Grazebrook1997]. The purpose of the Esprit project Sacres (SAfety CRitical Embedded Sys-tems: from requirements to system architecture) is to integrate into a uni�ed andcomplete environment a variety of tools for speci�cation, veri�cation, code genera-tion and validation of the code produced1. Among the application domains targetedare avionics and process control. The question of certi�cation and validation is in-tegrated into the environment. Figure 1 illustrates the architecture of the Sacrestoolset. It shows information
ows between the elements of the toolset, and thecentral position of the format between the tools of the environment. Translators toand from DC+ are developed in the framework of the project, and enable the con-nection of all the representations speci�c to the di�erent tools, using the commonformat. The translation from Statecharts to DC+ is one of them.DC+ is an exchange format that supports the representation of Signal; as such,they are quite similar: both are de�ned in terms of systems of equations over
owsor signals. Signal being a programming language, it is prefereable to use it for1Member partners of the Sacres project are: British Aerospace (UK), aircraft builder; i-Logix(UK), developing and distributing StateMate, the environment for designing in Statecharts; IN-RIA (France), a research institute where new technologies are de�ned and developed around thesynchronous language Signal [Gautier et al. 1994]; OFFIS (Germany), research institute bringingveri�cation technology; Siemens (Germany), where controllers for industrial processes are devel-oped; SNECMA (France), builder of aircraft engines; TNI (France), developing and distributingthe Sildex tool and the Signal language; the Weizmann Institute (Israel), as regards semanticaspects and the validation of code.

4 � J.-R. Beauvais, E. Rutten, T. Gautier, R. Houdebine, P. Le Guernic, Y.-M. Tangreadability purposes, hence this paper presents the translation in terms of Signalrather that DC+.1.3 Organization of the paperSections 2 and 3 describe the Signal and Statecharts formalisms. Section 4 describesthe model on which the translation is based. Section 5 describes how each ofthe major constructs of Statecharts are translated, and gives illustrative examples.It covers the essential features of Statecharts and Activitycharts; it concentrateson the behavioral aspects, in the framework of the step semantics; Other aspectslike elaborate data-types, the superstep semantics, and some particular aspects ofactions, are part of the perspectives. Section 6 describes the translation schemesfor Activitycharts. Section 7 describes how the relational aspects of Signal canbe used to model execution schemes and nondeterminism, and indicates how thetranslation can be modi�ed accordingly.2. SIGNAL: A DECLARATIVE SYNCHRONOUS LANGUAGESignal is a synchronous real-time language, declarative, data
ow oriented and builtaround a minimal kernel of operators [Le Guernic et al. 1991].The idea of the synchronous model is very simple: it assumes that a program,embedded in some environment, interacts with this environment through a �nite setof communication links. At any particular instant, more than one event (receptionor emission of messages, calculations) may occur, in which case they are simulta-neous and they have the same temporal index. The evolution of the computationresults from the sequences of these communications, but also from explicit changesexpressed in the program (for example, for an equation yt = f(xt�1), the output ywill be simultaneous with each one of the next occurrences of the input x). Withoutsuch an explicit change, the outputs are considered simultaneous with the inputsthat have been used in their computation, like in Esterel, Lustre or Signal, or theyare produced at the next instant, like in Statemate for instance.The Signal language is also a data
ow language, where a program is a system ofequations. Unlike in Lustre (which is also data
ow), the system of equations of aSignal program describes a relation between the inputs and outputs of the system(not necessarily a function): this makes it possible to describe, in Signal, partialspeci�cations or non deterministic behaviors.A Signal program speci�es a real-time system in terms of a collection of equationsde�ning signals. The collections of equations can be organized hierarchically in sub-systems (or processes). A signal is a sequence of values of a given type, with whichis associated an implicit clock which de�nes the discrete set of instants at whichthese values are present. The di�erent clocks are not necessarily linked togetherby �xed sampling frequencies: they can have occurrences depending on local dataor external events (like interruptions for example). Among the types of the signals(which are the types of their values), there are classical types|Booleans, integers,etc.|and a special type called event, which is a subtype of the Boolean type withthe single value true: it allows the representation of pure signals, and it is used inparticular to represent in the language the clocks of the signals.The Signal language is built on a small number of primitives, the semantics ofwhich is described informally below. In order to give this semantics, we add a

Modelling Statecharts and Activitycharts as Signal equations � 5distinguished symbol, denoted ?, to the considered domain of values of the signals:this symbol represents the absence of value (note that it is not manipulated inthe language). The semantics of a program is described by the set of acceptablesequences of valuations of the variables of the program in the domain of valuescompleted by ?. The notation Xt represents the value of the variable (or signal)X at the instant t in some sequence of valuations of some subset of variables (wecall such a sequence a
ow).The kernel of Signal is composed of the following primitives, which de�ne ele-mentary processes:|Functions or relations extended to sequences:Y := f(X1,...,Xn) : � 8t; Yt = ?) X1t = ::: = Xnt = ?8t; Yt 6= ?) Yt = f(X1t; :::; Xnt)Examples of such operators are classical arithmetic operators (+, *. . .), relations(=, <. . .), Boolean operators (not, or. . .).|Delay: Y := X $1 init v0 : 8<: 8t; Yt = ?) Xt = ?Y0 6= ?) Y0 = v08t > 0; Yt 6= ?) Yt = Xt�1This operator expresses an explicit consumption of time (dynamic equation).|Extraction on Boolean condition:Y := X when B : 8t;� Bt 6= true) Yt = ?Bt = true) Yt = Xt|Merge with priority:Y := U default V : 8t;� Ut 6= ?) Yt = UtUt = ?) Yt = VtThe composition of two processes (jP jQj) is de�ned by the set of all the
owsrespecting, in particular on common variables, the set of constraints respectivelyimposed by P and Q (the composition is commutative and associative).Finally, the restriction of visibility of a signal X, denoted P where X, is theprojection of the set of
ows associated with P on the set of variables of P minusX. As it can be seen on the above description of the primitives, each signal has itsown temporal reference (its clock, or set of instants at which it is di�erent from?). For example, the �rst two primitives are single-clocked: they constrain all theimplied signals so that they have the same clock. On the other hand, the third andfourth ones are multiple-clocked, the signals may have di�erent clocks.The following table illustrates each of the primitives with a trace:n 4 3 2 1 0 4 3 2 1 0 4 . . .zn := n$1 init 0 0 4 3 2 1 0 4 3 2 1 0 . . .p := zn-1 -1 3 2 1 0 -1 3 2 1 0 -1 . . .fill := true when zn=0 t t t . . .empty := true when (n=0) f t f t f . . .default (not fill)

6 � J.-R. Beauvais, E. Rutten, T. Gautier, R. Houdebine, P. Le Guernic, Y.-M. TangThe rest of the language is built upon this kernel. Derived operators have beende�ned from the primitive operators, providing programming comfort. We describenow those we use in this paper.If X is a signal of any type, Y := ^X de�nes the event type signal which is present(with the value true) whenever X is present: it is used to represent the clock of thesignal X.A special case of an event type signal is the signal denoted ^0, which is, byde�nition, never present.The following special case of the extraction, Y := when B, where B is a Booleansignal, de�nes also an event type signal, which is present whenever B has the valuetrue.For any two signals U and V, the intersection and the union of their clocks,represented by event type signals, can be obtained respectively by the equationsY := U ^* V and Y := U ^+ V (these equations are more speci�c notations forrespectively Y := ^U when ^V and Y := ^U default ^V).Finally, constraints between clocks of signals can be speci�ed by using clockequations such as X1 ^= ... ^= Xn, which asserts that the signals X1, . . . , Xnhave the same clock (i.e., are present at the same instants).The Signal compiler mainly consists of a formal system which is able to reasonabout clocks, logics and dependence graphs. In particular, the clock calculus andthe dependence calculus [Amagbegnon et al. 1995] provide a synthesis of the globalsynchronization of the program from the speci�cation of the local synchronizations(given by the Signal equations), and a synthesis of the global scheduling of thespeci�ed calculations. Contradictions and inconsistencies can be detected by thesecalculi. The clock calculus using BDD techniques, synthesizes a hierarchy of clocks(based on inclusion of presence instants), which constitutes, together with the de-pendence graph, the basis on which a number of tools can be applied. These toolscan perform automatic transformations in order to reorganize the program or toget speci�c optimizations, they can generate inputs for veri�cation tools such asmodel checkers, they can generate sequential code or distribute the application onsome architecture, they can evaluate the time consumption of the program on agiven architecture, etc.process tank = {integer capacity;}(? event fill;! boolean empty;)(| when(zn=0) ^= fill| zn := n $1 init 0| p := zn - 1| n := (capacity when fill) default p| empty := when (n=0) default (not fill)|)where integer n, zn, p;end; Fig. 2. A re�llable tank

Modelling Statecharts and Activitycharts as Signal equations � 7
0 0 00

zn

n

fill

empty

0 0 00

t f t t tf ffFig. 3. The clocks of the tank processFigure 2 shows an example of a Signal program describing a re�llable tank. Thisprocess named tank has a constant parameter capacity, an input signal: fill(pure event), an output signal empty (Boolean) and a list of equations de�ningthe body of the process. The behavior described in this process is the following:whenever the tank is �lled, with input signal fill set, the level of water in thetank starts to decrease (n) until the level reaches 0. At this time, the output emptysignal is set to true. Then, the next fill can re�ll the tank and set the emptysignal to false.The present instants (clocks) of the signals in this program are illustrated inFigure 3. One can notice that the clock of local (internal) signals is faster than(i.e., includes) that of inputs and outputs: in that sense it is possible to specifyoversamplings in Signal, i.e., processes which are not necessarily strictly reactiveto their inputs. This particularity will be explored in the modelling of Statemate,particularly in Section 7.3. STATEMATE: STATECHARTS AND ACTIVITYCHARTSThe Statecharts formalism was introduced by Harel [Harel 1987]. It is a graphicallanguage based on automata. It is integrated into the Statemate environment, alongwith another language called Activitycharts, which is block-diagram oriented. It isimplemented in the tool Magnum, designed by i-Logix.The speci�cation of a model in Statemate is composed of charts. To each chartis associated the declaration of data-items (i.e., variables with a given type) andevents, hence de�ning their scope: these are known inside the chart. Other data-items and/or events can be exchanged with the environment. The chart is furtherde�ned by either an Activitychart or a Statechart, which can be itself decomposedhierarchically into sub-charts. The entry point for a model is an Activitychart,which describes a structural decomposition by being divided into sub-activities,recursively. Some sub-activities, called control activities, can be de�ned by a Stat-echart.Hierarchical parallel automata. A Statecharts design essentially consists ofstates and transitions like a �nite automaton. In order to model depth, a state canbe re�ned and contain sub-states and internal transitions. Two such re�nementsare available: and and or states, that give a state hierarchy. At the bottom ofthe hierarchy, Basic-states are not further re�ned. If the system speci�ed by aStatechart resides in an or state, then it also resides in exactly one of its directsub-states. Staying in an and state implies staying in all of its direct sub-statesand models concurrency. When a state is left, each sub-state is also left, thereby

8 � J.-R. Beauvais, E. Rutten, T. Gautier, R. Houdebine, P. Le Guernic, Y.-M. Tangmodelling preemption. Sub-states of an and state may contain transitions whichcan be executed simultaneously. The con�guration of a Statechart is de�ned by thehierarchy of states and sub-states in which it stays. The di�erent and parts of astate may communicate by internal events which are broadcast all over the scopeof the events. For instance, the emission of an event on a transition may be sensedsomewhere else in the design and trigger a new transition.In the Statechart example of Figure 4, the basic components are states andtransitions, some states clustered in or composition (Sub_Running_Up is an orstate containing S1 and S2) while some other groups in and composition (Runningis an and state containing Sub_Running_Up and Sub_Running_Down).When entering a state containing sub-states, di�erent possibilities are availablefor specifying the behavior: when entering a state by a transition pointing to theboundary of the state, the state targeted by the default connector (a transitionwithout origin) is activated. When reentering a state through a history connector(H), the sub-state activated is the one that was active when the state was left. Whenentering for the �rst time a state containing a history connector, the transitionleaving this history connector is used to �nd the sub-state to activate. Finally,deep-history (H*) is a connector that acts similarly to the history connector butapplies to all the sub-states in the hierarchy. Note that the same state can haveall the three ways of being entered, hence the corresponding mechanism is applied,according to the transition through which it is entered.Transitions and actions in a step. The transitions between states are labeledby reactions of the form: e[C]/a, where e is an event that possibly triggers thetransition, C is a Boolean guard condition that has to be true for the transitionto �re. The previous event and the Boolean together give the trigger part of thetransition while the right part of the \/" (a) contains the actions that are carriedout if and when the transition is �red. As a special kind of transition, Statemateo�ers the possibility to associate such labels to a state. Whenever this state isactive, the trigger part of the transition is evaluated and possibly the action iscarried out. Such transitions are called static reactions.The basic evolution of Statecharts proceeds in steps, where given the eventscurrently present and the current values of variables, triggers and conditions are
S1 S2

a

a / b

S3 S4

Idle

R
un

ni
ng

b

e

f

Sub_Running_Down

Sub_Running_Up

b / d

H*

Fig. 4. A Statechart example

Modelling Statecharts and Activitycharts as Signal equations � 9
A

A1 A2

A3
A12

A11

Fig. 5. An activities hierarchyevaluated, and actions are carried out. In Statemate the e�ects (event generation,variable modi�cations) of the actions carried out in one step are sensed only at thefollowing step. This distinguishes Statemate from other semantics of Statecharts-like languages [M. von der Beeck 1994], e.g., the strictly synchronous one as inArgos [Maraninchi and Halbwachs 1996], where e�ects are sensed in the very samereaction: in the example, the reception of the fourth occurrence of a would resultin emitting b and d in the same reaction.The step semantics is the interpretation of a Statemate speci�cation where inputsfrom the environment are considered at each step, taking part in the current eventsand variables. Another semantics is the superstep intepretation: here, inputs takepart only in the �rst of a series of steps, called a superstep. There, the followingsteps take in consideration only the e�ects of the previous one (i.e., locally emittedevents and changed values), until there is no transition to take anymore, i.e., no stepto make. This situation, called stable, is the end of the superstep, and inputs areacquired from the environment anew. This mechanism is close to the semantics ofSequential Function Charts with search for stability [IEC 1993; Marc�e and Le Parc1993].There is a textual language, of a classical imperative form, �a la Pascal, for con-structing actions. For actions which consist of assigning values to variables, thesame variable can be referenced in assignments associated with di�erent transi-tions: each provides a contributed value, and the variable takes its values from theaction contributing in the current step. The actions can feature a form of variablecalled context variables, local to the action, which can take several values withinone step. Iteration constructs include the unbounded while loop, thereby incurringthe risk of non-termination. Also, a timeout and a schedule action are available.Activities. Besides the Statecharts, another language of the Statemate envi-ronment is Activitycharts [Harel and Naamad 1991]: it provides the designer witha notion of multi-level data-
ow diagrams, as illustrated in Figure 5. Each of theblocks in the hierarchy represents an activity. The activities can be used to con-struct a structure decomposed hierarchically.At each level, one of the activities, designated in the graphical syntax by a round-cornered box, can be a control activity (e.g., activiy A2 in Fig.5). It is associatedwith a Statechart de�ning its behavior. The latter can start, stop, suspend andresume the activity, as well as sense its current status. Activities can be associated

10 � J.-R. Beauvais, E. Rutten, T. Gautier, R. Houdebine, P. Le Guernic, Y.-M. Tangwith states in Statecharts, in one of two ways: within and throughout, dependingon the way they can be started (see Section 6).Actions with a trigger can be associated with an activity, they are called mini-specs, and have the same form as the labels seen associated with transitions orstatic reactions with states in Statecharts. Another form of actions of activities iscalled combinational assignments: the di�erence with mini-specs is that the valuesthey compute are available within the same step.Links between activities represent the data or control exchanges between activi-ties. This aspect of the language is, however, based on the fact that variables andevents are known globally in a chart (the scope of their de�nition). Therefore it willnot be handled explicitly in the translation. The data
ow links are an optionalexplicit representation of communications that exist anyway.Finally, a concept of ModuleCharts also exists in Statemate, handling the asso-ciation of a speci�cation with an execution architecture. This point is not coveredby the present work.The languages of Statemate form a set of languages with a full spectrum of fea-tures, in di�erent styles, and elaborate actions and data types. They allow forthe speci�cation and simulation of designs with such an expressiveness that evendesigns presenting potential risks can be written. Especially in the framework ofsafety-critical embedded systems, it is considered very risk-prone to use unboundedinstructions or structures like, e.g., the while loop in actions, or queue data struc-tures. Also, some features do not follow the overall structured quality of the lan-guage, like the possibility of drawing transitions crossing several levels of and- andor-nodes.Proposals concerning the safe use of Statemate have been described, called Safe-chart [Armstrong 1996], which consisted �rst in directives and advices in usingStatemate, rather than strict interdictions. They advise for example to avoid cross-level transitions, avoid using the negation on events, etc. Later on, a formallyde�ned syntactic sub-language was identi�ed, and it was formalized by a functionmapping it to an axiomatization in Real Time Logic [Armstrong 1998].In the following, we will restrict ourselves to a sub-language of Statecharts thatwe model in Signal, where all aspects covered are bounded.4. TRANSLATION PRINCIPLESThis section presents the overall approach to the structural translation, and someuseful basic elements. First, we introduce a reactive box model, and the way itis featured in the hierarchical model. Then, in order to simplify and to structurethe translation from Statecharts to Signal, some prede�ned processes useful for thetranslation are given. They correspond to the basic features of the Statecharts.4.1 The reactive boxAs a common framework for reactive speci�cation, we de�ne a model of a reactivebox with a normalized interface. Each part of the design to translate will have thisinterface scheme represented as a process in Signal. In particular, and-nodes andor-nodes will each be translated into a process with this structure. The hierarchicalpropagation of control signals such as clocks and resets will follow these interfaces.An interesting property of the Signal language, is that the behavior of the com-

Modelling Statecharts and Activitycharts as Signal equations � 11
Outputs

Stable

Inputs
Tick LocalClock Control Time

Fig. 6. The reactive box modelposition of two processes is the intersection of the behaviors of the constituentprocesses. This is similar to the solutions of an equational system. This reactivebox model is compositional in the same sense and gives a compositional semanticsfor Statecharts.A reactive box is a box with input and output signals. Some of these interfacesignals are common to every box:|Tick is the clock of the whole design. It has been added because in Statemate,the events generated by a step are sensed only at the beginning of the followingstep (generated events are shifted). This signal is the reference clock used for thepurpose of shifting these events and value changes by one instant of the globalclock2.|LocalClock is the clock of the box. This clock is present whenever the corre-sponding Statecharts component is active.|Control is an enumerated-typed signal with values in fStart, Stop, Resume,LocalResumeg. This type is called tcontrol. It is used inside the box to knowwhen and how the box is (re)entered. If its value is Start, all the (sub)levels ofthe box need to be reset. If its value is LocalResume (e.g., the correspondingstate is activated through a history connector) the box needs to be reset forall the levels apart from the level where the LocalResume connector belongs.Resume means that the box is activated but no reset has to be performed. TheResume value is useful because, for instance, in Statemate, a state may containentering in the trigger part of a static reaction that enables the static reactionwhen the state is entered. Similarly with exiting, the value Stop is used whenleaving a state in Statemate.|Time is a signal recording the passing of the outside time. It can be given byimpulses of the event type, or by values of dates.|Stable is a Boolean signal that is true when the inner box has completed its jobfor the current reaction to inputs, and is ready to synchronize with its environ-ment in order to accept new input. The clock of Stable is the clock of the box.Stable is used to cope with superstep semantics.2Note that, however, memorization associated with the shifting process will be managed withoptimizations w.r.t inactive sub-Statecharts

12 � J.-R. Beauvais, E. Rutten, T. Gautier, R. Houdebine, P. Le Guernic, Y.-M. Tang4.2 Hierarchical modelThe reactive box is used in a hierarchical manner to build the model, which hasconsequences in the compilation.4.2.1 Structural translation. As was presented in Section 3, a Statemate speci-�cation is a hierarchy of Statemate entities (Activitycharts ot Statecharts), eachwith associated actions, and sub-components (sub-activities of an activity, possiblya control activity, and subcharts of a Statecharts And- or Or-state).The structural translation proposed here follows the top-down approach where, ateach level of this Statemate hierarchy, we have a reactive box. At the highest level,its interface is connected to the environment (see Section 7.1). Such a box containsrepresentations of the local behaviour, of sub-components and their interactions:|for each variable declared at that level or scope, a model of a memory (seeSection 4.6),|a model of the local behaviour, which can involve state and transitions (seeSections 4.4 and 4.5),|for each sub-component, a reactive box, with the appropriate input-output pro-�le, and for each of them:|the global tick and time are transmitted as such,|a local clock is computed from that of the current level component, and candepend on its state and actions,|a control signal is computed from that received from the upper level by thecurrent one, and can depend on its state, actions, and transitions.|the stability signals from all sub-components models are collected and computea stability value for the current level.The aspects speci�c to hierarchies in Statecharts and Activitycharts are furtherdescribed respectively in Sections 5.1.2 and 6.1.4.2.2 Hierarchy of clocks. In Signal, basic objects are signals which always havea clock, while in Statemate, only events are clocked. Variables in Statemate are oftwo kinds: events or data-items. Data-items are valued and always present, whileevents are only present or absent. In order to reach compositionality, during thetranslation, we need to associate a clock with each Statemate variable. The clocksof the data-items will be computed from the signals Tick and LocalClock.It is important to note that this is where the hierarchy of the Statemate structureis re
ected in a hierarchy of clocks in Signal: the local clock passed to the lowerlevels of the hierarchy is a sub-sampling of the local clock of the current level,according to the state of activity of that lower level. Besides this hierarchicalaspect, a formal analysis of the clock system is performed during the compilationof Signal. It consists in arranging clocks in a hierarchical structure depending onthe de�nition of the ones as expressions of the others, especially as extractionsde�ning sub-clocks. This might improve the global clock hierarchy by establishingrelations between clocks not coming from this structural aspect.

Modelling Statecharts and Activitycharts as Signal equations � 134.3 Testing absenceWhereas in Statecharts conditions are always available, in Signal they have theirown clock. This is why in the translation we mix the event and the condition guardof the transition in the trigger signal.e Statecharts not e Signal not et f fAbsent t AbsentFig. 7. Di�erences between Statemate not and Signal not. In Statecharts, not e means: e didnot occur, while in Signal it is a conservative extension of the not operator on the Booleans.Statecharts o�ers the possibility to check whether an event is present or notbecause it is single clocked while in Signal (multi clocking), asking for absence iswith regard to a reference clock. The not of the two languages have a di�erentbehavior (see Figure 7). For a Statechart design using the not feature a Signalprocess is used:process not_event =(? event e1, ref_clock;! boolean e2;)(| e2 := not(e1) default ref_clock |); This process takes an event e1 and a clock ref_clock and returns a Boolean truewhen ref_clock is present and not e1. Otherwise, the process returns false.The Statecharts event e1 and e2 occurs when both e1 and e2 occurred simulta-neously. It is translated into Signal: e1 when e2. The Statecharts event e1 or e2occurs when either e1 or e2 occurred. It is translated into Signal: e1 default e2.Statecharts use and, or, not also for conditions. These ones are translatedusing the Boolean primitives and, or, not of Signal.4.4 TransitionTo check if a transition is triggered, a speci�c process is designed that is instantiatedfor each transition.
state1 state2

e[c]/aFig. 8. A transition in Statecharts4.4.1 Signal encoding:process transition = {state state1, state2;}(? state origin; event trigger;! state target;)(| target := state2 when trigger when (origin=state1)|)

14 � J.-R. Beauvais, E. Rutten, T. Gautier, R. Houdebine, P. Le Guernic, Y.-M. Tang;where the constant parameters do not need to be typed, the Signal compiler beingprovided with a type inference mechanism.4.4.2 Interface:. state1 is the initial state of the transition (a value of an enu-merated type called state), state2 is the target state of the transition (a value ofthe same enumerated type), origin is a signal containing the current active stateof the level where state1 belongs (see the Section 4.5 about con�guration signal),trigger is the signal which triggers the transition, target gives the new statechosen when the transition is �red.4.4.3 Behavior:. To use this process, one needs to instantiate {state1,state2}with the initial and the target state of the actual transition. It outputs a new statevalue whenever the transition it describes is �red. Presence of an output meansthat the transition is enabled, its value shows the new state (which is state2) thatwill be reached if the transition is actually taken.This output signal for each transition is then used to compute the new con�g-uration. The choice between possibly several enabled transitions handles solvingpriority between con
icting transitions (see Section 5.1 and, for the case of non-determinism, Section 7.2). The result is fed into the new con�guration, managedby the prede�ned process described next.4.5 StateThe con�guration of a Statechart is the list of its active states at a given point intime. For a n-states
at automaton, the con�guration (i.e., which state is active) ishandled by a signal ranging on an enumerated type (state) of n di�erent values:one value for one sub-state.For Figure 4, if s, t, u are respectively the con�guration variables of the toplevel, and of sub-states Sub_Running_Up and Sub_Running_Down, then legal con-�gurations are: s t uIdle absent absentRunning S1 S3Running S1 S4Running S2 S3Running S2 S4This encoding ensures a basic Statecharts property: A con�guration cannot besimultaneously in two di�erent sub-states of an or-state. This is ensured by the factthat the con�guration at each level of the hierarchy is stored in one signal havingat most one value at each instant.Because a state could be re�ned also into sub-states, a new con�guration signal(ranging in a new enumerated type) will be associated with each sub-state. Thestates of a Statechart form a tree, hence we have a signal tree. The clock calculusof the Signal compiler uses this information to produce optimized code: whenevera state is not active, the signal associated with it is not present and hence all the

Modelling Statecharts and Activitycharts as Signal equations � 15sub-states in the tree will not be calculated. The clock hierarchy maps the stateencapsulation.In this paper, we de�ne a structural translation from Statecharts to Signal wherewe follow the hierarchy for a double purpose. On the one hand, it favours readabiltyand traceability in the produced Signal mode. On the other hand, this hierarchicalstructure involves the control of the activity of sub-charts, and this can be encodedin a hierarchy of clocks, hence enabling the use of the clock calculus.For every level of the Statecharts hierarchy, an instance of the following processis used to update the con�guration variable.4.5.1 Signal encoding:process nextstate = {state initial_state;}(? event tick, localclock; tcontrol Control; event Time; state new;! boolean Stable; state zconfiguration, configuration;)(| configuration := (initial_state when control=Start)default new default zconfiguration| zconfiguration := configuration $1 init initial_state| configuration ^= localclock ^+ Control| Stable := (configuration = zconfiguration)|); 4.5.2 Interface:. localclock is the clock at which the state is active, as de�nedin Section 5.1.3; it is local to each con�guration variable. new is the new value of thecon�guration variable computed with processes transition. control is a signal oftype tcontrol as de�ned in setcion 4.1, and used to reinitialize the con�gurationwhen its value is Start. Stable is a Boolean indicating whether stability is reachedor notIn order to conform with the reactive box structure, inputs Time and Tick areadded, though unused.4.5.3 Behavior:. This process is used to memorize the current con�guration ofthe Statechart when no transition occurs (or a transition occurs somewhere else inthe design). The parameter initial_state gives the default state of the or-state.When this process is used, three situations can occur:|if control=Start, the current state takes the initial value given as the defaultparameter initial_state (this re-initialization is of greater priority with regardto possibly enabled transitions which would produce a value of new); else:|if a new value occurs (new is present), configuration takes it as a new value;else:|if localclock occurs alone, configuration remains unchanged (copied from itsprevious value).The output Stable is true when the con�guration remains unchanged. The clockof Stable is that of the con�guration.

16 � J.-R. Beauvais, E. Rutten, T. Gautier, R. Houdebine, P. Le Guernic, Y.-M. Tang4.6 ShiftThe Statemate semantics of Statecharts [Harel and Naamad 1996] states that "cal-culation in one step is based on the situation at the beginning of the step" and"Reactions to external and internal events, and changes that occur in a step, canbe sensed only after completion of the step". We hence need to postpone the resultof the current calculation (generated events for instance) to the next "step". Theprocess shift aims at that.4.6.1 Signal encoding:process shift =(? x;event tick;! y; boolean Stable;)(| value_x := x default y| value_x ^= ^x default tick| y := value_x $1| Stable := not ^x default tick|)where value_x;end;4.6.2 Interface:. x is the signal to be shifted, y the shifted signal (their typeswill be inferred for each instantiation), tick the clock of the Statemate step, andStable the stability Boolean.4.6.3 Behavior:. A trace example with integer values for x is shown Figure 9.Tick t t t t t t t t tx 1 2 3 4 5value x 1 1 2 2 2 2 3 4 5y 1 1 2 2 2 2 3 4Fig. 9. A trace of the shift process with x integerGiven a signal and a clock (usually the fastest clock), it shifts the new values ofthe signal to the next `tick' of the clock, while memorizing the last new value.All variables (except con�guration variables) are encoded in signals at the fastestclock so that their value is always available. Hence shift is with respect to thefastest clock.If one wants to have a perfect synchrony hypothesis [M. von der Beeck 1994], theshift would have to be be removed and then input and corresponding output wouldoccur at the same time. Solving causality cycles would be left (when possible) tothe Signal compiler and this would correspond to a synchronous semantics of theStatecharts. The case of events is detailed in Section A.1.Associated with each variable X are some control events, signalling, e.g., changesof values, which can be featured in triggers (see Section 5.2.2). The process shift isthe right place to de�ne them, as it is there that memorization of values takes place:hence it can be extended to manage these features, as presented in Section A.2.

Modelling Statecharts and Activitycharts as Signal equations � 175. TRANSLATION FROM STATECHARTS TO SIGNALThis Section introduces the general translation of the main Statecharts featuresinto Signal, by illustrating them with an example, and outlining an overview of thehierarchical structure of the model, before giving the translation scheme.5.1 Or-states and And-states5.1.1 Example. As we said in Section 4.2.1, for each Statecharts component, abox process as de�ned above is created. The structural hierarchy of the Statechartsdesign is preserved through the hierarchy of the Signal processes. We will followthe structure of the example in Figure 4, introducing some important features aswe go. An Or-state is at the top-level, with two states and two transitions. Oneof its states is re�ned into a subchart, which is an And-state. This latter is alsore�ned into two Or-states, with di�erent history connectors.5.1.1.1 Or-states.. For the top-level, we de�ne a con�guration signal giving thenext con�guration (nc) of the Statechart, in function of its current con�guration c.However, in Statemate, transitions can not be taken at the instants when enteringor exiting the corresponding or-node. The latter is given by the signal Control.Hence, the con�guration input conditioning them has to be restricted to instantsexcluding the presence of control. This is done by de�ning c t, which is given asthe correct under-sampling of the con�guration for transitions.| t1 := transition {Idle, Running} (c_t, e)| t2 := transition {Running, Idle} (c_t, f)| Control ^= ^0| c_t := c when ((not ^Control) default LocalClock)| (Stable,c,nc) := nextstate {Idle}(Tick, LocalClock, Control, Time, t1 default t2)This process, corresponding to the top level, will compute its internal con�gura-tion (values Running or Idle) at the local clock, which is, at the top level, the clocktick of the Statemate step. The signal t1 corresponds to the transition from Idleto Running and t2 to the transition from Running to Idle. They are of enumeratedtype and get the value of the target of the transition when the corresponding transi-tion is enabled. In case several transitions are enabled, the default between themwill make a deterministic choice. The handling of non-determinism is described inSection 7.2, where Signal is used to build an explicit representation of the possiblecases. The transition taken is then fed into the process nextstate.The Control input to nextstate is the null clock ^0 because there is no ex-plicit entering or exiting of the top-level. The parameter Idle of the subprocessnextstate is given because Idle is the default entrance state of the whole State-chart. To summarize, at the clock of the step, t1 and t2 are computed from thecurrent value of the con�guration signal c and the result is used in nextstate tocompute the next con�guration nc.5.1.1.2 State re�nement.. The state Running of the top level is now re�ned asbeing the process running. Its interface is built according to the reactive boxscheme introduced in Section 4.1. Its single input variable is a since e and f are

18 � J.-R. Beauvais, E. Rutten, T. Gautier, R. Houdebine, P. Le Guernic, Y.-M. TangTick t t t t t t t t t ...Toplevel LocalClock t t t t t t t t t ...(future) nc I R R R R R R I I ...(present) c I I R R R R R R I ...c t I I R R R R R R I ...e t ...f t ...a t t ...b t ...Sub LocalClock t t t t t t ...Running Control Start Stop ...Up nc S1 S1 S2 S1 S1 S1 S1 ...c S1 S1 S1 S2 S1 S1 S1 ...c t S1 S1 S2 S1 S1 ...Sub LocalClock t t t t t t ...Running Control Start Stop ...Down nc S3 S3 S3 S3 S4 S4 S4 ...c S3 S3 S3 S3 S3 S4 S4 ...c t S3 S3 S3 S3 S4 ...Fig. 10. Execution trace for the example in Figure 4not used inside. Its outputs are b and d. The clock of the con�guration variablesre�ning Running is de�ned as follows:localclock_running:= when (c=Running)It is de�ned by the instants when the next con�guration is in the state Running.This way, at the instant of entering a state, its sub-state con�guration variable ispresent, which is needed in case it has to be re-initialized. On the other hand, thesub-state variable is not present at the instant when the state is exited. This down-sampling of the clock of the con�guration variable nc into subclocks according to itsvalue is the way the clock hierarchy of the con�guration signals is built. The clocklocalclock of the sub-states is less frequent than the clock of the local localclock.The subcontrol_running signal is used to reinitialize the subprocess to its de-fault con�guration at the instants of entrance. In the case of the example, thesub-node Running starts again when transition t1 is taken, hence:subcontrol_running := Start when ^t1We choose to reset an or-state to its default con�guration at the instants ofentrance and not at the instants of exit because the semantics o�ers the possibilityexecuting actions upon entering. Resetting when exiting like in [Maraninchi andHalbwachs 1996] would execute actions at the wrong instants according to theStatemate semantics.Putting all this information together gives the parameters of the box running:d := running(tick, localclock_running, subcontrol_running, a, b)Figure 10 illustrates the di�erent clocks in presence, where I is for state Idle, andR for Running.5.1.1.3 And-states.. The Running state is the and composition of two or-states,called: sub_running_up and sub_running_down. It can be modeled as the syn-

Modelling Statecharts and Activitycharts as Signal equations � 19chronous composition of the processes sub_running_up and sub_running_down,detailed further, which model the two sub-states:process running =(? event Tick, LocalClock; tcontrol Control; event Time;event a, b;! boolean Stable; event b, d;)(| (Stable_up,b) :=sub_running_up(Tick, LocalClock, Control, Time, a)| (Stable_dn,d) :=sub_running_down (Tick, LocalClock, Control, Time, b)| Stable := Stable_up and Stable_dn|); The clocks transmitted to the sub-processes are the same as for the and-state.5.1.1.4 Sub-states.. Using the or-state translation scheme we obtain the signalequations for the translation of sub_running_up except for a few di�erences withthe top-level example given above. The clock of sub-state variables is de�ned inorder to have an instant where re-initialization can be performed.The process sub_running_up encoding the corresponding state is as follows:process sub_running_up ={ ? event Tick, LocalClock; tcontrol Control; event Time;event a;! boolean Stable; event b;}(| t3 := transition {S1, S2} (c_t, a)| t4 := transition {S2, S1} (c_t, a)| c_t := c when ((not ^Control) default LocalClock)| (Stable,c,nc) := nextstate {S1}(Tick, LocalClock, ^0, Time, t3 default t4)| b := ... (see translation of actions)|); Equations for state sub_running_down are looking very similar. The di�erenceis in the control of reinitialization. sub_running_up has a history connector, henceshould not be reinitialized when Running is re-entered. Therefore the controlinput is set to the null clock ^0. In a di�erent way, sub_running_up has no historyconnector. therefore its control input must be adequately controlled, as explainedbelow.5.1.1.5 History and deep history.. When the event f is generated, it preemptsthe sub-automata of Running and in the sub-automaton sub_running_up the lastactive state will be re-established whenever event e occurs. In Signal, the $ operatoris related to the last present value of a signal. Therefore, keeping the value of thelast active state in this way deals with deep-history in the translation. Indeed, thesuspension of the sub-process is achieved by the absence of the con�guration signalfor sub_running_up between f and e. When re-entering Running, the clock of the

20 � J.-R. Beauvais, E. Rutten, T. Gautier, R. Houdebine, P. Le Guernic, Y.-M. Tangcon�guration signal is present again, and the delayed signal encoding it takes itsvalues from where it was suspended.The situation for the default entrance behavior, e.g., sub_running_down, is morecomplicated, because the con�guration has to be reinitialized to S3 when the tran-sition from Idle to Running is taken (t1). In order to achieve this, the input signalcontrol of the process encoding running is set to Start when ^t1.
H

H*

S2

S3

t2

t3

t6t5

S1 t1

Fig. 11. Three ways to enter a stateMore generally, three ways are used to enter a state (see Figure 11): Normal (t1),History (t2), Deep-History (t3). Depending on the entry chosen, the con�gurationsignal of state S1 must be reset and possibly the con�guration signals of the sub-states S2, S3. The table shown on Figure 12 gives the con�guration variables thathave to be reset and the value of the enumerated signal control.Reset S1 ? Reset S2, S3 ? Control Signalt1 Normal yes yes Startt2 H no yes LocalResumet3 H* no no ResumeFig. 12. Which con�guration variables to reset?5.1.2 Overview of the structure of the model. In this Section we give an overviewof the structure of the model, illustrating how the equations and processes exam-pli�ed before, and explained further, are grouped into a global model.Figure 13 illustrates the simpli�ed structure of the model for an OR-node (notdetailing all the interface of the reactive box). It has the structure of the example inFigure 4: it has two states, and two transitions. For more generality, we representthe model for two transitions each labeled with a trigger trigi and an action acti,the latter computing values contribi of a variable var.|memorization of variables is handled by instances of the process shift, takingas inputs contributed values from the actions (see 5.2.1);|they serve to evaluate triggers, as modelled according to the translation � ofSection 5.2.2;

Modelling Statecharts and Activitycharts as Signal equations � 21
default

(trig2)

clk_action

clk_action

(act1,c1)

(act2,c2)

β

β

α

α

transition
{Idle,Running}

transition
{Running,Idle}

c_t

triggers

actions

transitions

(trig1)

defaultshift
memory

new zconf

conf

time

stable

{Idle}nextstate

tick loc_clk ctrl

subcontrollocal_clk

state

contrib1

contrib2

OR-node

c

nc

value

Fig. 13. An overview of the model for an OR-node|the triggers, combined with con�guration c t, are used to determine whether eachtransition is �reable, using instances of the process transition of Section 4.4;|an instance of the process nextstate manages the value of the con�guration ofSection 4.5;|transitions and the next state serve to evaluate clocks of actions,|the actions themselves are translated according to function � of Section 5.2.3,and produce values contribi.Figure 14 illustrates the hierarchical structure, and particularly how at each levelthe previous OR-node pattern is re-used (here the outputs s and t correspond,respectively, to the state and to the transition signals involved in the computationof subcontr, detailed in the following), and how the control is propagated to sub-processes (modelling sub-nodes) following the hierarchy of OR-nodes. In the case ofAND-nodes, inputs and control signals are forwarded as such to each of the modelsof sub-nodes, and contribution outputs are gathered. In the example of Figure 14,the OR-node has two states S1 and S2, each of them re�ned by other OR-nodes.In Figure 14 it appears that for each sub-node:|the local clock of the re�ned S1 is the downsampling of the incoming clock at thecondition s = S1;|the local control ctrli is computed as a function subctrl of the control signalreceived from upper layers, and the actual �ring of the transition t which cancause reinitialisation of the sub-node;|in the model of the AND-node, the two latter control signals are forwarded assuch to each of the models of the sub-states;

22 � J.-R. Beauvais, E. Rutten, T. Gautier, R. Houdebine, P. Le Guernic, Y.-M. Tang
subctrl subctrl

when
s=S1

when
s=S2

...

...

...s

t

clk1 clk2ctrl1 ctrl2

clk ctrl

OR-node

OR-node OR-node

Fig. 14. An overview of the hierarchical structure of the model|it has the structure of the model of an OR-node;|inputs are forwarded to the or-node as well as to all its sub-nodes.Not shown in the Figure, for clarity, is that the outputs towards the memory aregrouping all contributions from all levels.Instantaneous states are treated using the general framework, as explained inSection A.3.5.1.3 General translation scheme. The previous example introduced the generaltranslation scheme given here.Let default(a1; :::; an) de�ned as: a1 default a2 default ::: default an:Signals Tick, Localclock, Control and Time are considered to be contained inthe inputs of the process encoding the state under translation, according to thereactive box structure described in Section 4.1.Given a state:|named statename,|where OR(statename)=true if it is an or-state (otherwise, it is an and-state),|with nbss sub-states named Subi; i = 1::nbss,|with nbtr transitions between these sub-states, i = 1::nbtr, each from stateorigini to state targeti with labeli,|with sub-state subdefault as default entrance state (i.e., initial state),|where H(statename)=true if the default arrow has the H connector for target,|where H*(statename)=true if the default arrow has the H� connector for target,|where ei1,...,eip are the indexes of the transitions with target (i.e., entering) Subi.|where xi1,...,xiq are the indexes of the transitions with origin (i.e., exiting) Subi.

Modelling Statecharts and Activitycharts as Signal equations � 23|where hi1,...,hir are the indexes of the transitions with target the H connectorin Subi.|where ki1,...,kis are the indexes of the transitions with target the H* connectorin Subi,|inputi; outputi are the inputs and outputs of the process Subi as de�ned in Section5.3,The translation of this state in Signal is a process of the same name, made of thecomposition of the following equations:|for each transition ti; i = 1::nbtr:ti := transitionforigini; targetig(c t,�(labeli))where �(labeli) is the translation of the trigger and condition of the label of thetransition, as described further (see Section 5.2.2).|concerning state (Or-nodes), in all cases:c t := c when ((not ^Control) default LocalClock)if H*(statename) or H(statename) then:(Stables,c,nc):=nextstatefsubdefaultg(Tick, LocalClock,^0, Time, default(t1; :::; tnbtr))else:(Stables,c,nc):=nextstatefsubdefaultg(Tick, LocalClock,Control, Time, default(t1; :::; tnbtr))|if H*(statename) then 8i = 1::nbss:subcontroli := ^0else 8i = 1::nbss:subcontroli := Start when (Control=LocalResume)default Start when (^+(tei1; :::; teip))default Stop when (^+(txi1; :::; txiq))default LocalResume when (^+(thi1; :::; thir))default Resume when (^+(tki1; :::; tkis))default Control|in_S, en_S and ex_S are special events signalling respectively activity, activa-tion and desactivation of state S. Their occurrence instants are represented inFigure 22.(en S,Stable1) := shift(when Control=Start defaultwhen Control=Resume defaultwhen Control=LocalResume,Tick)(ex S,Stable2) := shift(when Control=Stop, Tick)|if OR(statename) then 8i = 1::nbss:in Sub i := when (c=Subi)(Stablei,outputi) :=Subi(tick, in Sub i, subcontroli, inputi)else if it is an And-node 8i = 1::nbss:(Stablei,outputi) := Subi(tick, localclock, control, inputi)

24 � J.-R. Beauvais, E. Rutten, T. Gautier, R. Houdebine, P. Le Guernic, Y.-M. Tang(there are no sub-processes for nodes that are leaves in the hierarchy).|Concerning the combination of Stable signals from sub-nodes and shifts, thepart of the design is considered stable if its sub-nodes are stable, and locallymemorized signals are; hence,|for an And-node a conjunction has to be made (using the synchronous operatorand is possible, because all sub-nodes have the same clock; alternaltely whenworks too)|for an Or-node, only one sub-node at a time is active, hence signals Stableihave di�ernet clocks (even exclusive, actually), therefore, instead of conjunc-tion, default must be used, giving to the local Stable the value of that of thecurrently active sub-node.5.2 Transition labels: triggers and actionsThe general syntax of the label on a transition in Statecharts is as follows:hlabeli ! hTriggeri / hActioniThe trigger as well as the action on a transition are making reference to thevalue of variables and events. The way they are handled in the Signal translationis presented next, then the handling of triggers, and then that of actions.The same form as for transition labels is also used in static reaction, associatinglabels to the presence in a state, or mini-specs, associating them to the active statusof an Activity in Activitycharts: the translation presented here is valid also in thosecases.5.2.1 Variables. They are declared at the level of a state statename. They haveto be managed in such a way that they comply with their de�nition:|they are assigned their new value (if any)|their value is carried to the next step coming from di�erent possible actionsThe scope of a Statechart variable is the chart where it is de�ned, as mentionedin Section 3. In our translation, each chart is translated into a Signal process, itselfdecomposed into sub-processes. All the signals representing variables are given asinputs to all the sub-processes in order to obtain a broadcasting.Given a state named statename, as before:|where variables a1; :::; anbvar are declared locally,|where variable ai has ai1 ; :::ainbcv contributed values,The translation of this state in Signal features the following equations concerningvariables:8i = 1::nbvar:ai := shift(default(ai1; :::ainbcv), tick)The variables is translated into an invocation of the process shift, the input ofwhich is the merging of all contributed values; If we want to represent explicitly thepossibility of racing conditions, i.e., presence of two contributed values at the sameinstant, it would be possible to apply the techniques described in Section 7.2. Theprocess shift carries the value to the next step, which is given by the clock tick.

Modelling Statecharts and Activitycharts as Signal equations � 25Actually, a less frequent clock might be used, if the chart in question is sometimesdeactivated.In the translation, there is a set of intermediate signals carrying the contributedvalues; they have to be given di�erent names, which are derived from the variablename ai by adding a subscript j to it: aij . These names are used in the translationof the actions producing these values for ai, which is described further. We usetwo functions in order to deliver integer indexes associated to variable name ai:current(ai) gives the current value of the index associated to ai and next(ai) theincremented value of this index. The indexes associated to each variable startat 1. This way we can have as much as necessary intermediate signals carryingintermediate contributions in a transition; the fact that a variables can only appeara bounded number of times in an actions insures that the indexes will remainbounded.Concerning the extension with control events mentioned in Sections 4.6 and A.2,we follow the same scheme, i.e., for a variable ai (with n1 the number of contributingsources for read data ai, and n2 the same for written data ai):read data ai := default(read data ai1, ... read data ain1)written data ai := default(written data ai1, ... written data ain2)5.2.2 Triggers5.2.2.1 Syntax of triggers.. Triggers of transition label can be of the followingform:hTriggeri ! �j hEventNameij hTriggeri[hConditioni]j nothTriggerij hTrigger1iandhTrigger2ij hTrigger1iorhTrigger2ij in(hStatei)j entered(hStatei)j exited(hStatei)j true(hConditioni)j false(hConditioni)j read(hV ariablei)j written(hV ariablei)j changed(hV ariablei)hConditioni ! hExpression1ihRelihExpression2ij nothConditionij hCondition1iandhCondition2ij hCondition1iorhCondition2ij hV ariableihOpi ! +j � j � j=

26 � J.-R. Beauvais, E. Rutten, T. Gautier, R. Houdebine, P. Le Guernic, Y.-M. TanghReli ! =j<>j < j > j � j �hExpressioni ! hExpressionihOpihExpressionij hV ariableij hNumberi5.2.2.2 General translation scheme.. Translating triggers into Signal amounts toevaluating the trigger event and condition parts, and feeding them as input to thetransition process de�ned earlier. The translation function � delivers the Signalexpression (of type event) translating the trigger of the transition label. It isde�ned as follows:|in the reactions � handles the translation of the trigger only (see further function� for actions):�(hTriggeri=hActioni) = �(hTriggeri)|expressions on triggers:|the empty trigger is satis�ed at the global clock:�(�) = LocalClock|presence of an event hEventNamei:�(hEventNamei) = hEventNamei|combined event and condition trigger:�(hTriggerihConditioni) = �(hTriggeri) when �(hConditioni)|logical expressions on triggers:�(not hTriggeri) = when not event(�(hTriggeri), tick)�(hTrigger1i and hTrigger2i) = �(hTrigger1i) when �(hTrigger2i)�(hTrigger1i or hTrigger2i) = �(hTrigger1i) default �(hTrigger2i)|dynamic triggers:|on variables: for a hV ariablei named X :�(read(X)) = read X�(written(X)) = written X�(changed(X)) = changed Xwhere these events are produced in relation with the management of the vari-able X (see Section 4.6).|on conditions: for a hConditioni (which can be an expression) computed in avariable C (which can be an intermediate variable for computing the expres-sion):�(true(C)) = true C�(false(C)) = false Cwhere these events are produced in relation with the management of theBoolean variable C (see Section 4.6).|on states:�(in(S)) = in S�(entered(S)) = en S

Modelling Statecharts and Activitycharts as Signal equations � 27�(exited(S)= ex Swhere these events are produced in relation with the management of the stateS (see Section 4.5).|expressions on conditions:�(hExpression1ihRelihExpression2i) = hExpression1i hReli hExpression2i�(nothConditioni) = not �(hConditioni)�(hCondition1iandhCondition2i) = �(hCondition1i) and �(hCondition2i)�(hCondition1iorhCondition2i) = �(hCondition1i) or �(hCondition2i)�(hExpressionihOpihExpressioni) = hExpressioni hOpi hExpressioni�(hV ariablei) = hV ariablei�(hNumberi) = hNumberi5.2.3 Actions. We present the translation scheme for a sub-set of the actionslanguage of Statemate. Not integrated yet are, for example, the notions of contextvariables (which can take several values within a step) and loops (for or whileloops) which would involve the de�nition of a microstep [Nebut 1998].5.2.3.1 The clock of actions.. Actions are activated when the transition is actu-ally taken; this activation condition de�nes the clock of the actions. Special caseslike actions on default transitions, on entering or exiting a state, or relative to time,are described in Section A.4.Given a state named statename, as before, with a(i) giving the index in i =1::nbac of the actions on the transitions (as a di�erence to static reactions actionsi = 1::nbsr etc, see further), and tr(a(i)) giving the index in 1::nbtr of the transitionttr(a(i)) of which it is a label. For each action, we de�ne its clock by the followingequation, with:|event ttr(a(i)) is the event that the or-state is neither entering or exiting, andthat the trigger event and condition of the transition are satis�ed, and that thecurrent state is the origin of the transition|(nc=targettr(a(i))) tell us that the transition is actually taken as the next stateis its target; this is necessary in order to insure that this transition is the onethat was actually chosen in case several were enabled (see Section 5.1 and, forthe handling of non-determinism: Section 7.2)i.e., 8i = 1::nbac :clockactiona(i) := ^ttr(a(i)) when (nc=targettr(a(i)))5.2.3.2 Syntax of actions.. Transition label actions can be of the following form:

28 � J.-R. Beauvais, E. Rutten, T. Gautier, R. Houdebine, P. Le Guernic, Y.-M. TanghActioni ! �j hEventNameij hV ariablei := hExpressionij read data(X)j write data(X)j make true(C)j make false(C)j whenhEventithenhAction1i[elsehAction2i]endwhenj ifhConditionithenhAction1i[elsehAction2i]endifhAction1i; hAction2i5.2.3.3 General translation scheme.. The translation of actions amounts to gen-erating equations for each action, 8i = 1::nbac:�(hActioni;clockactiona(i))where:|in a reaction, � handles the translation of the actions only:�(hTriggeri=hActioni; Clk) = �(hActioni; Clk)|basic actions:|empty action: �(�; Clk) is void.|event emission: if the hEventNamei is a:�(hEventNamei; Clk) = anext(a) := Clkwhere next(a) is the function introduced in Section 5.2.1 for the purpose ofnaming signals carrying contributing values for a.|variable assignment:�(hV ariablei := hExpressioni; Clk) =anext(a) := �(hExpressioni) when Clkwhere a is the name of the variable, and next(a) is used as explained in Sec-tion 5.2.1 in order to manage names of signals carrying contributed values.|variable access:�(read data(X); Clk) = read data Xnext(read data X) := Clk�(write data(X); Clk) = written data Xnext(written data X) := Clk|action expressions:|�(when hEventi then hAction1i [else hAction2i] end when,Clk) =�(hAction1i; Clk when hEventi)[| �(hAction2i; Clk when not event(hEventi,tick))]|�(if hConditioni then hAction1i [else hAction2i] end if,Clk) =�(hAction1i; Clk when �(hConditioni))[| �(hAction2i; Clk when not �(hConditioni))]|�(hAction1i;hAction2i; Clk) =(| �(hAction1i; Clk) | �(hAction2i; Clk) |)

Modelling Statecharts and Activitycharts as Signal equations � 295.2.3.4 Static reactions. The labels attached to a state are called static reactions.They have the same syntax as labels associated with transitions. The generalstatic reaction construct makes it possible to de�ne the reaction of the system toa trigger when a particular state is active. As long as the state is active, exceptwhen entering or exiting, the trigger part of the static reaction is evaluated and theaction part possibly carried out. The fact that the state is active can be constructedfrom the clock localclock and the signal control, both featured as an input inthe interface of the Signal process encoding the state in question, as described inSection refreactivebox.In particular, in the case of an empty trigger (i.e., the left part of the \/" isempty), actions are to be carried out at each step when the system is in the statein question. Performing the action is done whenever the trigger part of the staticreaction is enabled and the state associated with the static reaction is active.For static reactions SRi; i = 1::nbsr:clockactionsr(i) := �(SRi) when ^c t| �(SRi;clockactionsr(i))where sr(i) uniquely identi�es static reaction i.The possibility exists in Statemate to carry out actions upon entering or exitinga particular state. This is done by associating special static reactions with thestate S, triggered by en S and ex S events. Firing these special static reactions inthe translation is done using signal control from the interface of the state beingtranslated (as described in Section 4.5).5.3 Input-output pro�leThe structural translation of the Statemate hierarchy into a hierarchy of Signalprocesses involves de�ning at each level the input-output pro�le.Given a state:|named N ,|with declvar the set of variables declared in this node,|with sub-states Ni; i = 1::nbsn,|with actionvar the set of variables modi�ed in an action (whether associatedwith a transition label or a static reaction) of this node. If an action containsread_data(x) or write_data(x) then rd_X or wr_X is added to actionvar.|with transitionvar the set of variables used (all except actionvar) in a triggeror an action on a transition label or a static-reaction. of this state.local(N) = declvarinput(N) =fxjx 2 transitionvarnlocal(N)g [fxj9i 2 (1::nbsn); x 2 input(Ni)nlocal(N)goutput(N) =fxjx 2 actionvarnlocal(N)g [fxj9i 2 (1::nbsn); x 2 outputsc(Ni)nlocal(N)gStandard inputs for every node are, as described in the reactive box of Section 4.1(and in this order in the interface): Tick, Localclock, Control, Time, Stable.

30 � J.-R. Beauvais, E. Rutten, T. Gautier, R. Houdebine, P. Le Guernic, Y.-M. Tang6. TRANSLATION FROM ACTIVITYCHARTS TO SIGNAL6.1 Status of an activityThe hierarchical structure of activities is translated by following the hierarchicalstructure and generating one Signal process for each Activity, following the reactivebox principle described in Section 4.1, with control signals tick, localclock,control in the inputs of the interface.Each activity can be controlled (started, stopped, suspended, resumed, andsensed for status) in response to events emitted by a control activity, itself de-�ned by a Statechart. The status of an activity follows a behavior illustrated bya Statechart in Figure 15, which shows how an activity A commutes between thestates active, hanging and inactive, according to events st A, sp A, sd A, rs A.The suspension and resuming can occur only from the active status; if stopped byst A while in the hanging status, an activity goes in status inactive.
stA/startedA

rsA and not spA

Inactive

Active

Hanging

stA/startedA

spA/stoppedA

spA/stoppedA

sdA and not spA

(T1)

(T4)
(T3)

(T5)

(T6)

(T2)

Fig. 15. States of an activityThe translation of each activity hence involves the generation of a Signal pro-cess encoding this behavior: only in its state active will the activation clock betransmitted to its actions and/or subactivities, thereby implementing the controlof activities.Given an Activity:|named A,|with sub-activities Subacti; i = 1::nbac|with mini-specs MSi; i = 1::nbmsthe translation follows a scheme similar to that for an or-state (see Section 5.1).The management of the status is as follows:| T1:= transition{Inactive,Active}(c_t, st_A)| T2:= transition{Active,Inactive}(c_t, sp_A)| T3:= transition{Hanging,Active}(c_t, rs_A whenNot_Event(sp_A,Tick))| T4:= transition{Active,Hanging}(c_t, sd_A whenNot_Event(sp_A,Tick))

Modelling Statecharts and Activitycharts as Signal equations � 31| T5:= transition{Hanging,Inactive}(c_t, sp_A)| T6:= transition{Hanging,Active}(c_t, st_A)| c_t := c when ((not ^Control) default LocalClock)| (Stable,c,nc):= nextstate{Inactive}(Tick,LocalClock,Control,Time, T1 default T2 default T3default T4 default T5 default T6)| Started_A := ^(T1 default T6) when (nc=Active)| Stopped_A := ^(T2 default T5) when (nc=Inactive)| SubControl:= (Start when (st_A default (Control=Resume))default (Stop when sp_A)default (Resume when rs_A)default Control) when Activated| Activated:= when (nc=Active)where events st A, sp A, rs A, sd A can be received from a Statechart de�ninga control activity. It can be noted that events started A and stopped A areproduced instantaneously, contrary to the usual event emission mechanism (seeFigure 16).For sub-activities, the translation is as follows, with inputi and outputi represent-ing respectively the lists of inputs and outputs of the sub-activity i: 8i = 1::nbac:| (Stablei,outputi) :=Subacti(Tick, Activated, SubControl, Time, inputi)where they are transmitted the clock which is a sub-sampling, in the activestatus, of the local clock of activity A.For mini-specs associated with that activity, we have, for each MSi of them,8i = 1::nbms:clockactionms(i) :=�(MSi) when ((not ^control) default localclock)| �(MSi;clockactionms(i))where ms(i) is an absolute identi�cation of mini-spec number i, and functions �and � de�ned for transition labels are reused. These functions have to be extendedto a few triggers and actions speci�c to activities.As shown above, the initial status of an activity is inactive; at the highest levelof a design however, the top-level activity should be constructed according to thesame scheme but be initially active.Activities can have a controlled termination (meaning controlled by the actionof an external Control Activity), or an automatic termination, meaning that theirControl Activity features a termination connector T, which, when reached, causesthe activity to be stopped. The presence of a termination connector in a controlactivity means that when reaching it the activity it controls must be stopped. Thisis treated by considering the termination connector like a state, and having theaction stop(A) associated to all transitions leading to it.Concerning the combination of Stable signals from sub-activities, unlike whathappens with And-nodes and Or-nodes, the relation between clocks of sub-activitiesis neither equality nor exclusion, because each of them can be started and stoppedindependently. But the stability of an activity is de�ned by that of all its parts.So it is considered unstable (i.e., Stable is false) when one of those parts which

32 � J.-R. Beauvais, E. Rutten, T. Gautier, R. Houdebine, P. Le Guernic, Y.-M. Tangare active is unstable. Considering inactive parts as stable (i.e., contributing truewhen Stablei is absent) produces the right value when making the conjunction bywhen of, for each of them, Stablei default true.6.2 Triggers and actions related to activitiesA number of triggers and actions related to activities are featured in the language.Therefore we extend the de�nitions of functions � and � in order to encompassthem.6.2.1 Triggers on activivites. For each of these dynamic triggers of event orBoolean type, we give its de�nition:|started(A), st(A): activity A is started. This event is issued as a result of actionstart(A).�(started(A)) = started A|stopped(A), sp(A): activity A is stopped. It is issued as a result of action stop(A).�(stopped(A)) = stopped A|active(A), ac(A): activity A is in the active state.�(active(A)) = ac A|hanging(A), hg(A): activity A is in the suspended state.�(hanging(A)) = hg Awhere the two �rst events are produced as seen above, and the two conditionsare produced in relation with the de�nition of the status of activity A:ac A := (c = active)hg A := (c = hanging)6.2.2 Actions on activities. The actions related to activities concern the controlof their status, i.e., starting, stopping, suspending (putting in hanging status) orresuming an activity:|start(A) puts an activity A in status active:�(start(A); Clk) = st Anext(st A) := Clkwhere next(st A) updates the counter of contributing values to variable st A.|stop(A) puts an activity A in status inactive:�(stop(A); Clk) = sp Anext(sp A) := Clk|suspend(A) puts an activity A in status hanging:�(suspend(A); Clk) = sd Anext(sd A) := Clk|resume(A) puts an activity A in status active:�(resume(A); Clk) = rs Anext(rs A) := ClkThe way these events occur is illustrated in Figure 16.

Modelling Statecharts and Activitycharts as Signal equations � 33Tick t t t t t t t t ...start(A) t t ...stop(A) t t ...suspend(A) t ...resume(A) t ...started(A) t t ...stopped(A) t t ...active(A) t t t t t ...hanging(A) t ...Fig. 16. Control of an activity6.3 Input-output pro�leThe signals related to activities also contribute to the computation of input-outputpro�les: w.r.t. the one described in Section 5.3, if an action on a transition, in astatic reaction or in a mini-spec contains start(A), stop(A), suspend(A) or resume(A)then st A, sp A, rs A or sd A is added to actionvar. Also, variables used in amini-spec (except if already in actionvar) are to be added to transitionvar. Eventsac A and hg A are featured in the outputs of the activity A.6.4 Activities throughout or within a stateIt is a possible in Statemate to associate an Activitychart A with one state S in aStatechart, according to two modes: "throughout" or "within". In the "through-out" mode, entering state S activates A and exiting S deactivates A. This can beencoded by adding the following static reactions to Sentering/st A;;exiting/sp AIn the \within" mode, only the deactivation of A when exiting S occurs (theactivation of A is left to other events). This can be encoded by adding the followingstatic reactions to Sexiting/sp AHowever, a di�erence with usual events emission is that these special ones aresimultaneously present.6.5 Combinational assignmentsTo an activity can be associated combinational assignments, which are equationson the Activitycharts variables, evaluated instantaneously. Their general syntax is:X := Y1 when C1 elseY2 when C2 else...YnThey are evaluated at the end of the step, taking into account the new values ofvariables. If a variable de�ned by a combinational assignment is modi�ed, thenother combinational assignments where it appears as an operand are re-evaluated.This can lead to unbounded loops, or even in�nite ones (the Magnum environmentputs arbitrary bounds in these cases).

34 � J.-R. Beauvais, E. Rutten, T. Gautier, R. Houdebine, P. Le Guernic, Y.-M. TangIn the framework for modelling in a synchronous formalism, unbounded featurescan not be supported. However for cases such as, for example, the in�nite loop X :=X + 1, or even less trivial ones involving conditionals with when, the dependencycycle detection constitutes an analysis and diagnostic of possibly in�nite loops, andallows us to recognize them and possibly amend them. The translation of this inSignal is then:X := �(Y 1) when �(C1) default�(Y 2) when �(C2) default...�(Y n)where the requirement of being instantaneous is taken care of by using simpleSignal equations.7. RELATIONAL ASPECTS IN THE TRANSLATIONAs was mentioned in Section 2, one of the distinguishing features of Signal amongsynchronous languages is that it enables the speci�cation of relations between sig-nals, i.e., not only functions from inputs and internal state to outputs and a newinternal state.This Section gives indications as to how this particularity can be used to tackle, inthe framework on a uniform model, a variety of time granularity levels in Statemate,as well as the representation of non-determinism.7.1 Execution schemes: superstep, step, microstepAs illustrated in Section 2 with the example of process in Figure 2 and the traceillustrated in Figure 3, it is possible to construct programs where the internal clockis faster than that of inputs. In other words, Signal describes not only reactivesystems, but also \pro-active" systems. This feature is homogeneous and can occurwith arbitrary depth inside a Signal speci�cation. It can be called up-sampling, orinternal acceleration. When this is the case, and the internal state of the process isenough to decide on the synchronization with new inputs, the Signal compiler canalso generate executable code for such programs. In other cases, e.g., when severalinternal accelerations are speci�ed, where clocks can be derived from oneanother,(e.g., two internal clocks at di�erent rates), there is no execution scheme read-ily available, but the speci�cation can be submitted to the various analysis andveri�cation techniques like clock calculus and model-checking.In the framework of modelling Statemate in Signal, this feature of Signal is used toopen perspectives towards the modelling of di�erent time granularities in Statemate(superstep, step, and microstep inside the actions). It is involved at two di�erentlevels: the relations between superstep and step modes, and the relation betweenthe step level and the sequence of instructions in an action (which can be calledmicrosteps), inside a step, especially in case of a while loop. These two levels arenested in a uniform way, i.e., they both use the same mechanism.7.1.1 Step and superstep. The superstep mode, as was said in Section 3, consistsin the acquisition of inputs, followed by the launching of a series of steps, each ofthem reacting to the e�ects of the preceding step; this lasts until no transition canbe triggered any more, i.e., until stability. At that point, the systems decides to

Modelling Statecharts and Activitycharts as Signal equations � 35synchronize again with its environment in order to acquire the next input.In previous Sections we have seen how the Boolean Stable, standard outputin the reactive box model, is evaluated along the structure of the Signal model.It becomes true in the absence of internal change, meaning that no new transi-tion is going to be triggered. We can de�ne, by appropriately relating signalsTick, Time, Stable, the di�erent execution schemes of Statemate, without chang-ing the internals of the modelling proposed before.|In the step semantics (sometimes also called GO), inputs (clock Go) are consideredat each step(clock Tick), and time is incremented at each step (Time).Tick ^= Time ^= Go|In superstep semantics (sometimes also called GO-REPEAT) stability is reachedwhen no change has occurred at the previous step, implying that no new transi-tion can be triggered:ZStable := Stable $1 init false| when ZStable ^= Go| Tick ^= StableSignals Stable and Tick (the latter designating the step) are up-samplings w.r.t.Go|GO-ADVANCE is di�erent from GO-REPEAT in that time is incremented:ZStable := Stable $1 init false| when ZStable ^= Go| Tick ^= ^Stable| Time ^= Go|GO-STEP is similar to GO without incrementing time:Tick ^= Go|GO-NEXT consists in incrementing time without making a step:Time ^= Go7.1.2 Step and microstep. In the action language, there is a sequence operator,noted classically \;". Regarding ordinary variables, it does not actually sequenceassignments, as e�ects of actions are sensed only at the next step. Another kindof variable, called a context variable, is local to each action, and can take severalvalues during one step, in the order speci�ed by the sequence. In particular, in thecase of unbounded conditional loops (while), context variables are used, notably inthe loop condition.The modelling of such actions, when considering only the bounded sub-language(i.e., involving for loops but no while loop), can be made as an instantaneouscomputation, using Signal composition, and encoding the sequence in the datadependencies between operations [Nebut 1998]. For a while loop, the idea is to havean up-sampled clock giving one microstep at each iteration, and resynchronizingwith the sequence when the loop condition is false. In a step, there can be anumber of transitions taken in parallel; synchronizing the microstep level with thestep level involves determining the termination of all the corresponding actions.This re�nement of time granularity involves modi�cations of the modelling aspresented above, in that the management of memorization has to be done di�er-

36 � J.-R. Beauvais, E. Rutten, T. Gautier, R. Houdebine, P. Le Guernic, Y.-M. Tangently. The process shift is meant to work at a step clock; for microsteps, updates,memorizing and presence have to dissociated.This modelling of the sequencing of actions in an unbounded series of instantscan be used in other contexts, e.g., the IEC 1131 international standard, whereSequential Function Charts can be evaluated with or without stability research,which is similar to the relation between superstep and step in Statemate, and theStructured Text language shows unbounded loops, involving microstep [IEC 1993].7.2 Modelling non-determinismIt is possible to use Signal to model non-determinism, in the sense that it can beused to de�ne processes with a set of possibilities of behavior. Hence, this can beapplied to the modelling of non-determinism in Statecharts.7.2.1 Con
icting transitions
S1 S2

S3

S6

S5

t1

S4

One Two

t4
t3

t2

Three

Fig. 17. con
ict7.2.1.1 Example.. For the Statechart of the Figure 17, if the con�guration is (S1,S6) and t1, t2, t3 and t4 are enabled transitions, the maximal non con
icting setsof transitions are:|ft4, t1g|ft4, t2g|ft4, t3gHere, t3 has higher priority over t1 and t2 (Statemate semantics) and t3 is chosen.This is preserved in the Signal translation since the clock of substates depends onthe transitions of the higher state, where the triggers to the transition labels arecomputed before. t3 is chosen as an enabled transition and then, the process Threewill not sense any inputs because the active state is S4.When t1 and t2 are enabled but not t3, we need to choose one to �re. There isa non-deterministic con
ict and any one of the two transitions could be chosen. If

Modelling Statecharts and Activitycharts as Signal equations � 37it is preferred to encode an arbitrary choice, as the Magnum simulator can do, thenin the example, to take t1 preferably to t2 in all the cases is what the translationof previous Sections does:(Stable,c,nc) := nextstate {S1}(tick, localclock, control, time, t1 default t2, ^0)This is the translation scheme that was developed in this paper. We describehow it is possible to represent non-deterministic choices explicitly in Signal. Themotivation is to build an exact model of the set of behaviours, for analysis andveri�cation purposes, and to make explicit a non-determinism that can then besolved by modi�cation of the speci�cation.7.2.1.2 Non-con
icting sets.. Here we want to deal with situations where morethan one transition are enabled at the same instant. Following [Harel and Naamad1996]:|Two enabled transitions are in con
ict if there is some common state that wouldbe exited if any one of them were to be taken.|A set of transitions is non con
icting if no two transitions in the set are in con
ict.|Being maximal for a non-con
icting set of transitions means that each enabledtransition not included in the set is in con
ict with at least one transition thatis included in the set. Otherwise, this transition may be added to the set.At each step, Statemate �res a maximal non-con
icting set of transitions. Whenthere is more than one such a set enabled, a non-deterministic choice is performed.The maximal is reached in the Signal translation because whenever one transitionis enabled in an Or-state, in the corresponding call to the nextstate process, thedefault on the transitions will choose one. Not taking a maximal non-con
ictingset in the Signal translation would be to have an enabled transition with its asso-ciated ti signal present. The default on the list of ti signals is hence present andat least one transition is taken. In the translation shown in the previous Sections,a default operator is applied on the ti signals; this way it chooses arbitrarilybetween the non-deterministic possibility.7.2.1.3 Representing non-determinism explicitly.. The non-determinism may berepresented explicitly by adding a Boolean K, that can be called an oracle, to theSignal equation, which chooses between the di�erent enabled transitions:(c,nc) := nextstate {S1}(tick, localclock, ^0, time, t)| t := t1 when (K default true) default t2| t1 ^* t2 ^= t1 ^* t2 ^* KThe equation on clocks featuring a ^= is used to avoid situations where t1 and t2are both present and K is absent because these situations could lead to the choiceof transition t1 when no particular (explicit) decision has been made to remove thenon determinism. This way, when K is true, t1 is chosen and when K is false, t2is chosen. If the signal K is not present, the t1 when (K default true) defaultt2 rewrites into t1 default t2 that is the behavior of a deterministic process.At this stage, we have an exact model of the non-deterministic behavior of thispart of the speci�cation: the clock calculus [Amagbegnon et al. 1995] will compute

38 � J.-R. Beauvais, E. Rutten, T. Gautier, R. Houdebine, P. Le Guernic, Y.-M. Tangthe set of solutions to the system of constraint equations on Booleans and events,and it will consider oracles as free variables. Hence, in the process of analysing,e.g., dependency cycles, or of model-checking dynamic behavioural properties, non-deterministic speci�cations can be taken into account. When code is generated, noarbitrary execution scheme is chosen: this avoids making implicit choices withoutapproval of the designer.What can then be done in order to solve the non-determinism is the following:|this process may be composed with other processes that make K useless (e.g.,composed with a process where t1 and t2 are exclusive),|the signal K could be explicitly given as an input of the process and the en-vironment may choose between t1 and t2, hence moving the resolution of thenon-determinism to the environment.7.2.1.4 Firing the right actions.. There are cases for which the above scheme isnot su�cient to uniquely determine which actions are actually executed as was pro-posed in Section 5.2.3. Figure 18 illustrates this with an example, where, if e1[c1]and e2[c2] are not exclusive, then it is possible that both transitions are enabled,with the same target state. Hence, the latter is not a su�cient discriminating cri-terion, notably when it has to be decided whether action a1 or action a2 is to beexecuted.
state1 state2

e2[c2]/a2

e1[c1]/a1

Fig. 18. Con
icting transitions in StatechartsThis requires additional information identifying the transitions: if each of themis given a name or index ii, an equation similar to the previous one has to producethe identity of the one actually chosen:i := i1 when (K default true) default i2The de�nition of the clock of the actions associated to a transition then becomes:clockactiona(i) := when (i = ii)7.2.2 Racing. Another kind of non-determinism is possible in Statecharts, in-volving the variable assignment: two actions in two parallel components occurringat the same moment and giving di�erent values to the same variable. Sometimescalled \racing", this non-determinism could be handled the same way the non-determinism on transitions is handled: introducing a Boolean K choosing betweenthe di�erent values of the variable. The di�erent ways to handle non-determinismmentioned above are also valid for racing.This model of non-determinism can be related to external functions and simu-lated, for example, by the following process, where between two integer values X

Modelling Statecharts and Activitycharts as Signal equations � 39and Y, the choice is made, when they are both present (X ^* Y), according to aBoolean NDCHOICE which is called for from the outside by the function ALEA_BOOL.process MERGE_INT_EXTERNAL_CHOICE =(? integer X, Y;! integer Z;)(| NDCHOICE := ALEA_BOOL{}| NDCHOICE ^= (X ^* Y)| Z := (X when NDCHOICE) default (Y when not NDCHOICE)default X default Y|)whereboolean NDCHOICE;process ALEA_BOOL =(? ! boolean NDCHOICE;) ;end;In summary, our approach allows to statically detect non determinism. If it isdesired to simulate non determinism, either the compiler can make implicit choices,or the non determinism has to be kept and solved at the execution through oracles.8. DISCUSSION8.1 Related workRelated work can be considered from the general point of view of formalizations ofdesign notations, which is tackled in di�erent ways, using di�erent formalisms; inthe case of our work, focussed on Statecharts and Signal, it is also relevant to referto approaches to multiple formalisms in reactive systems, which are close to ours.8.1.1 Formalizations of design notations. Industrial embedded systems are de-signed using a number of problem-oriented graphical methods and notations. Someof them, like SA/RT, explicitly address real-time systems. Others, like the PLC(Programmable Logic Controller) language GRAFCET, have a broad user-base inautomated manufacturing. A drawback of such notations is that they often lackany explicit semantics, or if they are provided with one it is informal, ambiguousand varies from tool to tool, or from paper to paper. Hence the various approachesto formalizing these notations, which has the advange of stabilizing interpretation,and of supporting automated and powerful analysis, simulation or veri�cation. Thevariety comes from the notations studied, the formal models used (e.g., Petri nets,�nite state automata, process algebra, other high-level languages provided witha formal semantics, etc.) and the kind of analysis and properties aimed at. Thepractical tools, automating the formalization by a translation, involve taking care inbuilding formal models following structured methods, where composition of modelsof parts of a speci�cation is handled well, and complexity of the resulting mod-els (in terms of, e.g., state space size) is limited. For example, formalizations ofSA/RT feature the one of [Shi and Nixon 1996] in terms of timed Petri nets. Itproposes an automated translation with compositionality and complexity improvedwith respect to earlier models. In particular, quite similarly to our work, it stressesthe locality of the translation, where each component of a speci�cation is modelled

40 � J.-R. Beauvais, E. Rutten, T. Gautier, R. Houdebine, P. Le Guernic, Y.-M. Tangindependently, and the composition of subnets has the appropriate e�ect. Anotherone [Fencott et al. 1994] proposes a model of SA/RT essential models in terms ofa process algebra and using the Z formal notation. The semantic function con-structed makes it possible to have an automated tool, but can only be informallyvalidated with regard to the de�nition of SA/RT, the latter being informal.A more general approach to the problem is given in [Baresi et al. 1997], where themapping of popular front-end notations to formal models is examined with a specialcare for
exibility, particularly in the sense of coping with various interpretationsof the notations, or various formal models used, and also for back-diagnosis fromthe model to the notation. Translations are described by sets of rules, customiz-able according to di�erent semantics of a notation, based on graph grammars, andimplemented as an interpreter, with tools for simulation and animation.Similarities between these works and our approach can be found in the motiva-tions: the clari�cation of informal or partially formal semantics, and the enablingof automated tool-support for simulation, analysis, and code generation. We alsoshare the care taken in building compositional models, with a structural transla-tion where locally constructed sub-models can be assembled to form the global one.We address
exibility when we propose possible models of non-determinism andmemory management: it is a particular case of
exibility, where some parameter-ization is possible; this way, the model is applicable to Statecharts-like notationswith di�erent semantics, as in UML or StateFlow. On the other hand, similaritiesalso include problems like back-diagnosis: when some error or warning is detectedon the formal model, how do we formulate it back in terms of the original speci-�cation? Also, justifying correctness with regards to the semantics of the originalnotation under study is di�cult, especially when the latter is informal.The purpose of the work described in this paper is the construction of a syn-chronous model of Statecharts, a popular and wide-spread notation, in its indus-trially relevant semantics, i.e., the Statemate one. As such it places itself as aparticular case among works on the more general problem of translations betweenformalisms. Comparisons between StateCharts and other formal notations are alsoout of the scope of this paper. Technically, we are placing ourselves in the contextof multiple reactive formalisms detailed next in Section 8.1.2.8.1.2 Multiple formalisms in reactive systems. Di�erent attempts were made tomix imperative and declarative synchronous languages. In [Maraninchi and Halb-wachs 1996], Maraninchi and Halbwachs present a way to compile Argos (a hier-archical concurrent automata language, which can be considered one of the Stat-echarts variants) into a Mealy machine implicitly represented by a set of Booleanequations in the declarative code DC [SYNCHRON 1995]. Each state of the hi-erarchical automaton is associated with a Boolean signal which is true when thestate is active and false otherwise. This Boolean signal is updated when, in theArgos hierarchy, the state to which it belongs is activated. The con�guration of aStatechart (the list of its active states) is hence represented as a tree of Booleans.Mixing these equations with DC equations generated from other languages (e.g.,Lustre) provides a way to mix imperative and declarative formalisms. The trans-lation covers some basic features of the Statecharts: hierarchical parallel automatawith event sending as actions. Then, using the semantics of both languages, Maran-

Modelling Statecharts and Activitycharts as Signal equations � 41inchi e.a. prove that the translation preserves the behavior from the point of viewof traces. A more recent, and also related work, concerns mode-automata, alter-nating continuous modes following a discrete automaton [Maraninchi and R�emond1998]. However, the semantics adopted is the Argos one, which is a kind of purelysynchronous semantics of Statecharts di�erent from the Statemate one [Harel andNaamad 1996]. Also, many features of the languages of Statemate are absent fromArgos.In [Berry], Berry gives a semantics of the Esterel synchronous language in termsof electric circuits. First, the substatements of an Esterel statement are individuallytranslated into circuits, then the resulting circuits are combined using appropriateauxiliary gates and wiring. Some aspects of the translation are close to the onepresented here: particularly the subcircuit interface which is close to the one ofSection 4.1, and the wiring of the control signals between the subcircuits.A tool for the integration of di�erent synchronous languages is being developed inthe Synchronie project [Ma�e��s and Poign�e 1996]. Synchronie is a workbenchfor synchronous programming. It provides compilation, simulation, testing andveri�cation tools for various dialects of the synchronous programming paradigm.In the �rst instance Esterel, Argos and Lustre compilers are being developed andintegrated. The integration is made through a common semantical representation:synchronous automata which are essentially Mealy machines. The translation ofStatecharts into an equational synchronous model presented here might eventuallybe supported also by Synchronie.An extension of the Signal language called SignalGT _� o�ers constructs for hierar-chical task preemption. In the declarative synchronous language Signal, a processde�nes a behavior in terms of an unbounded series of instants. However, there areno explicit language constructs for handling the starting, termination, interruptionor sequencing of such processes: they are considered to be all active on the wholeduration of the execution. In Signal GT _�, tasks are de�ned as the association of adata-
ow process with a time interval on which it is executed. Both data-
ow andtasking paradigms are available within the same language-level framework. SignalGT _� was implemented by a preprocessor to the Signal environment [Rutten andMartinez 1995] that generates equations for activity management, using additionalcontrol signal similar to the reactive box model of Section 4.1.A synchronous model of Statecharts in Esterel [Seshia et al. 1999] gives access tocompilation and veri�cation of speci�cations with the Statemate semantics; the Es-terel compiler can serve as a diagnostic tool to detect non-determinism, and othertools can be used for dynamic properties. An approach to using the declarativeSignal language to model Statemate has been studied [Gu�eguen 97], dealing withthe control aspect of hierarchical concurrent automata, but not actions nor Ac-tivitycharts. It models states and the transition relation in the Signal equationalstyle.Also related are Sequential Function Charts (also called Grafcet), a graphicallanguage with places and transitions, related to Petri nets; they can be modeled inSignal [Marc�e and Le Parc 1993; Marc�e et al. 1996]. The Sequential Function Chartsare part of the international standard IEC 1131 [IEC 1993] of the InternationalElectrotechnical Commission. The norm concerns di�erent aspects of the controlof industrial systems using Programmable Logic Controllers (PLC). Part 3 of this

42 � J.-R. Beauvais, E. Rutten, T. Gautier, R. Houdebine, P. Le Guernic, Y.-M. Tangnorm describes several programming languages corresponding to di�erent aspectsof the design, or to di�erent cultural backgrounds of the designers:|graphical languages feature:|Function Block diagrams, a block-diagram-based formalism,|Ladder Diagrams, inherited from relay ladders with which these industrialcontrollers were implemented and designed before the massive introduction ofmicro-controllers,|and the Sequential Function Charts (SFC).|textual languages:|Instruction List (IL), an assembly language|Structured Text (ST), a Pascal-like sequential imperative language.These styles can be mixed, functions in one language being called from a program inanother language. This mixture of styles, as well as the problems of interoperabilityarising from their co-existence in the same framework, and the cyclic, reactivenature of the overall behaviour, requires that any attempt to model these systemsin a synchronous framework, and in particular Signal [Jim�enez-Fraustro and Rutten2001], should resemble the work presented here on Statemate.Especially, it should have the same speci�cities as our approach regarding State-mate, which is that we use the relational nature of Signal, i.e., its capacity torepresent exactly non-determinism, to be able to handle multi-clocking, and evenup-sampling and \internal acceleration" with regard to inputs and outputs.8.2 Results8.2.1 Model and translation.. We have proposed here a way to translate the es-sential features of Statecharts and Activitycharts into Signal. This translationgives clocks to every part of a Statechart (states, transitions, actions). It keepsthe structural and hierarchical informations through the translation to permit thetraceability from speci�cation to the generated code. It is expected that this willhave consequences on the compilation process and the optimization algorithms of-fered by the Signal/DC+ environment, in the perspective of producing e�cientcode, for possibly distributed execution architectures, from Statecharts speci�ca-tions, using the clock calculus and the BDD's techniques of the Signal compiler.Non-determinism may be modelled and handled through Boolean adjunction. Veri-�cation of the behavior is possible using the tools based on the synchronous technol-ogy. Real-time properties of a Statechart could be checked through timing analysisof a Signal program. The main contribution of this work is to give access to thealready existing Signal tools from a Statechart design.This translation provides support for co-execution or co-simulation of Signal andthe languages of Statemate. Interoperability between Signal and Statecharts ispossible by composing the resulting Signal process with any Signal context. Theinteraction between the two parts is then managed by the synchronous composition.The complexity of the translation algorithm, and the size of the constructedmodel, in number of equations (or lines of Signal), is linear in the size of the sourcespeci�cation, in number of states, including hierarchical OR-states, transitions andvariables. In particular, it is not made costly by combinatorial explosion due toparallel automata, because there is no explicit computation or enumeration of the

Modelling Statecharts and Activitycharts as Signal equations � 43global state space. This is an advantage of the structural de�nition of the transla-tion.8.2.2 Implementation and code generation.. An implementation of such a trans-lation has been done in C++ in the context of the SAfety CRitical EmbeddedSystems (Sacres) European Project [Sacres Consortium 1998]. The translationis done in a variant of Signal called DC+ [Sacres Consortium 1997a] which is acommon format of the synchronous languages. The Statemate tool from i-Logixis used to draw the Statecharts, then the automatic translator uses an API of theStatemate tools in order to extract the needed information from the Statechartdesign and generate the DC+. This translator is at a prototype level, and a set ofsmall examples have been used for validation of the translation schemes. This workis evolving following a change of focus towards separate compilation and distribu-tion of activities, for which the code can be generated by Statemate. Methods andtechniques initially developed for the distribution and semantics-preserving desyn-chronization of synchronous programs can be applied to Statecharts [Talpin et al.1999].Concerning the code generated, we have already described how the translationinto Signal keeps the structural hierarchy present in the Statemate speci�cation.The communication of control information along this hierarchy is made explicit withthe introduction of new variables, that did not appear explicitly in the Statemateprogram. However, we have observed that the size of the resulting Signal model,in number of de�ned signals, is linear in the size of the source speci�cation, innumber of states, transitions and de�ned variables. The code generated from theSignal program follows the general structure of code generated from synchronousprograms. It is a single loop, and shows no use of recursion (this is a commonrequisite for embedded systems). The syntactic structure of the speci�cation isnot preserved during the compilation transformations; this is unless it is explicitlyrequired by the user that some part of the structure of activities must be kept inthe generated code. Otherwise, it is replaced by the hierarchical semantic structureresulting from the clock calculus. This allows to compute values of variables onlyat the instants where they need to be calculated. In addition, many optimizations,based on the clock calculus and on rewriting of the conditional dependency graph ofthe speci�cation can be applied (e.g., elimination of redundant variables, retiming,etc.).8.3 PerspectivesPerspectives presently worked upon concern: extending coverage of the languages,in order to converge towards a full translator, validating the translation, and treat-ing real-size applications, in order to analyse quantitatively the complexity of thetranslation. Also, the actual connection of the translation to other tools in theenvironment brings the question of back-diagnosis, i.e., constructing from the di-agnosis of an analysis tool (error message, constraint on signals, etc.) a feedbackto the user in terms of the original speci�cation (identi�ers, location in the sourcespeci�cation, etc.). Other features of the Statemate languages that should be con-sidered are for instance that variables can have di�erent data-types and scopes. Inthe actions, mechanisms for timeouts and scheduled events could be encoded as

44 � J.-R. Beauvais, E. Rutten, T. Gautier, R. Houdebine, P. Le Guernic, Y.-M. Tangcounters on the number of steps. Context variables are special variables that cantake several di�erent values within one step: they are used in connection with loopsin the actions.The proof that the translation is correct from a behavioral point of view is nowneeded in the context of safety critical systems. Such a proof may be in terms ofequality of the traces of the initial Statechart and the target Signal program, basedon the semantics of the languages [Sacres Consortium 1997b]. This semanticsde�nes Signal, and its derived format DC+, as well as the languages of Statemate,in terms of fair Synchronous Transition Systems (fSTS). This provides a commonbasis for comparing the translation to the source, and establishing the correctness.Using the synchronous technology for code reuse and distributed code genera-tion is also possible by modelling the coordination of modules of code generated byStatemate-Magnum, independently of DC+, and represent modules by their input-output pro�les, including control information regarding their clocks [Benvenisteet al. 1998]. The results obtained in experiments, although relatively limited, haveconvinced users of the possible industrial validity of the approach: in the ESPRITproject SafeAir (Advanced Design Tools for Aircraft Systems and Airborne Soft-ware), which is a successor of the Sacres project, it has been decided to followa comparable approach from Statemate to SCADE, the industrial version of thesynchronous language Lustre, to take advantage of the SCADE quali�ed code gen-erator.As mentioned earlier, the results of modelling Statemate can be of use whenconsidering other contexts where an equational model is useful, i.e., other graphical,state-based languages, or other contexts where di�erent languages can interoperate;for example, the languages of the international standard IEC 1131 [IEC 1993] ofthe International Electrotechnical Commission. Another perspective of this work,that follows a comparable but di�erent approach, is to give a semantics of UMLstate-machines using the synchronous model [Wang et al. 2000]. This modellingresults in yet another translation of Statecharts into Signal [Wang 2000].ACKNOWLEDGMENTSWe wish to thank William W. Wadge for reading and discussing the paper with us,as well as the anonymous reviewers for their contructive comments.APPENDIXA. COMPLEMENTS TO THE TRANSLATION OF STATEMATE INTO SIGNALA.1 Memorization of eventsIf shift is used with events where there is no value to memorize, a speci�c versionis used, called shift_event, where a Boolean is used to memorize presence of theinput event:process shift_event =(? event x, tick;! event y; boolean Stable;)(| instant_x := x default not tick| shift_instant_x := instant_x $1 init false

Modelling Statecharts and Activitycharts as Signal equations � 45| y := when shift_instant_x| Stable := not ^x default tick|)where boolean instant_x, shift_instant_x;end;Here, the shifted event y is present at the shifted clock shift instant x, andshift_event behaves like:y := when yb| (yb,Stable) := shift((x default not tick), tick)A.2 Events associated to variablesWe have:|for all variables:|read(X) (abbreviated in rd(X)) emitted when variable X is read by actionread_data(X): to the basic process shift, we must add an input read_data_Xand the equation:(read X, Stable) := shift event(read data X, Tick)|written(X) (abbreviated in wr(X)) emitted when variable X is written byaction write_data(X) or by an assignment (i.e., the clock of presence of X):the basic process shift needs to be added an input write_data_X and theequation:(written_X, Stable) := shift_event(write_data_X default event X, Tick)|changed(X) (abbreviated in ch(X)) emitted when variable X has a value di�er-ent from that memorized in the shift process: the basic process shift needsto be added an output changed_X and the equation:(changed_X, Stable) := shift_event(when not (shift_value_x = value_x), Tick)Concerning the �rst value of X, it is the initialization of y in the process shiftwhich decides whether or not there is a change. In Statemate-Magnum, integersfor example are initialized to 0, hence if the �rst value given to X is di�erentfrom 0, then there is a change.|for Booleans only:|true(C) (abbreviated in tr(C)) emitted when the condition C becomes true:(true_X, Stable) := shift_event(when not (shift_value_x when value_x), Tick)|false(C) (abbreviated in fs(C)) emitted when the condition C becomes false:false_X := shift_event(when (shift_value_x when not value_x), Tick)These control events make as much sense in Signal as in Statemate, and it isforeseen that future versions of the Signal compiler will support the computation,based on the clock calculus, of the clocks at which a signal is actually used, orproduced. Having these facilities in the compiler would simplify the modelling ofthe Statemate events.

46 � J.-R. Beauvais, E. Rutten, T. Gautier, R. Houdebine, P. Le Guernic, Y.-M. TangA.3 Instantaneous StatesAn instantaneous state may be simultaneously entered and exited (in the same in-stant). Figure 19 provides an example where states n1 and n2 are instantaneous.Some semantics call these states: condition, selection, junction, joint, forkconnectors, depending on the number of transitions entering and leaving the con-nector and if they apply to and states or not.
S3

n2

S2

S1 n1
t1:e1[C1]/a1 t3:e3[C3]/a3

t4:e4[C4]/a4

t2:e2[C2]/a2

t5:e5[C5]/a5

t6:e6[C6]/a6Fig. 19. A Statechart containing instantaneous states n1 and n2In some Statecharts semantics (Statemate for instance [Harel and Naamad 1996]),instantaneous states exist ,and we could handle them in the translation as shownbelow for the example of Figure 19:t1 := transition {S1,n1} (c_t, C1 when e1)| t2 := transition {S2,n1} (c_t, C2 when e2)| t3 := transition {n1,S3} (t1 default t2, C3 when e3)| t4 := transition {S3,n2} (c_t, C4 when e4)| t5 := transition {n2,S1} (t4, C5 when e5)| t6 := transition {n2,S2} (t4, C6 when e6)| c_t := c when ((not ^control) default localclock)| (c,nc) := nextstate {Sinit} (tick, localclock, control,time, t3 default t5 default t6)We use here the same process transition as the one used between ordinarystates. The di�erence is in the con�guration signal used in the transition pro-cess. When the origin of a transition is an instantaneous state (like the transitiont3), instead of checking on the value of the con�guration variable c, we use thetransitions whose target is the considered instantaneous state. On the exempleFigure 19: t1 default t2. Lastly, in the call of the process nextstate, only ref-erences to transitions whose target is a non-instantaneous state are given. In theexemple, t3 default t5 default t6 gives the value of the nextstate.It occurs however that the Statemate environment does perform an expansion oftransitions going through instantaneous state into a set of transitions going betweennon-instantaneous states, combining triggers and actions accordingly. Hence thetranslation of this feature need not be studied speci�cally.

Modelling Statecharts and Activitycharts as Signal equations � 47A.4 The clock of actions: special casesActions on default transitions: these are to be executed on entering the super-state, i.e., the state of which the automaton considered is a sub-automaton. Atthat instant, the state is re-initialized, and the actions on the default transitionexecuted. This instant is characterized by the Control signal as follows:clockaction := when Control=StartActions on entering or exiting a state: these are also related to the Controlsignal of the state which is entered or exited. Their mechanism is similar tothat of actions associated with the activation or deactivation of an activity, inthe way shown in Figure 20. Activitycharts Statechartsmini-spec static reactionactivation started enteringdeactivation stopped exitingFig. 20. Events emitted upon activation and deactivationThe relation of these events with Control goes as follows:�(entering) = when Control=Start�(exiting) = when Control=Stop�(started) = when Control=Start�(stopped) = when Control=StopFigure 21 shows a Statechart with two states, for which Figure 22 shows theoccurrences of these special events.
S1

S2

S

e1

e2

Fig. 21. Example of a two-state StatechartIn this example, one sees that:|LocalClock respectiveley for S1 and for S2 are complementary, i.e., exclusive,and their union is the LocalClock of S,|exiting for the state which is left is simultaneous with entering for thenew state,|in(x) correspond to LocalClock for the process encoding state x,|entering and exiting are present at the same times as Start and Stop,

48 � J.-R. Beauvais, E. Rutten, T. Gautier, R. Houdebine, P. Le Guernic, Y.-M. TangTick t t t t t t t t t ...in S LocalClock t t t t t t t t t ...(future) nc S1 S1 S2 S2 S2 S2 S1 S1 S1 ...(present) c S1 S1 S1 S2 S2 S2 S2 S1 S1 ...(for transition) c t S1 S1 S1 S2 S2 S2 S2 S1 S1 ...e1 t ...e2 t ...in S1 LocalClock t t t t t ...Control Stop Start ...entering t ...exiting t ...in(S1) t t t t t ...en(S1) t ...ex(S1) t ...in S2 LocalClock t t t t ...Control Start Stop ...entering t ...exiting t ...in(S2) t t t t ...en(S2) t ...ex(S2) t ...Fig. 22. Occurrences of special events (entering, exiting, etc.) in Figure 21|events en(x) and ex(x) are shifted of one Tick w.r.t. entering and exitingfor process x.Actions relative to time: timeouts and schedules are noted: timeout(e,d) andschedule(a,d). In Statemate-Magnum, the time referential is given whengenerating code; it can be an external physical clock (second, millisecond, etc.).In order to support di�erent time units, we have introduced a signal Time,propagated through the structural Signal model.The translation of timeout(e,d) uses a counter initialized to d upon occurrenceof e, and then decremented by one at each occurrence of Time. The resultingevent timeout(e,d) is emitted when this couter reaches 0. The counter remainsat the value -1 until afterwards. The translation uses instanciations of theprocess:process Timeout =(? event Time, e; integer d;! event timeout;)(| timeout := when (counter = 0)| counter := d when e default(zcounter - 1) when (zcounter > 0)default -1| zcounter := counter $1 init (-1)| counter ^= Time|);When the environment delivers not an event to be counted but a date, thenthe process Dateout should be used instead:

Modelling Statecharts and Activitycharts as Signal equations � 49process Dateout =(? integer date, e; integer d;! event dateout;)(| dateout := when (date >= deadline)| deadline := (date when e) + (d when e) defaultzdeadline when (0 < date < zdeadline) default -1| zdeadline := deadline $1 init (-1)| dealine ^= date|);Modelling schedule is less simple because they can be started in unboundednumbers, which falls out of the scope of what can be modelled in a synchronousframework. However, a restriction allowing for only one schedule at a timeon a given action, makes it possible to have a translation re-using the Timeoutprocess:clock_a:=Timeout(Time, schedule, d)where event schedule is generated when executing the action schedule(a,d).REFERENCESAmagbegnon, T. P., Besnard, L., and Le Guernic, P. 1995. Implementation of thedata-
ow synchronous language signal. In Proceedings of the ACM Symp. on ProgrammingLanguages Design and Implementation, PLDI'95 (1995), pp. 163{173. ACM.Armstrong, J. 1996. Safecharts handbook. Technical Report DCSC/TR/95/7, DependableComputing Systems Centre, University of York.Armstrong, J. 1998. Industrial integration of graphical and formal speci�cation. Journalof Systems Software 40, 3, 211{225.Baresi, L., Orso, A., and Pezz�e, M. 1997. Introducing formal speci�cation methods in in-dustrial practice. In Proceedings of the International Conference on Software Engineering,ICSE'97, Boston, Massachussets (1997), pp. 56{66.Benveniste, A., Gautier, T., Le Guernic, P., and Rutten, E. 1998. Distributedcode generation of data
ow synchronous programs: the SACRES approach. In Pro-ceedings of The Eleventh International Symposium on Languages for Intensional Pro-gramming, ISLIP'98 (Sun Microsystems, Menlo Park, California (USA), May 1998).http://www.inria.fr/ep-atr, publications.Berry, G. The constructive semantics of pure esterel. Book in preparation, current version2.0, http://zenon.inria.fr/meije/esterel.Berry, G. and Gonthier, G. 1992. The esterel synchronous programming language:design, semantics, implementation. Science of Computer Programming 19, 87{152.Fencott, P., Galloway, A., Lockyer, M., O'Brien, S., and Pearson, S. 1994. For-malising the semantics of ward/mellor sa/rt essential models using a process algebra. InProceedings of Formal Methods Europe, FME'94 , Volume 873 of Lecture Notes in Com-puter Science (1994), pp. 681{702. Springer-Verlag.Gautier, T., Guernic, P. L., and Maffe��s, O. 1994. For a new real-time methodology.Research Report 2364 (Oct.), INRIA.http://www.inria.fr/RRRT/RR-2364.html.Grazebrook, A. 1997. Sacres - formalism for real projects. In F. Redmill and T. Ander-son Eds., Safer Systems (London, 1997). Springer-Verlag.Gu�eguen, H. 97. Mixing statecharts and signal for the speci�cation of control. In IFAC Ed.,IFAC Workshop AARTC97 : Algorithm and Architecture for real time control, Vilamoura(Avril 97).

50 � J.-R. Beauvais, E. Rutten, T. Gautier, R. Houdebine, P. Le Guernic, Y.-M. TangHalbwachs, N., Caspi, P., Raymond, P., and Pilaud, D. 1991. The synchronous data
owprogramming language Lustre. Proc. of the IEEE 79, 9 (Sept.), 1305{1320.Harel, D. 1987. Statecharts : A visual formalism for complex systems. Science of ComputerProgramming 8, 231{274.Harel, D. and Naamad, A. 1991. The languages of Statemate. i-Logix Inc.Harel, D. and Naamad, A. 1996. The Statemate semantics of Statecharts. ACM Trans-actions on Software Engineering and Methodology 5, 4 (Oct.), 293{333.IEC. 1993. International standard for programmable controllers: Programming languages.Technical Report IEC 1131 part3, IEC (International Electrotechnical Commission).Jim�enez-Fraustro, F. and Rutten, E. 2001. A synchronous model of the iec 61131 plclanguages fbd and st. In Proceedings of the 13th Euromicro Conference on Real-TimeSystems, ECRTS'01, June 13th-15th, 2001, Delft, The Netherlands (2001).Le Guernic, P., Gautier, T., Le Borgne, M., and Le Maire, C. 1991. Programmingreal-time applications with Signal. Proceedings of the IEEE 79, 9 (Sept.), 1321{1336.M. von der Beeck. 1994. A Comparison of Statecharts Variants. In H. Langmaack, W.-P. de Roever, and J. Vytopil Eds., Formal Techniques in Real-Time and Fault-TolerantSystems, Volume 863 of Lecture Notes in Computer Science (L�ubeck, Germany, Sept. 1994),pp. 128{148. Springer-Verlag.Maffe��s, O. and Poign�e, A. 1996. Synchronous automata for reactive, real-time or em-bedded systems. Technical report (Jan.), GMD. no 967.Maraninchi, F. and Halbwachs, N. 1996. Compiling ARGOS into Boolean equations. InB. Jonsson and J. Parrow Eds., Formal Techniques in Real-Time and Fault-TolerantSystems, Uppsala, Sweden, Volume 1135 of Lecture Notes in Computer Science (Sept.1996), pp. 72{90. Springer-Verlag.Maraninchi, F. and R�emond, Y. 1998. Mode-automata: about modes and states for re-active systems. In C. Hankin Ed., Programming Languages and Systems, Proceedings ofthe 7th Eropean Symposium on Programming, ESOP'98, Lisbon, Portugal, march{april1998 , Volume 1381 of Lecture Notes in Computer Science (March 1998), pp. 185{199.Springer-Verlag.Marc�e, L., L'Her, D., and Le Parc, P. 1996. Modelling and veri�cation of temporizedgrafcet. In Proceedings of The IEEE/SMC Symposium on Discrete Events and Manufac-turing Systems, Lille (France) (July 1996).Marc�e, L. and Le Parc, P. 1993. De�ning the semantics of languages for programmablecontrollers with synchronous processes. Control Engineering Practice 1, 1 (Feb.).Nebut, M. 1998. Mod�elisation de statemate en signal : le langage imp�eratif des actions.Master's thesis, Universit�e de Rennes 1, IFSIC.Perraud, J., Roux, O., and Huon, M. 1992. Operational semantics of a kernel of thelanguage electre. Theoretical Computer Science 97, 1 (April), 83{104.Rutten, E. and Martinez, F. 1995. Signal GTi, implementing task preemption and timeintervals in the synchronous data
ow language Signal. In Seventh Euromicro Workshop onReal-Time Systems (June 1995), pp. 176{183. (IEEE Publ.) http://www.inria.fr/ep-atr,publications.Sacres Consortium. 1997a. The common format of synchronous languages - the declara-tive code DC+ version 1.4. Technical report (November), Esprit Project Sacres EP 20897.Sacres Consortium. 1997b. The semantic foundations of sacres. Technical report(March), Esprit Project Sacres EP 20897.Sacres Consortium. 1998. Task I1.1.A: Statemate integration | the stm2dcplus transla-tor. Technical report (Nov.), Esprit Project Sacres EP 20897.Seshia, S., Shyamasundar, R., Bhattacharjee, A., and Dhodapkar, S. 1999. A trans-lation of statecharts to esterel. In Proceedings of the World Congress on Formal Methods,FM'99, Volume II, Toulouse, France, September 20-24, 1999 , Number 1709 in LectureNotes in Computer Science (LNCS) (1999), pp. 983{1007. Springer Verlag. LNCS nr. 1709.Shi, L. and Nixon, P. 1996. An improved translation of SA/RT speci�cations model tohigh-level timed Petri nets. In Proceedings of Formal Methods Europe, FME'96 , Volume

Modelling Statecharts and Activitycharts as Signal equations � 511051 of Lecture Notes in Computer Science (1996), pp. 518{537. Springer-Verlag.SYNCHRON. 1995. The common format of synchronous languages - the declarative codeDC version 1.0. Technical report (October), C2A-SYNCHRON project.Talpin, J., Benveniste, A., Caillaud, B., and Guernic, P. L. 1999. Hierarchic normalforms for desynchronization. Research Report 3822 (Dec.), INRIA.Wang, Y. 2000. Compilation of state-machines using behavior expression. In Proceedingsof the Workshop PhDOOS2000 in 14th European Conference on Object-Oriented Program-ming (2000).Wang, Y., Talpin, J., Benveniste, A., and Guernic, P. L. 2000. Compilation and dis-tribution of state-machines using spots. In Proceedings of the 16th IFIP World ComputerCongress 2000 (Aug. 2000).

