J.-R Beauvais

E Rutten

T Gautier

R Houdebine

P Le Guernic

Y.-M Tang

Modelling Statecharts and Activitycharts as Signal equations

Keywords: D.2 Software]: Software Engineering; F.3.2 Logics and Meanings of Programs]: Semantics of programming Languages Behavioral modelling, reactive systems, statechart, STATE-MATE, synchronous languages, SIGNAL Timing Diagrams C, Satemate Sildex SSL systems) (components, Code Validation distribution) (optimisations, Verification

The languages for modelling reactive systems are of di erent styles, like the imperative, state-based ones and the declarative, data-ow ones. They are adapted to di erent application domains. This paper, through the example of the languages Statecharts and Signal, shows a way to give a model of an imperative speci cation (Statecharts) in a declarative, equational one (Signal). This model constitutes a formal model of the Statemate semantics of Statecharts, upon which formal analysis techniques can be applied. Being a transformation from an imperative to a declarative structure, it involves the de nition of generic models for the explicit management of state (in the case of control as well as of data). In order to obtain a structural construction of the model, a hierarchical and modular organization is proposed, including proper management and propagation of control along the hierarchy. The results presented here cover the essential features of Statecharts as well as of another language of Statemate: Activitycharts. As a translation, it makes multi-formalism speci cation possible, and provides support for the integrated operation of the languages. The motivation lies also in the perspective of gaining access to the various formal analysis and implementation tools of the synchronous technology, using the DC+ exchange format, as in the Sacres programming environment.

INTRODUCTION 1.1 Context and objective

Di erent languages exist for the design of reactive systems: the languages Lustre [START_REF] Beauvais | The synchronous data ow programming language Lustre[END_REF] and Signal Le [START_REF] Guernic | Programming real-time applications with Signal[END_REF]] are declarative and equational data ow languages, while others are imperative sequencing languages:

This work was partially supported by the Esprit Project EP 20897 Sacres. Authors' addresses: EP-ATR project, IRISA/INRIA-Rennes, 35052 RENNES cedex, France; E. Rutten, BIP project, INRIA Rhône-Alpes, 655 avenue de l'Europe, F-38330 MONTBONNOT SAINT MARTIN, France Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for pro t or direct commercial advantage and that copies show this notice on the rst page or initial screen of a display along with the full citation. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this work in other works, requires prior speci c permission and/or a fee. Permissions may be requested from Publications Dept, ACM Inc., 1515 Broadway, New York, NY 10036 USA, fax +1 (212) 869-0481, or permissions@acm.org. textual like Esterel [START_REF] Berry | The esterel synchronous programming language: design, semantics, implementation[END_REF] and Electre [START_REF] Perraud | Operational semantics of a kernel of the language electre[END_REF],

or graphical like Statecharts [START_REF] Harel | Statecharts : A visual formalism for complex systems[END_REF] and Argos [START_REF] Maraninchi | Compiling ARGOS into Boolean equations[END_REF]. The choice between the declarative and the imperative approach has an in uence upon the facility with which a given application area can be handled. For instance, declarative languages easily handle applications like signal processing, while imperative formalisms are often used for sequential control systems. The need for a control mechanism such as task management, for example, appears in application domains involving the control of physical processes. For complex systems involving the two aspects, a multi-formalism speci cation can be useful.

This paper presents a translation from the essential features of Statecharts and Activitycharts to the equational language Signal. Among the di erent semantics of Statecharts M. von der Beeck 1994], the translation presented here follows the Statemate one [START_REF] Harel | The Statemate semantics of Statecharts[END_REF]. This scheme yields a formal model of the Statemate semantics of Statecharts, upon which formal analysis techniques can be applied. Being a transformation from an imperative to a declarative structure, it involves the de nition of generic techniques for the explicit management of state (in the case of control as well as of data). In order to obtain a structural construction of the model, a hierarchical and modular organization is proposed, including proper management and propagation of control along the hierarchy. The results presented here cover the essential features of Statecharts as well as of another language of Statemate: Activitycharts. This work was implemented in a prototype translator, covering only the most substantial parts of the Statemate languages (the control part of Activitycharts and Statecharts, and the simple actions). This prototype was used to treat examples of small to medium size (i.e., several activities, associated with Statecharts of several hierarchical levels), either made up or inspired by sample speci cations from partners in the ESPRIT project Sacres.

Motivation

The primary motivation for this work is to make more widely available a corpus of results in the synchronous approach to reactive and real-time systems. Signal being a representative of the class of declarative synchronous languages, this translation: |provides a way to merge imperative and declarative synchronous languages by simply composing equations (composition of Signal processes), |remedies the lack of imperative features of Signal, |gives a compositional de nition of Statecharts semantics, |opens a direct connection from a Statecharts design to the synchronous technology tools of the Signal environment, and moreover to the tools compatible with the DC+ format Sacres Consortium 1997a]: compilers, simulators, veri cation systems, |in particular, it gives direct access to the Signal code generator, which can produce e cient and compact code from a Statecharts speci cation, using the clock calculus available in Signal. It can also generate distributed and architecturedependent code [START_REF] Benveniste | Distributed code generation of data ow synchronous programs: the SACRES approach[END_REF]].

We believe that, on the one hand, the graphical readability of Statecharts makes it good for the designing an imperative speci cation. On the other hand, the Signal compiler uses an elaborate clock calculus, which makes it a good choice for Fig. 1. Global architecture of the Sacres environment extracting clock properties from a speci cation, in order to get e ciency in code generation and in veri cation. Hence, keeping the structural information through the translation, and not simply coding, is a key issue for understanding interactions between components from di erent sources. The traceable links between the initial speci cation and the generated code potentially allow us to route information extracted from the veri cation tools back to the speci cation, for user feedback (diagnostic, counter-example). In the other direction, from the speci cation to the generated code, traceability may be used to add, at speci cation time, directives for the partitioning into tasks or distributed processes.

This work constitutes part of the Sacres programming environment [START_REF] Grazebrook | Sacres -formalism for real projects[END_REF]. The purpose of the Esprit project Sacres (SAfety CRitical Embedded Systems: from requirements to system architecture) is to integrate into a uni ed and complete environment a variety of tools for speci cation, veri cation, code generation and validation of the code produced 1 . Among the application domains targeted are avionics and process control. The question of certi cation and validation is integrated into the environment. Figure 1 illustrates the architecture of the Sacres toolset. It shows information ows between the elements of the toolset, and the central position of the format between the tools of the environment. Translators to and from DC+ are developed in the framework of the project, and enable the connection of all the representations speci c to the di erent tools, using the common format. The translation from Statecharts to DC+ is one of them.

DC+ is an exchange format that supports the representation of Signal; as such, they are quite similar: both are de ned in terms of systems of equations over ows or signals. Signal being a programming language, it is prefereable to use it for 1 Member partners of the Sacres project are: British Aerospace (UK), aircraft builder; i-Logix (UK), developing and distributing StateMate, the environment for designing in Statecharts; IN-RIA (France), a research institute where new technologies are de ned and developed around the synchronous language Signal [START_REF] Gautier | For a new real-time methodology[END_REF]; OFFIS (Germany), research institute bringing veri cation technology; Siemens (Germany), where controllers for industrial processes are developed; SNECMA (France), builder of aircraft engines; TNI (France), developing and distributing the Sildex tool and the Signal language; the Weizmann Institute (Israel), as regards semantic aspects and the validation of code. readability purposes, hence this paper presents the translation in terms of Signal rather that DC+. 1.3 Organization of the paper Sections 2 and 3 describe the Signal and Statecharts formalisms. Section 4 describes the model on which the translation is based. Section 5 describes how each of the major constructs of Statecharts are translated, and gives illustrative examples. It covers the essential features of Statecharts and Activitycharts; it concentrates on the behavioral aspects, in the framework of the step semantics; Other aspects like elaborate data-types, the superstep semantics, and some particular aspects of actions, are part of the perspectives. Section 6 describes the translation schemes for Activitycharts. Section 7 describes how the relational aspects of Signal can be used to model execution schemes and nondeterminism, and indicates how the translation can be modi ed accordingly.

SIGNAL: A DECLARATIVE SYNCHRONOUS LANGUAGE

Signal is a synchronous real-time language, declarative, data ow oriented and built around a minimal kernel of operators Le [START_REF] Guernic | Programming real-time applications with Signal[END_REF].

The idea of the synchronous model is very simple: it assumes that a program, embedded in some environment, interacts with this environment through a nite set of communication links. At any particular instant, more than one event (reception or emission of messages, calculations) may occur, in which case they are simultaneous and they have the same temporal index. The evolution of the computation results from the sequences of these communications, but also from explicit changes expressed in the program (for example, for an equation y t = f(x t 1), the output y will be simultaneous with each one of the next occurrences of the input x). Without such an explicit change, the outputs are considered simultaneous with the inputs that have been used in their computation, like in Esterel, Lustre or Signal, or they are produced at the next instant, like in Statemate for instance.

The Signal language is also a data ow language, where a program is a system of equations. Unlike in Lustre (which is also data ow), the system of equations of a Signal program describes a relation between the inputs and outputs of the system (not necessarily a function): this makes it possible to describe, in Signal, partial speci cations or non deterministic behaviors.

A Signal program speci es a real-time system in terms of a collection of equations de ning signals. The collections of equations can be organized hierarchically in subsystems (or processes). A signal is a sequence of values of a given type, with which is associated an implicit clock which de nes the discrete set of instants at which these values are present. The di erent clocks are not necessarily linked together by xed sampling frequencies: they can have occurrences depending on local data or external events (like interruptions for example). Among the types of the signals (which are the types of their values), there are classical types|Booleans, integers, etc.|and a special type called event, which is a subtype of the Boolean type with the single value true: it allows the representation of pure signals, and it is used in particular to represent in the language the clocks of the signals.

The Signal language is built on a small number of primitives, the semantics of which is described informally below. In order to give this semantics, we add a distinguished symbol, denoted ?, to the considered domain of values of the signals:

this symbol represents the absence of value (note that it is not manipulated in the language). The semantics of a program is described by the set of acceptable sequences of valuations of the variables of the program in the domain of values completed by ?. The notation X t represents the value of the variable (or signal) X at the instant t in some sequence of valuations of some subset of variables (we call such a sequence a ow).

The kernel of Signal is composed of the following primitives, which de ne elementary processes: |Functions or relations extended to sequences: Y := f(X1,...,Xn) : 8t; Y t = ?) X1 t = ::: = Xn t = ? 8t; Y t 6 = ?) Y t = f(X1 t ; :::; Xn t)

Examples of such operators are classical arithmetic operators (+, *. . .), relations (=, <. . .), Boolean operators (not, or. . .). |Delay:

Y := X $1 init v0 : 8 < : 8t; Y t = ?) X t = ? Y 0 6 = ?) Y 0 = v0 8t > 0; Y t 6 = ?) Y t = X t 1
This operator expresses an explicit consumption of time (dynamic equation). |Extraction on Boolean condition:

Y := X when B : 8t; B t 6 = true) Y t = ? B t = true) Y t = X t
|Merge with priority:

Y := U default V : 8t; U t 6 = ?) Y t = U t U t = ?) Y t = V t
The composition of two processes (jP jQj) is de ned by the set of all the ows respecting, in particular on common variables, the set of constraints respectively imposed by P and Q (the composition is commutative and associative).

Finally, the restriction of visibility of a signal X, denoted P where X, is the projection of the set of ows associated with P on the set of variables of P minus X.

As it can be seen on the above description of the primitives, each signal has its own temporal reference (its clock, or set of instants at which it is di erent from ?). For example, the rst two primitives are single-clocked: they constrain all the implied signals so that they have the same clock. On the other hand, the third and fourth ones are multiple-clocked, the signals may have di erent clocks.

The following table illustrates each of the primitives with a trace: The rest of the language is built upon this kernel. Derived operators have been de ned from the primitive operators, providing programming comfort. We describe now those we use in this paper.

If X is a signal of any type, Y := ^X de nes the event type signal which is present (with the value true) whenever X is present: it is used to represent the clock of the signal X.

A special case of an event type signal is the signal denoted ^0, which is, by de nition, never present.

The following special case of the extraction, Y := when B, where B is a Boolean signal, de nes also an event type signal, which is present whenever B has the value true.

For any two signals U and V, the intersection and the union of their clocks, represented by event type signals, can be obtained respectively by the equations Y := U ^* V and Y := U ^+ V (these equations are more speci c notations for respectively Y := ^U when ^V and Y := ^U default ^V).

Finally, constraints between clocks of signals can be speci ed by using clock equations such as X1 ^= ... ^= Xn, which asserts that the signals X1, . . . , Xn have the same clock (i.e., are present at the same instants).

The Signal compiler mainly consists of a formal system which is able to reason about clocks, logics and dependence graphs. In particular, the clock calculus and the dependence calculus [START_REF] Amagbegnon | Implementation of the data-ow synchronous language signal[END_REF] provide a synthesis of the global synchronization of the program from the speci cation of the local synchronizations (given by the Signal equations), and a synthesis of the global scheduling of the speci ed calculations. Contradictions and inconsistencies can be detected by these calculi. The clock calculus using BDD techniques, synthesizes a hierarchy of clocks (based on inclusion of presence instants), which constitutes, together with the dependence graph, the basis on which a number of tools can be applied. These tools can perform automatic transformations in order to reorganize the program or to get speci c optimizations, they can generate inputs for veri cation tools such as model checkers, they can generate sequential code or distribute the application on some architecture, they can evaluate the time consumption of the program on a given architecture, etc. Figure 2 shows an example of a Signal program describing a re llable tank. This process named tank has a constant parameter capacity, an input signal: fill (pure event), an output signal empty (Boolean) and a list of equations de ning the body of the process. The behavior described in this process is the following: whenever the tank is lled, with input signal fill set, the level of water in the tank starts to decrease (n) until the level reaches 0. At this time, the output empty signal is set to true. Then, the next fill can re ll the tank and set the empty signal to false.

The present instants (clocks) of the signals in this program are illustrated in Figure 3. One can notice that the clock of local (internal) signals is faster than (i.e., includes) that of inputs and outputs: in that sense it is possible to specify oversamplings in Signal, i.e., processes which are not necessarily strictly reactive to their inputs. This particularity will be explored in the modelling of Statemate, particularly in Section 7.

Hierarchical parallel automata. A Statecharts design essentially consists of

states and transitions like a nite automaton. In order to model depth, a state can be re ned and contain sub-states and internal transitions. Two such re nements are available: and and or states, that give a state hierarchy. At the bottom of the hierarchy, Basic-states are not further re ned. If the system speci ed by a Statechart resides in an or state, then it also resides in exactly one of its direct sub-states. Staying in an and state implies staying in all of its direct sub-states and models concurrency. When a state is left, each sub-state is also left, thereby modelling preemption. Sub-states of an and state may contain transitions which can be executed simultaneously. The con guration of a Statechart is de ned by the hierarchy of states and sub-states in which it stays. The di erent and parts of a state may communicate by internal events which are broadcast all over the scope of the events. For instance, the emission of an event on a transition may be sensed somewhere else in the design and trigger a new transition.

In the Statechart example of Figure 4, the basic components are states and transitions, some states clustered in or composition (Sub_Running_Up is an or state containing S1 and S2) while some other groups in and composition (Running is an and state containing Sub_Running_Up and Sub_Running_Down).

When entering a state containing sub-states, di erent possibilities are available for specifying the behavior: when entering a state by a transition pointing to the boundary of the state, the state targeted by the default connector (a transition without origin) is activated. When reentering a state through a history connector (H), the sub-state activated is the one that was active when the state was left. When entering for the rst time a state containing a history connector, the transition leaving this history connector is used to nd the sub-state to activate. Finally, deep-history (H*) is a connector that acts similarly to the history connector but applies to all the sub-states in the hierarchy. Note that the same state can have all the three ways of being entered, hence the corresponding mechanism is applied, according to the transition through which it is entered.

Transitions and actions in a step. The transitions between states are labeled by reactions of the form: e C]/a, where e is an event that possibly triggers the transition, C is a Boolean guard condition that has to be true for the transition to re. The previous event and the Boolean together give the trigger part of the transition while the right part of the \/" (a) contains the actions that are carried out if and when the transition is red. As a special kind of transition, Statemate o ers the possibility to associate such labels to a state. Whenever this state is active, the trigger part of the transition is evaluated and possibly the action is carried out. Such transitions are called static reactions.

The basic evolution of Statecharts proceeds in steps, where given the events currently present and the current values of variables, triggers and conditions are [START_REF] Maraninchi | Compiling ARGOS into Boolean equations[END_REF], where e ects are sensed in the very same reaction: in the example, the reception of the fourth occurrence of a would result in emitting b and d in the same reaction. The step semantics is the interpretation of a Statemate speci cation where inputs from the environment are considered at each step, taking part in the current events and variables. Another semantics is the superstep intepretation: here, inputs take part only in the rst of a series of steps, called a superstep. There, the following steps take in consideration only the e ects of the previous one (i.e., locally emitted events and changed values), until there is no transition to take anymore, i.e., no step to make. This situation, called stable, is the end of the superstep, and inputs are acquired from the environment anew. This mechanism is close to the semantics of Sequential Function Charts with search for stability IEC 1993; Marc e and Le [START_REF] Marc E | De ning the semantics of languages for programmable controllers with synchronous processes[END_REF].

There is a textual language, of a classical imperative form, a la Pascal, for constructing actions. For actions which consist of assigning values to variables, the same variable can be referenced in assignments associated with di erent transitions: each provides a contributed value, and the variable takes its values from the action contributing in the current step. The actions can feature a form of variable called context variables, local to the action, which can take several values within one step. Iteration constructs include the unbounded while loop, thereby incurring the risk of non-termination. Also, a timeout and a schedule action are available.

Activities. Besides the Statecharts, another language of the Statemate environment is Activitycharts [START_REF] Harel | The languages of Statemate[END_REF]: it provides the designer with a notion of multi-level data-ow diagrams, as illustrated in Figure 5. Each of the blocks in the hierarchy represents an activity. The activities can be used to construct a structure decomposed hierarchically.

At each level, one of the activities, designated in the graphical syntax by a roundcornered box, can be a control activity (e.g., activiy A2 in Fig. 5). It is associated with a Statechart de ning its behavior. The latter can start, stop, suspend and resume the activity, as well as sense its current status. Activities can be associated with states in Statecharts, in one of two ways: within and throughout, depending on the way they can be started (see Section 6).

Actions with a trigger can be associated with an activity, they are called minispecs, and have the same form as the labels seen associated with transitions or static reactions with states in Statecharts. Another form of actions of activities is called combinational assignments: the di erence with mini-specs is that the values they compute are available within the same step.

Links between activities represent the data or control exchanges between activities. This aspect of the language is, however, based on the fact that variables and events are known globally in a chart (the scope of their de nition). Therefore it will not be handled explicitly in the translation. The data ow links are an optional explicit representation of communications that exist anyway.

Finally, a concept of ModuleCharts also exists in Statemate, handling the association of a speci cation with an execution architecture. This point is not covered by the present work.

The languages of Statemate form a set of languages with a full spectrum of features, in di erent styles, and elaborate actions and data types. They allow for the speci cation and simulation of designs with such an expressiveness that even designs presenting potential risks can be written. Especially in the framework of safety-critical embedded systems, it is considered very risk-prone to use unbounded instructions or structures like, e.g., the while loop in actions, or queue data structures. Also, some features do not follow the overall structured quality of the language, like the possibility of drawing transitions crossing several levels of andand or-nodes.

Proposals concerning the safe use of Statemate have been described, called Safechart [START_REF] Armstrong | Safecharts handbook[END_REF], which consisted rst in directives and advices in using Statemate, rather than strict interdictions. They advise for example to avoid crosslevel transitions, avoid using the negation on events, etc. Later on, a formally de ned syntactic sub-language was identi ed, and it was formalized by a function mapping it to an axiomatization in Real Time Logic [START_REF] Armstrong | Industrial integration of graphical and formal speci cation[END_REF]].

In the following, we will restrict ourselves to a sub-language of Statecharts that we model in Signal, where all aspects covered are bounded.

TRANSLATION PRINCIPLES

This section presents the overall approach to the structural translation, and some useful basic elements. First, we introduce a reactive box model, and the way it is featured in the hierarchical model. Then, in order to simplify and to structure the translation from Statecharts to Signal, some prede ned processes useful for the translation are given. They correspond to the basic features of the Statecharts. 4.1 The reactive box As a common framework for reactive speci cation, we de ne a model of a reactive box with a normalized interface. Each part of the design to translate will have this interface scheme represented as a process in Signal. In particular, and-nodes and or-nodes will each be translated into a process with this structure. The hierarchical propagation of control signals such as clocks and resets will follow these interfaces.

An interesting property of the Signal language, is that the behavior of the com- The aspects speci c to hierarchies in Statecharts and Activitycharts are further described respectively in Sections 5.1.2 and 6.1.

4.2.2 Hierarchy of clocks. In Signal, basic objects are signals which always have a clock, while in Statemate, only events are clocked. Variables in Statemate are of two kinds: events or data-items. Data-items are valued and always present, while events are only present or absent. In order to reach compositionality, during the translation, we need to associate a clock with each Statemate variable. The clocks of the data-items will be computed from the signals Tick and LocalClock.

It is important to note that this is where the hierarchy of the Statemate structure is re ected in a hierarchy of clocks in Signal: the local clock passed to the lower levels of the hierarchy is a sub-sampling of the local clock of the current level, according to the state of activity of that lower level. Besides this hierarchical aspect, a formal analysis of the clock system is performed during the compilation of Signal. It consists in arranging clocks in a hierarchical structure depending on the de nition of the ones as expressions of the others, especially as extractions de ning sub-clocks. This might improve the global clock hierarchy by establishing relations between clocks not coming from this structural aspect.

Testing absence

Whereas in Statecharts conditions are always available, in Signal they have their own clock. This is why in the translation we mix the event and the condition guard of the transition in the trigger signal. Statecharts o ers the possibility to check whether an event is present or not because it is single clocked while in Signal (multi clocking), asking for absence is with regard to a reference clock. The not of the two languages have a di erent behavior (see Figure 7). For a Statechart design using the not feature a Signal process is used:

process not_event = (? event e1, ref_clock; ! boolean e2;) (| e2 := not(e1) default ref_clock |) ;
This process takes an event e1 and a clock ref_clock and returns a Boolean true when ref_clock is present and not e1. Otherwise, the process returns false.

The Statecharts event e1 and e2 occurs when both e1 and e2 occurred simultaneously. It is translated into Signal: e1 when e2. The Statecharts event e1 or e2 occurs when either e1 or e2 occurred. It is translated into Signal: e1 default e2.

Statecharts use and, or, not also for conditions. These ones are translated using the Boolean primitives and, or, not of Signal.

Transition

To check if a transition is triggered, a speci c process is designed that is instantiated for each transition. ;

where the constant parameters do not need to be typed, the Signal compiler being provided with a type inference mechanism. 4.4.2 Interface:. state1 is the initial state of the transition (a value of an enumerated type called state), state2 is the target state of the transition (a value of the same enumerated type), origin is a signal containing the current active state of the level where state1 belongs (see the Section 4.5 about con guration signal), trigger is the signal which triggers the transition, target gives the new state chosen when the transition is red.

4.4.3 Behavior:. To use this process, one needs to instantiate {state1,state2} with the initial and the target state of the actual transition. It outputs a new state value whenever the transition it describes is red. Presence of an output means that the transition is enabled, its value shows the new state (which is state2) that will be reached if the transition is actually taken.

This output signal for each transition is then used to compute the new con guration. The choice between possibly several enabled transitions handles solving priority between con icting transitions (see Section 5.1 and, for the case of nondeterminism, Section 7.2). The result is fed into the new con guration, managed by the prede ned process described next.

State

The con guration of a Statechart is the list of its active states at a given point in time. For a n-states at automaton, the con guration (i.e., which state is active) is handled by a signal ranging on an enumerated type (state) of n di erent values: one value for one sub-state.

For Figure 4, if s, t, u are respectively the con guration variables of the top level, and of sub-states Sub_Running_Up and Sub_Running_Down, then legal congurations are:

s t u Idle absent absent Running S1 S3 Running S1 S4 Running S2 S3 Running S2 S4
This encoding ensures a basic Statecharts property: A con guration cannot be simultaneously in two di erent sub-states of an or-state. This is ensured by the fact that the con guration at each level of the hierarchy is stored in one signal having at most one value at each instant.

Because a state could be re ned also into sub-states, a new con guration signal (ranging in a new enumerated type) will be associated with each sub-state. The states of a Statechart form a tree, hence we have a signal tree. The clock calculus of the Signal compiler uses this information to produce optimized code: whenever a state is not active, the signal associated with it is not present and hence all the sub-states in the tree will not be calculated. The clock hierarchy maps the state encapsulation.

In this paper, we de ne a structural translation from Statecharts to Signal where we follow the hierarchy for a double purpose. On the one hand, it favours readabilty and traceability in the produced Signal mode. On the other hand, this hierarchical structure involves the control of the activity of sub-charts, and this can be encoded in a hierarchy of clocks, hence enabling the use of the clock calculus.

For every level of the Statecharts hierarchy, an instance of the following process is used to update the con guration variable.

4.5. 4.5.2 Interface:. localclock is the clock at which the state is active, as de ned in Section 5.1.3; it is local to each con guration variable. new is the new value of the con guration variable computed with processes transition. control is a signal of type tcontrol as de ned in setcion 4.1, and used to reinitialize the con guration when its value is Start. Stable is a Boolean indicating whether stability is reached or not

In order to conform with the reactive box structure, inputs Time and Tick are added, though unused. 4.5.3 Behavior:. This process is used to memorize the current con guration of the Statechart when no transition occurs (or a transition occurs somewhere else in the design). The parameter initial_state gives the default state of the or-state.

When this process is used, three situations can occur: |if control=Start, the current state takes the initial value given as the default parameter initial_state (this re-initialization is of greater priority with regard to possibly enabled transitions which would produce a value of new); else: |if a new value occurs (new is present), configuration takes it as a new value; else: |if localclock occurs alone, configuration remains unchanged (copied from its previous value).

The output Stable is true when the con guration remains unchanged. The clock of Stable is that of the con guration.

Shift

The Statemate semantics of Statecharts [START_REF] Harel | The Statemate semantics of Statecharts[END_REF] states that "calculation in one step is based on the situation at the beginning of the step" and "Reactions to external and internal events, and changes that occur in a step, can be sensed only after completion of the step". We hence need to postpone the result of the current calculation (generated events for instance) to the next "step". The process shift aims at that. 4.6. Given a signal and a clock (usually the fastest clock), it shifts the new values of the signal to the next `tick' of the clock, while memorizing the last new value.

All variables (except con guration variables) are encoded in signals at the fastest clock so that their value is always available. Hence shift is with respect to the fastest clock.

If one wants to have a perfect synchrony hypothesis M. von der Beeck 1994], the shift would have to be be removed and then input and corresponding output would occur at the same time. Solving causality cycles would be left (when possible) to the Signal compiler and this would correspond to a synchronous semantics of the Statecharts. The case of events is detailed in Section A.1.

Associated with each variable X are some control events, signalling, e.g., changes of values, which can be featured in triggers (see Section 5.2.2). The process shift is the right place to de ne them, as it is there that memorization of values takes place: hence it can be extended to manage these features, as presented in Section A.2.

TRANSLATION FROM STATECHARTS TO SIGNAL

This Section introduces the general translation of the main Statecharts features into Signal, by illustrating them with an example, and outlining an overview of the hierarchical structure of the model, before giving the translation scheme.

5.1 Or-states and And-states 5.1.1 Example. As we said in Section 4.2.1, for each Statecharts component, a box process as de ned above is created. The structural hierarchy of the Statecharts design is preserved through the hierarchy of the Signal processes. We will follow the structure of the example in Figure 4, introducing some important features as we go. An Or-state is at the top-level, with two states and two transitions. One of its states is re ned into a subchart, which is an And-state. This latter is also re ned into two Or-states, with di erent history connectors.

5.1.1.1 Or-states.. For the top-level, we de ne a con guration signal giving the next con guration (nc) of the Statechart, in function of its current con guration c. However, in Statemate, transitions can not be taken at the instants when entering or exiting the corresponding or-node. The latter is given by the signal Control. Hence, the con guration input conditioning them has to be restricted to instants excluding the presence of control. This is done by de ning c t, which is given as the correct under-sampling of the con guration for transitions. This process, corresponding to the top level, will compute its internal con guration (values Running or Idle) at the local clock, which is, at the top level, the clock tick of the Statemate step. The signal t1 corresponds to the transition from Idle to Running and t2 to the transition from Running to Idle. They are of enumerated type and get the value of the target of the transition when the corresponding transition is enabled. In case several transitions are enabled, the default between them will make a deterministic choice. The handling of non-determinism is described in Section 7.2, where Signal is used to build an explicit representation of the possible cases. The transition taken is then fed into the process nextstate.

The Control input to nextstate is the null clock ^0 because there is no explicit entering or exiting of the top-level. The parameter Idle of the subprocess nextstate is given because Idle is the default entrance state of the whole Statechart. To summarize, at the clock of the step, t1 and t2 are computed from the current value of the con guration signal c and the result is used in nextstate to compute the next con guration nc.

5. It is de ned by the instants when the next con guration is in the state Running. This way, at the instant of entering a state, its sub-state con guration variable is present, which is needed in case it has to be re-initialized. On the other hand, the sub-state variable is not present at the instant when the state is exited. This downsampling of the clock of the con guration variable nc into subclocks according to its value is the way the clock hierarchy of the con guration signals is built. The clock localclock of the sub-states is less frequent than the clock of the local localclock.

I R R R R R R I I ... (present) c I I R R R R R R I ... c t I I R R R R
The subcontrol_running signal is used to reinitialize the subprocess to its default con guration at the instants of entrance. In the case of the example, the sub-node Running starts again when transition t1 is taken, hence:

subcontrol_running := Start when ^t1
We choose to reset an or-state to its default con guration at the instants of entrance and not at the instants of exit because the semantics o ers the possibility executing actions upon entering. Resetting when exiting like in [START_REF] Maraninchi | Compiling ARGOS into Boolean equations[END_REF] would execute actions at the wrong instants according to the Statemate semantics.

Putting all this information together gives the parameters of the box running: The clocks transmitted to the sub-processes are the same as for the and-state. 5.1.1.4 Sub-states.. Using the or-state translation scheme we obtain the signal equations for the translation of sub_running_up except for a few di erences with the top-level example given above. The clock of sub-state variables is de ned in order to have an instant where re-initialization can be performed.

The process sub_running_up encoding the corresponding state is as follows: Equations for state sub_running_down are looking very similar. The di erence is in the control of reinitialization. sub_running_up has a history connector, hence should not be reinitialized when Running is re-entered. Therefore the control input is set to the null clock ^0. In a di erent way, sub_running_up has no history connector. therefore its control input must be adequately controlled, as explained below.

5.1.1.5 History and deep history.. When the event f is generated, it preempts the sub-automata of Running and in the sub-automaton sub_running_up the last active state will be re-established whenever event e occurs. In Signal, the $ operator is related to the last present value of a signal. Therefore, keeping the value of the last active state in this way deals with deep-history in the translation. Indeed, the suspension of the sub-process is achieved by the absence of the con guration signal for sub_running_up between f and e. When re-entering Running, the clock of the con guration signal is present again, and the delayed signal encoding it takes its values from where it was suspended.

The situation for the default entrance behavior, e.g., sub_running_down, is more complicated, because the con guration has to be reinitialized to S3 when the transition from Idle to Running is taken (t1). In order to achieve this, the input signal control of the process encoding running is set to Start when ^t1. More generally, three ways are used to enter a state (see Figure 11): Normal (t1), History (t2), Deep-History (t3). Depending on the entry chosen, the con guration signal of state S1 must be reset and possibly the con guration signals of the substates S2, S3. The table shown on Figure 12 gives the con guration variables that have to be reset and the value of the enumerated signal control. 5.1.2 Overview of the structure of the model. In this Section we give an overview of the structure of the model, illustrating how the equations and processes exampli ed before, and explained further, are grouped into a global model.

Figure 13 illustrates the simpli ed structure of the model for an OR-node (not detailing all the interface of the reactive box). It has the structure of the example in Figure 4: it has two states, and two transitions. For more generality, we represent the model for two transitions each labeled with a trigger trig i and an action act i , the latter computing values contrib i of a variable var.

|memorization of variables is handled by instances of the process shift, taking as inputs contributed values from the actions (see 5.2.1); |they serve to evaluate triggers, as modelled according to the translation of Section 5.2.2; Figure 14 illustrates the hierarchical structure, and particularly how at each level the previous OR-node pattern is re-used (here the outputs s and t correspond, respectively, to the state and to the transition signals involved in the computation of subcontr, detailed in the following), and how the control is propagated to subprocesses (modelling sub-nodes) following the hierarchy of OR-nodes. In the case of AND-nodes, inputs and control signals are forwarded as such to each of the models of sub-nodes, and contribution outputs are gathered. In the example of Figure 14, the OR-node has two states S1 and S2, each of them re ned by other OR-nodes. In Figure 14 Instantaneous states are treated using the general framework, as explained in Section A.3. 5.1.3 General translation scheme. The previous example introduced the general translation scheme given here.

Let default(a 1 ; :::; a n) de ned as: a 1 default a 2 default ::: default a n : Signals Tick, Localclock, Control and Time are considered to be contained in the inputs of the process encoding the state under translation, according to the reactive box structure described in Section 4.1.

Given a state:

|named statename, |where OR(statename)=true if it is an or-state (otherwise, it is an and-state), |with nbss sub-states named Sub i ; i = 1::nbss, |with nbtr transitions between these sub-states, i = 1::nbtr, each from state origin i to state target i with label i , |with sub-state subdefault as default entrance state (i.e., initial state), |where H(statename)=true if the default arrow has the H connector for target, |where H*(statename)=true if the default arrow has the H connector for target, |where e i 1,...,e i p are the indexes of the transitions with target (i.e., entering) Sub i . |where x i 1,...,x i q are the indexes of the transitions with origin (i.e., exiting) Sub i .

|where h i 1,...,h i r are the indexes of the transitions with target the H connector in Sub i . |where k i 1,...,k i s are the indexes of the transitions with target the H* connector in Sub i , |input i ; output i are the inputs and outputs of the process Sub i as de ned in Section 5.3, The translation of this state in Signal is a process of the same name, made of the composition of the following equations:

|for each transition t i ; i = 1::nbtr: t i := transitionforigin i ; target i g(c t, (label i))

where (label i) is the translation of the trigger and condition of the label of the transition, as described further (see Section 5. have di ernet clocks (even exclusive, actually), therefore, instead of conjunction, default must be used, giving to the local Stable the value of that of the currently active sub-node.

Transition labels: triggers and actions

The general syntax of the label on a transition in Statecharts is as follows:

hlabeli ! hTriggeri / hActioni

The trigger as well as the action on a transition are making reference to the value of variables and events. The way they are handled in the Signal translation is presented next, then the handling of triggers, and then that of actions.

The same form as for transition labels is also used in static reaction, associating labels to the presence in a state, or mini-specs, associating them to the active status of an Activity in Activitycharts: the translation presented here is valid also in those cases.

5.2.1 Variables. They are declared at the level of a state statename. They have to be managed in such a way that they comply with their de nition: |they are assigned their new value (if any) |their value is carried to the next step coming from di erent possible actions

The scope of a Statechart variable is the chart where it is de ned, as mentioned in Section 3. In our translation, each chart is translated into a Signal process, itself decomposed into sub-processes. All the signals representing variables are given as inputs to all the sub-processes in order to obtain a broadcasting.

Given a state named statename, as before: |where variables a 1 ; :::; a nbvar are declared locally, |where variable a i has a i1 ; :::a i nbcv contributed values, The translation of this state in Signal features the following equations concerning variables: 8i = 1::nbvar: a i := shift(default(a i1 ; :::a i nbcv), tick)

The variables is translated into an invocation of the process shift, the input of which is the merging of all contributed values; If we want to represent explicitly the possibility of racing conditions, i.e., presence of two contributed values at the same instant, it would be possible to apply the techniques described in Section 7.2. The process shift carries the value to the next step, which is given by the clock tick.

Actually, a less frequent clock might be used, if the chart in question is sometimes deactivated.

In the translation, there is a set of intermediate signals carrying the contributed values; they have to be given di erent names, which are derived from the variable name a i by adding a subscript j to it: a ij . These names are used in the translation of the actions producing these values for a i , which is described further. We use two functions in order to deliver integer indexes associated to variable name a i : current(a i) gives the current value of the index associated to a i and next(a i) the incremented value of this index. The indexes associated to each variable start at 1. This way we can have as much as necessary intermediate signals carrying intermediate contributions in a transition; the fact that a variables can only appear a bounded number of times in an actions insures that the indexes will remain bounded.

Concerning the extension with control events mentioned in Sections 4.6 and A.2, we follow the same scheme, i.e., for a variable a i (with n1 the number of contributing sources for read data a i , and n2 the same for written data a i): read data a i := default(read data a i1 , ... read data a in1) written data a i := default(written data a i1 , ... written data a in2) 5.2.2 Triggers 5.2.2.1 Syntax of triggers.. Triggers of transition label can be of the following form: hTriggeri ! j hEventNamei j hTriggeri hConditioni] j nothTriggeri j hTrigger1iandhTrigger2i j hTrigger1iorhTrigger2i j in(hStatei) j entered(hStatei) j exited(hStatei) j true(hConditioni) j false(hConditioni) j read(hV ariablei) j written(hV ariablei) j changed(hV ariablei) hConditioni ! hExpression1ihRelihExpression2i j nothConditioni j hCondition1iandhCondition2i j hCondition1iorhCondition2i j hV ariablei hOpi ! +j j j= (not hTriggeri) = when not event((hT riggeri), tick) (hT rigger1i and hTrigger2i) = (hT rigger1i) when (hT rigger2i) (hT rigger1i or hTrigger2i) = (hT rigger1i) default (hT rigger2i)

|dynamic triggers:

|on variables: for a hV ariablei named X:

(read(X)) = read X (written(X)) = written X (changed(X)) = changed X where these events are produced in relation with the management of the variable X (see Section 4.6).

|on conditions: for a hConditioni (which can be an expression) computed in a variable C (which can be an intermediate variable for computing the expression):

(true(C)) = true C (false(C)) = false C
where these events are produced in relation with the management of the Boolean variable C (see Section 4.6).

|on states:

(in(S)) = in S (entered(S)) = en S (exited(S)= ex S where these events are produced in relation with the management of the state S (see Section 4.5).

|expressions on conditions:

(hExpression1ihRelihExpression2i) = hExpression1i hReli hExpression2i

(nothConditioni) = not (hConditioni) (hCondition1iandhCondition2i) = (hCondition1i) and (hCondition2i) (hCondition1iorhCondition2i) = (hCondition1i) or (hCondition2i)

(hExpressionihOpihExpressioni) = hExpressioni hOpi hExpressioni (hV ariablei) = hV ariablei (hNumberi) = hNumberi 5.2.3 Actions. We present the translation scheme for a sub-set of the actions language of Statemate. Not integrated yet are, for example, the notions of context variables (which can take several values within a step) and loops (for or while loops) which would involve the de nition of a microstep [START_REF] Nebut | Mod elisation de statemate en signal : le langage imp eratif des actions[END_REF]].

5.2.3.1

The clock of actions.. Actions are activated when the transition is actually taken; this activation condition de nes the clock of the actions. Special cases like actions on default transitions, on entering or exiting a state, or relative to time, are described in Section A.4. Given a state named statename, as before, with a(i) giving the index in i = 1::nbac of the actions on the transitions (as a di erence to static reactions actions i = 1::nbsr etc, see further), and tr(a(i)) giving the index in 1::nbtr of the transition t tr(a(i)) of which it is a label. For each action, we de ne its clock by the following equation, with: |event t tr(a(i)) is the event that the or-state is neither entering or exiting, and that the trigger event and condition of the transition are satis ed, and that the current state is the origin of the transition |(nc=target tr(a(i))) tell us that the transition is actually taken as the next state is its target; this is necessary in order to insure that this transition is the one that was actually chosen in case several were enabled (see Section 5.1 and, for the handling of non-determinism: Section 7.2)

i.e., 8i = 1::nbac : clockaction a(i) := ^ttr(a(i)) when (nc=target tr(a(i)))

5.2.3.2 Syntax of actions.. Transition label actions can be of the following form:

hActioni ! j hEventNamei j hV ariablei := hExpressioni j read data(X) j write data(X) j make true(C) j make false(C) j whenhEventithenhAction1i elsehAction2i]endwhen j ifhConditionithenhAction1i elsehAction2i]endif hAction1i; hAction2i 5.2.3.4 Static reactions. The labels attached to a state are called static reactions. They have the same syntax as labels associated with transitions. The general static reaction construct makes it possible to de ne the reaction of the system to a trigger when a particular state is active. As long as the state is active, except when entering or exiting, the trigger part of the static reaction is evaluated and the action part possibly carried out. The fact that the state is active can be constructed from the clock localclock and the signal control, both featured as an input in the interface of the Signal process encoding the state in question, as described in Section refreactivebox.

In particular, in the case of an empty trigger (i.e., the left part of the \/" is empty), actions are to be carried out at each step when the system is in the state in question. Performing the action is done whenever the trigger part of the static reaction is enabled and the state associated with the static reaction is active.

For static reactions SR i ; i = 1::nbsr: clockaction sr(i) := (SR i) when ^c t | (SR i ;clockaction sr(i)) where sr(i) uniquely identi es static reaction i.

The possibility exists in Statemate to carry out actions upon entering or exiting a particular state. This is done by associating special static reactions with the state S, triggered by en S and ex S events. Firing these special static reactions in the translation is done using signal control from the interface of the state being translated (as described in Section 4.5).

Input-output pro le

The structural translation of the Statemate hierarchy into a hierarchy of Signal processes involves de ning at each level the input-output pro le.

Given a state:

|named N, |with declvar the set of variables declared in this node, |with sub-states N i ; i = 1::nbsn, |with actionvar the set of variables modi ed in an action (whether associated with a transition label or a static reaction) of this node. If an action contains read_data(x) or write_data(x) then rd_X or wr_X is added to actionvar. |with transitionvar the set of variables used (all except actionvar) in a trigger or an action on a transition label or a static-reaction. of this state.

local(N) = declvar input(N) = fxjx 2 transitionvarnlocal(N)g fxj9i 2 (1::nbsn); x 2 input(N i)nlocal(N)g output(N) = fxjx 2 actionvarnlocal(N)g fxj9i 2 (1::nbsn); x 2 outputsc(N i)nlocal(N)g
Standard inputs for every node are, as described in the reactive box of Section 4.1 (and in this order in the interface): Tick, Localclock, Control, Time, Stable.

TRANSLATION FROM ACTIVITYCHARTS TO SIGNAL 6.1 Status of an activity

The hierarchical structure of activities is translated by following the hierarchical structure and generating one Signal process for each Activity, following the reactive box principle described in Section 4.1, with control signals tick, localclock, control in the inputs of the interface.

Each activity can be controlled (started, stopped, suspended, resumed, and sensed for status) in response to events emitted by a control activity, itself dened by a Statechart. The status of an activity follows a behavior illustrated by a Statechart in Figure 15, which shows how an activity A commutes between the states active, hanging and inactive, according to events st A, sp A, sd A, rs A.

The suspension and resuming can occur only from the active status; if stopped by st A while in the hanging status, an activity goes in status inactive. The translation of each activity hence involves the generation of a Signal process encoding this behavior: only in its state active will the activation clock be transmitted to its actions and/or subactivities, thereby implementing the control of activities.

Given an Activity:

|named A, |with sub-activities Subact i ; i = 1::nbac |with mini-specs MS i ; i = 1::nbms the translation follows a scheme similar to that for an or-state (see Section 5.1). The management of the status is as follows: where events st A, sp A, rs A, sd A can be received from a Statechart de ning a control activity. It can be noted that events started A and stopped A are produced instantaneously, contrary to the usual event emission mechanism (see Figure 16).

For sub-activities, the translation is as follows, with input i and output i representing respectively the lists of inputs and outputs of the sub-activity i: 8i = 1::nbac:

| (Stable i ,output i) := Subact i (Tick, Activated, SubControl, Time, input i)
where they are transmitted the clock which is a sub-sampling, in the active status, of the local clock of activity A.

For mini-specs associated with that activity, we have, for each MS i of them, 8i = 1::nbms:

clockaction ms(i) := (MS i) when ((not ^control) default localclock) | (MS i ;clockaction ms(i)) where ms(i) is an absolute identi cation of mini-spec number i, and functions and de ned for transition labels are reused. These functions have to be extended to a few triggers and actions speci c to activities.

As shown above, the initial status of an activity is inactive; at the highest level of a design however, the top-level activity should be constructed according to the same scheme but be initially active.

Activities can have a controlled termination (meaning controlled by the action of an external Control Activity), or an automatic termination, meaning that their Control Activity features a termination connector T, which, when reached, causes the activity to be stopped. The presence of a termination connector in a control activity means that when reaching it the activity it controls must be stopped. This is treated by considering the termination connector like a state, and having the action stop(A) associated to all transitions leading to it.

Concerning the combination of Stable signals from sub-activities, unlike what happens with And-nodes and Or-nodes, the relation between clocks of sub-activities is neither equality nor exclusion, because each of them can be started and stopped independently. But the stability of an activity is de ned by that of all its parts. So it is considered unstable (i.e., Stable is false) when one of those parts which are active is unstable. Considering inactive parts as stable (i.e., contributing true when Stable i is absent) produces the right value when making the conjunction by when of, for each of them, Stable i default true. 6.2 Triggers and actions related to activities A number of triggers and actions related to activities are featured in the language. Therefore we extend the de nitions of functions and in order to encompass them.

6.2.1 Triggers on activivites. For each of these dynamic triggers of event or Boolean type, we give its de nition: |started(A), st(A): activity A is started. This event is issued as a result of action start (A). The way these events occur is illustrated in Figure 16. In the \within" mode, only the deactivation of A when exiting S occurs (the activation of A is left to other events). This can be encoded by adding the following static reactions to S exiting/sp A However, a di erence with usual events emission is that these special ones are simultaneously present.

Combinational assignments

To an activity can be associated combinational assignments, which are equations on the Activitycharts variables, evaluated instantaneously. Their general syntax is: X := Y1 when C1 else Y2 when C2 else ... Yn

They are evaluated at the end of the step, taking into account the new values of variables. If a variable de ned by a combinational assignment is modi ed, then other combinational assignments where it appears as an operand are re-evaluated. This can lead to unbounded loops, or even in nite ones (the Magnum environment puts arbitrary bounds in these cases).

In the framework for modelling in a synchronous formalism, unbounded features can not be supported. However for cases such as, for example, the in nite loop X := X + 1, or even less trivial ones involving conditionals with when, the dependency cycle detection constitutes an analysis and diagnostic of possibly in nite loops, and allows us to recognize them and possibly amend them. The translation of this in Signal is then:

X := (Y 1) when (C1) default (Y 2) when (C2) default ... (Y n)
where the requirement of being instantaneous is taken care of by using simple Signal equations.

RELATIONAL ASPECTS IN THE TRANSLATION

As was mentioned in Section 2, one of the distinguishing features of Signal among synchronous languages is that it enables the speci cation of relations between signals, i.e., not only functions from inputs and internal state to outputs and a new internal state.

This Section gives indications as to how this particularity can be used to tackle, in the framework on a uniform model, a variety of time granularity levels in Statemate, as well as the representation of non-determinism. 7.1 Execution schemes: superstep, step, microstep As illustrated in Section 2 with the example of process in Figure 2 and the trace illustrated in Figure 3, it is possible to construct programs where the internal clock is faster than that of inputs. In other words, Signal describes not only reactive systems, but also \pro-active" systems. This feature is homogeneous and can occur with arbitrary depth inside a Signal speci cation. It can be called up-sampling, or internal acceleration. When this is the case, and the internal state of the process is enough to decide on the synchronization with new inputs, the Signal compiler can also generate executable code for such programs. In other cases, e.g., when several internal accelerations are speci ed, where clocks can be derived from oneanother, (e.g., two internal clocks at di erent rates), there is no execution scheme readily available, but the speci cation can be submitted to the various analysis and veri cation techniques like clock calculus and model-checking.

In the framework of modelling Statemate in Signal, this feature of Signal is used to open perspectives towards the modelling of di erent time granularities in Statemate (superstep, step, and microstep inside the actions). It is involved at two di erent levels: the relations between superstep and step modes, and the relation between the step level and the sequence of instructions in an action (which can be called microsteps), inside a step, especially in case of a while loop. These two levels are nested in a uniform way, i.e., they both use the same mechanism.

7. 1.1 Step and superstep. The superstep mode, as was said in Section 3, consists in the acquisition of inputs, followed by the launching of a series of steps, each of them reacting to the e ects of the preceding step; this lasts until no transition can be triggered any more, i.e., until stability. At that point, the systems decides to synchronize again with its environment in order to acquire the next input.

In previous Sections we have seen how the Boolean Stable, standard output in the reactive box model, is evaluated along the structure of the Signal model. It becomes true in the absence of internal change, meaning that no new transition is going to be triggered. We can de ne, by appropriately relating signals Tick, Time, Stable, the di erent execution schemes of Statemate, without changing the internals of the modelling proposed before. |In the step semantics (sometimes also called GO), inputs (clock Go) are considered at each step(clock Tick), and time is incremented at each step (Time).

Tick ^= Time ^= Go |In superstep semantics (sometimes also called GO-REPEAT) stability is reached when no change has occurred at the previous step, implying that no new transition can be triggered:

ZStable := Stable $1 init false | when ZStable ^= Go | Tick ^= Stable
Signals Stable and Tick (the latter designating the step) are up-samplings w.r.t.

Go |GO-ADVANCE is di erent from GO-REPEAT in that time is incremented:

ZStable := Stable $1 init false | when ZStable ^= Go | Tick ^= ^Stable | Time ^= Go
|GO-STEP is similar to GO without incrementing time: Tick ^= Go |GO-NEXT consists in incrementing time without making a step: Time ^= Go 7. 1.2 Step and microstep. In the action language, there is a sequence operator, noted classically \;". Regarding ordinary variables, it does not actually sequence assignments, as e ects of actions are sensed only at the next step. Another kind of variable, called a context variable, is local to each action, and can take several values during one step, in the order speci ed by the sequence. In particular, in the case of unbounded conditional loops (while), context variables are used, notably in the loop condition.

The modelling of such actions, when considering only the bounded sub-language (i.e., involving for loops but no while loop), can be made as an instantaneous computation, using Signal composition, and encoding the sequence in the data dependencies between operations [START_REF] Nebut | Mod elisation de statemate en signal : le langage imp eratif des actions[END_REF]]. For a while loop, the idea is to have an up-sampled clock giving one microstep at each iteration, and resynchronizing with the sequence when the loop condition is false. In a step, there can be a number of transitions taken in parallel; synchronizing the microstep level with the step level involves determining the termination of all the corresponding actions.

This re nement of time granularity involves modi cations of the modelling as presented above, in that the management of memorization has to be done di er-ently. The process shift is meant to work at a step clock; for microsteps, updates, memorizing and presence have to dissociated.

This modelling of the sequencing of actions in an unbounded series of instants can be used in other contexts, e.g., the IEC 1131 international standard, where Sequential Function Charts can be evaluated with or without stability research, which is similar to the relation between superstep and step in Statemate, and the Structured Text language shows unbounded loops, involving microstep IEC 1993].

Modelling non-determinism

It is possible to use Signal to model non-determinism, in the sense that it can be used to de ne processes with a set of possibilities of behavior. Hence, this can be applied to the modelling of non-determinism in Statecharts. 17, if the con guration is (S1, S6) and t1, t2, t3 and t4 are enabled transitions, the maximal non con icting sets of transitions are: |ft4, t1g |ft4, t2g |ft4, t3g Here, t3 has higher priority over t1 and t2 (Statemate semantics) and t3 is chosen. This is preserved in the Signal translation since the clock of substates depends on the transitions of the higher state, where the triggers to the transition labels are computed before. t3 is chosen as an enabled transition and then, the process Three will not sense any inputs because the active state is S4.

Con icting transitions

When t1 and t2 are enabled but not t3, we need to choose one to re. There is a non-deterministic con ict and any one of the two transitions could be chosen. If it is preferred to encode an arbitrary choice, as the Magnum simulator can do, then in the example, to take t1 preferably to t2 in all the cases is what the translation of previous Sections does:

(Stable,c,nc) := nextstate {S1} (tick, localclock, control, time, t1 default t2, ^0) This is the translation scheme that was developed in this paper. We describe how it is possible to represent non-deterministic choices explicitly in Signal. The motivation is to build an exact model of the set of behaviours, for analysis and veri cation purposes, and to make explicit a non-determinism that can then be solved by modi cation of the speci cation. 7.2.1.2 Non-con icting sets.. Here we want to deal with situations where more than one transition are enabled at the same instant. Following [START_REF] Harel | The Statemate semantics of Statecharts[END_REF]: |Two enabled transitions are in con ict if there is some common state that would be exited if any one of them were to be taken. |A set of transitions is non con icting if no two transitions in the set are in con ict. |Being maximal for a non-con icting set of transitions means that each enabled transition not included in the set is in con ict with at least one transition that is included in the set. Otherwise, this transition may be added to the set. At each step, Statemate res a maximal non-con icting set of transitions. When there is more than one such a set enabled, a non-deterministic choice is performed. The maximal is reached in the Signal translation because whenever one transition is enabled in an Or-state, in the corresponding call to the nextstate process, the default on the transitions will choose one. Not taking a maximal non-con icting set in the Signal translation would be to have an enabled transition with its associated ti signal present. The default on the list of ti signals is hence present and at least one transition is taken. In the translation shown in the previous Sections, a default operator is applied on the t i signals; this way it chooses arbitrarily between the non-deterministic possibility.

7.2.1.3 Representing non-determinism explicitly.. The non-determinism may be represented explicitly by adding a Boolean K, that can be called an oracle, to the Signal equation, which chooses between the di erent enabled transitions: The equation on clocks featuring a ^= is used to avoid situations where t1 and t2 are both present and K is absent because these situations could lead to the choice of transition t1 when no particular (explicit) decision has been made to remove the non determinism. This way, when K is true, t1 is chosen and when K is false, t2 is chosen. If the signal K is not present, the t1 when (K default true) default t2 rewrites into t1 default t2 that is the behavior of a deterministic process.

At this stage, we have an exact model of the non-deterministic behavior of this part of the speci cation: the clock calculus [START_REF] Amagbegnon | Implementation of the data-ow synchronous language signal[END_REF] will compute the set of solutions to the system of constraint equations on Booleans and events, and it will consider oracles as free variables. Hence, in the process of analysing, e.g., dependency cycles, or of model-checking dynamic behavioural properties, nondeterministic speci cations can be taken into account. When code is generated, no arbitrary execution scheme is chosen: this avoids making implicit choices without approval of the designer.

What can then be done in order to solve the non-determinism is the following: |this process may be composed with other processes that make K useless (e.g., composed with a process where t1 and t2 are exclusive), |the signal K could be explicitly given as an input of the process and the environment may choose between t1 and t2, hence moving the resolution of the non-determinism to the environment. 7.2.1.4 Firing the right actions.. There are cases for which the above scheme is not su cient to uniquely determine which actions are actually executed as was proposed in Section 5.2.3. Figure 18 illustrates this with an example, where, if e1 c1] and e2 c2] are not exclusive, then it is possible that both transitions are enabled, with the same target state. Hence, the latter is not a su cient discriminating criterion, notably when it has to be decided whether action a1 or action a2 is to be executed. This requires additional information identifying the transitions: if each of them is given a name or index i i , an equation similar to the previous one has to produce the identity of the one actually chosen: i := i1 when (K default true) default i2

The de nition of the clock of the actions associated to a transition then becomes: clockaction a(i) := when (i = i i) 7.2.2 Racing. Another kind of non-determinism is possible in Statecharts, involving the variable assignment: two actions in two parallel components occurring at the same moment and giving di erent values to the same variable. Sometimes called \racing", this non-determinism could be handled the same way the nondeterminism on transitions is handled: introducing a Boolean K choosing between the di erent values of the variable. The di erent ways to handle non-determinism mentioned above are also valid for racing.

This model of non-determinism can be related to external functions and simulated, for example, by the following process, where between two integer values X and Y, the choice is made, when they are both present (X ^* Y), according to a Boolean NDCHOICE which is called for from the outside by the function ALEA_BOOL. In summary, our approach allows to statically detect non determinism. If it is desired to simulate non determinism, either the compiler can make implicit choices, or the non determinism has to be kept and solved at the execution through oracles. 8. DISCUSSION 8.1 Related work Related work can be considered from the general point of view of formalizations of design notations, which is tackled in di erent ways, using di erent formalisms; in the case of our work, focussed on Statecharts and Signal, it is also relevant to refer to approaches to multiple formalisms in reactive systems, which are close to ours.

8.1.1 Formalizations of design notations. Industrial embedded systems are designed using a number of problem-oriented graphical methods and notations. Some of them, like SA/RT, explicitly address real-time systems. Others, like the PLC (Programmable Logic Controller) language GRAFCET, have a broad user-base in automated manufacturing. A drawback of such notations is that they often lack any explicit semantics, or if they are provided with one it is informal, ambiguous and varies from tool to tool, or from paper to paper. Hence the various approaches to formalizing these notations, which has the advange of stabilizing interpretation, and of supporting automated and powerful analysis, simulation or veri cation. The variety comes from the notations studied, the formal models used (e.g., Petri nets, nite state automata, process algebra, other high-level languages provided with a formal semantics, etc.) and the kind of analysis and properties aimed at. The practical tools, automating the formalization by a translation, involve taking care in building formal models following structured methods, where composition of models of parts of a speci cation is handled well, and complexity of the resulting models (in terms of, e.g., state space size) is limited. For example, formalizations of SA/RT feature the one of [START_REF] Shi | An improved translation of SA/RT speci cations model to high-level timed Petri nets[END_REF] in terms of timed Petri nets. It proposes an automated translation with compositionality and complexity improved with respect to earlier models. In particular, quite similarly to our work, it stresses the locality of the translation, where each component of a speci cation is modelled independently, and the composition of subnets has the appropriate e ect. Another one [START_REF] Fencott | Formalising the semantics of ward/mellor sa/rt essential models using a process algebra[END_REF] proposes a model of SA/RT essential models in terms of a process algebra and using the Z formal notation. The semantic function constructed makes it possible to have an automated tool, but can only be informally validated with regard to the de nition of SA/RT, the latter being informal.

A more general approach to the problem is given in [START_REF] Baresi | Introducing formal speci cation methods in industrial practice[END_REF], where the mapping of popular front-end notations to formal models is examined with a special care for exibility, particularly in the sense of coping with various interpretations of the notations, or various formal models used, and also for back-diagnosis from the model to the notation. Translations are described by sets of rules, customizable according to di erent semantics of a notation, based on graph grammars, and implemented as an interpreter, with tools for simulation and animation.

Similarities between these works and our approach can be found in the motivations: the clari cation of informal or partially formal semantics, and the enabling of automated tool-support for simulation, analysis, and code generation. We also share the care taken in building compositional models, with a structural translation where locally constructed sub-models can be assembled to form the global one. We address exibility when we propose possible models of non-determinism and memory management: it is a particular case of exibility, where some parameterization is possible; this way, the model is applicable to Statecharts-like notations with di erent semantics, as in UML or StateFlow. On the other hand, similarities also include problems like back-diagnosis: when some error or warning is detected on the formal model, how do we formulate it back in terms of the original specication? Also, justifying correctness with regards to the semantics of the original notation under study is di cult, especially when the latter is informal.

The purpose of the work described in this paper is the construction of a synchronous model of Statecharts, a popular and wide-spread notation, in its industrially relevant semantics, i.e., the Statemate one. As such it places itself as a particular case among works on the more general problem of translations between formalisms. Comparisons between StateCharts and other formal notations are also out of the scope of this paper. Technically, we are placing ourselves in the context of multiple reactive formalisms detailed next in Section 8. 1.2. 8.1.2 Multiple formalisms in reactive systems. Di erent attempts were made to mix imperative and declarative synchronous languages. In [START_REF] Maraninchi | Compiling ARGOS into Boolean equations[END_REF], Maraninchi and Halbwachs present a way to compile Argos (a hierarchical concurrent automata language, which can be considered one of the Statecharts variants) into a Mealy machine implicitly represented by a set of Boolean equations in the declarative code DC [START_REF] Synchron | The common format of synchronous languages -the declarative code DC version 1.0[END_REF]. Each state of the hierarchical automaton is associated with a Boolean signal which is true when the state is active and false otherwise. This Boolean signal is updated when, in the Argos hierarchy, the state to which it belongs is activated. The con guration of a Statechart (the list of its active states) is hence represented as a tree of Booleans. Mixing these equations with DC equations generated from other languages (e.g., Lustre) provides a way to mix imperative and declarative formalisms. The translation covers some basic features of the Statecharts: hierarchical parallel automata with event sending as actions. Then, using the semantics of both languages, Maran-inchi e.a. prove that the translation preserves the behavior from the point of view of traces. A more recent, and also related work, concerns mode-automata, alternating continuous modes following a discrete automaton [START_REF] Maraninchi | Mode-automata: about modes and states for reactive systems[END_REF]]. However, the semantics adopted is the Argos one, which is a kind of purely synchronous semantics of Statecharts di erent from the Statemate one [START_REF] Harel | The Statemate semantics of Statecharts[END_REF]. Also, many features of the languages of Statemate are absent from Argos.

In Berry], Berry gives a semantics of the Esterel synchronous language in terms of electric circuits. First, the substatements of an Esterel statement are individually translated into circuits, then the resulting circuits are combined using appropriate auxiliary gates and wiring. Some aspects of the translation are close to the one presented here: particularly the subcircuit interface which is close to the one of Section 4.1, and the wiring of the control signals between the subcircuits.

A tool for the integration of di erent synchronous languages is being developed in the Synchronie project Ma e s and Poign e 1996]. Synchronie is a workbench for synchronous programming. It provides compilation, simulation, testing and veri cation tools for various dialects of the synchronous programming paradigm.

In the rst instance Esterel, Argos and Lustre compilers are being developed and integrated. The integration is made through a common semantical representation: synchronous automata which are essentially Mealy machines. The translation of Statecharts into an equational synchronous model presented here might eventually be supported also by Synchronie.

An extension of the Signal language called SignalGT_ o ers constructs for hierarchical task preemption. In the declarative synchronous language Signal, a process de nes a behavior in terms of an unbounded series of instants. However, there are no explicit language constructs for handling the starting, termination, interruption or sequencing of such processes: they are considered to be all active on the whole duration of the execution. In Signal GT_ , tasks are de ned as the association of a data-ow process with a time interval on which it is executed. Both data-ow and tasking paradigms are available within the same language-level framework. Signal GT_ was implemented by a preprocessor to the Signal environment [START_REF] Rutten | Signal GTi, implementing task preemption and time intervals in the synchronous data ow language Signal[END_REF] that generates equations for activity management, using additional control signal similar to the reactive box model of Section 4.1.

A synchronous model of Statecharts in Esterel [START_REF] Seshia | A translation of statecharts to esterel[END_REF] gives access to compilation and veri cation of speci cations with the Statemate semantics; the Esterel compiler can serve as a diagnostic tool to detect non-determinism, and other tools can be used for dynamic properties. An approach to using the declarative Signal language to model Statemate has been studied Gu eguen 97], dealing with the control aspect of hierarchical concurrent automata, but not actions nor Ac- |Instruction List (IL), an assembly language |Structured Text (ST), a Pascal-like sequential imperative language. These styles can be mixed, functions in one language being called from a program in another language. This mixture of styles, as well as the problems of interoperability arising from their co-existence in the same framework, and the cyclic, reactive nature of the overall behaviour, requires that any attempt to model these systems in a synchronous framework, and in particular Signal Jim enez-Fraustro and Rutten 2001], should resemble the work presented here on Statemate.

Especially, it should have the same speci cities as our approach regarding Statemate, which is that we use the relational nature of Signal, i.e., its capacity to represent exactly non-determinism, to be able to handle multi-clocking, and even up-sampling and \internal acceleration" with regard to inputs and outputs. 8.2 Results 8.2.1 Model and translation.. We have proposed here a way to translate the essential features of Statecharts and Activitycharts into Signal. This translation gives clocks to every part of a Statechart (states, transitions, actions). It keeps the structural and hierarchical informations through the translation to permit the traceability from speci cation to the generated code. It is expected that this will have consequences on the compilation process and the optimization algorithms offered by the Signal/DC+ environment, in the perspective of producing e cient code, for possibly distributed execution architectures, from Statecharts speci cations, using the clock calculus and the BDD's techniques of the Signal compiler. Non-determinism may be modelled and handled through Boolean adjunction. Verication of the behavior is possible using the tools based on the synchronous technology. Real-time properties of a Statechart could be checked through timing analysis of a Signal program. The main contribution of this work is to give access to the already existing Signal tools from a Statechart design.

This translation provides support for co-execution or co-simulation of Signal and the languages of Statemate. Interoperability between Signal and Statecharts is possible by composing the resulting Signal process with any Signal context. The interaction between the two parts is then managed by the synchronous composition.

The complexity of the translation algorithm, and the size of the constructed model, in number of equations (or lines of Signal), is linear in the size of the source speci cation, in number of states, including hierarchical OR-states, transitions and variables. In particular, it is not made costly by combinatorial explosion due to parallel automata, because there is no explicit computation or enumeration of the global state space. This is an advantage of the structural de nition of the translation.

8.2.2 Implementation and code generation.. An implementation of such a translation has been done in C++ in the context of the SAfety CRitical Embedded Systems (Sacres) European Project Sacres Consortium 1998]. The translation is done in a variant of Signal called DC+ Sacres Consortium 1997a] which is a common format of the synchronous languages. The Statemate tool from i-Logix is used to draw the Statecharts, then the automatic translator uses an API of the Statemate tools in order to extract the needed information from the Statechart design and generate the DC+. This translator is at a prototype level, and a set of small examples have been used for validation of the translation schemes. This work is evolving following a change of focus towards separate compilation and distribution of activities, for which the code can be generated by Statemate. Methods and techniques initially developed for the distribution and semantics-preserving desynchronization of synchronous programs can be applied to Statecharts [START_REF] Talpin | Hierarchic normal forms for desynchronization[END_REF].

Concerning the code generated, we have already described how the translation into Signal keeps the structural hierarchy present in the Statemate speci cation. The communication of control information along this hierarchy is made explicit with the introduction of new variables, that did not appear explicitly in the Statemate program. However, we have observed that the size of the resulting Signal model, in number of de ned signals, is linear in the size of the source speci cation, in number of states, transitions and de ned variables. The code generated from the Signal program follows the general structure of code generated from synchronous programs. It is a single loop, and shows no use of recursion (this is a common requisite for embedded systems). The syntactic structure of the speci cation is not preserved during the compilation transformations; this is unless it is explicitly required by the user that some part of the structure of activities must be kept in the generated code. Otherwise, it is replaced by the hierarchical semantic structure resulting from the clock calculus. This allows to compute values of variables only at the instants where they need to be calculated. In addition, many optimizations, based on the clock calculus and on rewriting of the conditional dependency graph of the speci cation can be applied (e.g., elimination of redundant variables, retiming, etc.).

Perspectives

Perspectives presently worked upon concern: extending coverage of the languages, in order to converge towards a full translator, validating the translation, and treating real-size applications, in order to analyse quantitatively the complexity of the translation. Also, the actual connection of the translation to other tools in the environment brings the question of back-diagnosis, i.e., constructing from the diagnosis of an analysis tool (error message, constraint on signals, etc.) a feedback to the user in terms of the original speci cation (identi ers, location in the source speci cation, etc.). Other features of the Statemate languages that should be considered are for instance that variables can have di erent data-types and scopes. In the actions, mechanisms for timeouts and scheduled events could be encoded as counters on the number of steps. Context variables are special variables that can take several di erent values within one step: they are used in connection with loops in the actions.

The proof that the translation is correct from a behavioral point of view is now needed in the context of safety critical systems. Such a proof may be in terms of equality of the traces of the initial Statechart and the target Signal program, based on the semantics of the languages Sacres Consortium 1997b]. This semantics de nes Signal, and its derived format DC+, as well as the languages of Statemate, in terms of fair Synchronous Transition Systems (fSTS). This provides a common basis for comparing the translation to the source, and establishing the correctness.

Using the synchronous technology for code reuse and distributed code generation is also possible by modelling the coordination of modules of code generated by Statemate-Magnum, independently of DC+, and represent modules by their inputoutput pro les, including control information regarding their clocks [START_REF] Benveniste | Distributed code generation of data ow synchronous programs: the SACRES approach[END_REF]]. The results obtained in experiments, although relatively limited, have convinced users of the possible industrial validity of the approach: in the ESPRIT project SafeAir (Advanced Design Tools for Aircraft Systems and Airborne Software), which is a successor of the Sacres project, it has been decided to follow a comparable approach from Statemate to SCADE, the industrial version of the synchronous language Lustre, to take advantage of the SCADE quali ed code generator.

As mentioned earlier, the results of modelling Statemate can be of use when considering other contexts where an equational model is useful, i.e., other graphical, state-based languages, or other contexts where di erent languages can interoperate; for example, the languages of the international standard IEC 1131 IEC 1993] of the International Electrotechnical Commission. Another perspective of this work, that follows a comparable but di erent approach, is to give a semantics of UML state-machines using the synchronous model [START_REF] Wang | Compilation and distribution of state-machines using spots[END_REF]]. This modelling results in yet another translation of Statecharts into Signal [START_REF] Wang | Compilation of state-machines using behavior expression[END_REF].

A.3 Instantaneous States

An instantaneous state may be simultaneously entered and exited (in the same instant). Figure 19 provides an example where states n1 and n2 are instantaneous. Some semantics call these states: condition, selection, junction, joint, fork connectors, depending on the number of transitions entering and leaving the connector and if they apply to and states or not. In some Statecharts semantics (Statemate for instance [START_REF] Harel | The Statemate semantics of Statecharts[END_REF]), instantaneous states exist ,and we could handle them in the translation as shown below for the example of Figure 19: We use here the same process transition as the one used between ordinary states. The di erence is in the con guration signal used in the transition process. When the origin of a transition is an instantaneous state (like the transition t3), instead of checking on the value of the con guration variable c, we use the transitions whose target is the considered instantaneous state. On the exemple Figure 19: t1 default t2. Lastly, in the call of the process nextstate, only references to transitions whose target is a non-instantaneous state are given. In the exemple, t3 default t5 default t6 gives the value of the nextstate.

It occurs however that the Statemate environment does perform an expansion of transitions going through instantaneous state into a set of transitions going between non-instantaneous states, combining triggers and actions accordingly. Hence the translation of this feature need not be studied speci cally. A.4 The clock of actions: special cases Actions on default transitions: these are to be executed on entering the superstate, i.e., the state of which the automaton considered is a sub-automaton. At that instant, the state is re-initialized, and the actions on the default transition executed. This instant is characterized by the Control signal as follows: clockaction := when Control=Start Actions on entering or exiting a state: these are also related to the Control signal of the state which is entered or exited. Their mechanism is similar to that of actions associated with the activation or deactivation of an activity, in the way shown in Figure 20. The relation of these events with Control goes as follows:

(entering) = when Control=Start (exiting) = when Control=Stop (started) = when Control=Start (stopped) = when Control=Stop Figure 21 shows a Statechart with two states, for which Figure 22 shows the occurrences of these special events. When the environment delivers not an event to be counted but a date, then the process Dateout should be used instead:

Fig. 3 .

 3 Fig. 2. A re llable tank

 Fig. 4. A Statechart example

Fig. 7 .

 7 Fig. 7. Di erences between Statemate not and Signal not. In Statecharts, not e means: e did not occur, while in Signal it is a conservative extension of the not operator on the Booleans.

 Fig. 8. A transition in Statecharts

 | t1 := transition {Idle, Running} (c_t, e) | t2 := transition {Running, Idle} (c_t, f) | Control ^= ^0 | c_t := c when ((not ^Control) default LocalClock) | (Stable,c,nc) := nextstate {Idle} (Tick, LocalClock, Control, Time, t1 default t2)

 Figure 10 illustrates the di erent clocks in presence, where I is for state Idle, and R for Running. 5.1.1.3 And-states.. The Running state is the and composition of two or-states, called: sub_running_up and sub_running_down. It can be modeled as the syn-

 process sub_running_up = { ? event Tick, LocalClock; tcontrol Control; event Time; event a; ! boolean Stable; event b;} (| t3 := transition {S1, S2} (c_t, a) | t4 := transition {S2, S1} (c_t, a) | c_t := c when ((not ^Control) default LocalClock) | (Stable,c,nc) := nextstate {S1} (Tick, LocalClock, ^0, Time, t3 default t4) | b := ... (see translation of actions) |) ;

Fig. 11 .

 11 Fig. 11. Three ways to enter a state

 Fig. 13. An overview of the model for an OR-node |the triggers, combined with con guration c t, are used to determine whether each transition is reable, using instances of the process transition of Section 4.4; |an instance of the process nextstate manages the value of the con guration of Section 4.5; |transitions and the next state serve to evaluate clocks of actions, |the actions themselves are translated according to function of Section 5.2.3, and produce values contrib i .

Fig. 14 .

 14 Figure14illustrates the hierarchical structure, and particularly how at each level the previous OR-node pattern is re-used (here the outputs s and t correspond, respectively, to the state and to the transition signals involved in the computation of subcontr, detailed in the following), and how the control is propagated to subprocesses (modelling sub-nodes) following the hierarchy of OR-nodes. In the case of AND-nodes, inputs and control signals are forwarded as such to each of the models of sub-nodes, and contribution outputs are gathered. In the example of Figure14, the OR-node has two states S1 and S2, each of them re ned by other OR-nodes. In Figure14it appears that for each sub-node: |the local clock of the re ned S1 is the downsampling of the incoming clock at the condition s = S1; |the local control ctrl i is computed as a function subctrl of the control signal received from upper layers, and the actual ring of the transition t which can cause reinitialisation of the sub-node; |in the model of the AND-node, the two latter control signals are forwarded as such to each of the models of the sub-states;

 translation scheme.. Translating triggers into Signal amounts to evaluating the trigger event and condition parts, and feeding them as input to the transition process de ned earlier. The translation function delivers the Signal expression (of type event) translating the trigger of the transition label. It is de ned as follows: |in the reactions handles the translation of the trigger only (see further function for actions): (hT riggeri=hActioni) = (hT riggeri) |expressions on triggers: |the empty trigger is satis ed at the global clock: () = LocalClock |presence of an event hEventNamei: (hEventNamei) = hEventNamei |combined event and condition trigger: (hT riggerihConditioni) = (hT riggeri) when (hConditioni) |logical expressions on triggers:

5. 2

 2 .3.3 General translation scheme.. The translation of actions amounts to generating equations for each action, 8i = 1::nbac: (hActioni;clockaction a(i)) where: |in a reaction, handles the translation of the actions only: (hT riggeri=hActioni; Clk) = (hActioni; Clk) |basic actions: |empty action: (; Clk) is void. |event emission: if the hEventNamei is a: (hEventNamei; Clk) = a next(a) := Clk where next(a) is the function introduced in Section 5.2.1 for the purpose of naming signals carrying contributing values for a.

 := hExpressioni; Clk) = a next(a) := (hExpressioni) when Clk where a is the name of the variable, and next(a) is used as explained in Section 5.2.1 in order to manage names of signals carrying contributed values. |variable access: (read data(X); Clk) = read data X next(read data X) := Clk (write data(X); Clk) = written data X next(written data X) := Clk |action expressions: | (when hEventi then hAction1i else hAction2i] end when,Clk) = (hAction1i; Clk when hEventi) | (hAction2i; Clk when not event(hEventi,tick))]| (if hConditioni then hAction1i else hAction2i] end if,

Fig. 15 .

 15 Fig. 15. States of an activity

|

 T1:= transition{Inactive,Active}(c_t, st_A) | T2:= transition{Active,Inactive}(c_t, sp_A) | T3:= transition{Hanging,Active}(c_t, rs_A when Not_Event(sp_A,Tick)) | T4:= transition{Active,Hanging}(c_t, sd_A when Not_Event(sp_A,Tick)) | T5:= transition{Hanging,Inactive}(c_t, sp_A) | T6:= transition{Hanging,Active}(c_t, st_A) | c_t := c when ((not ^Control) default LocalClock) | (Stable,c,nc):= nextstate{Inactive} (Tick,LocalClock,Control,Time, T1 default T2 default T3 default T4 default T5 default T6) | Started_A := ^(T1 default T6) when (nc=Active) | Stopped_A := ^(T2 default T5) when (nc=Inactive) | SubControl:= (Start when (st_A default (Control=Resume)) default (Stop when sp_A) default (Resume when rs_A) default Control) when Activated | Activated:= when (nc=Active)

(

 started(A)) = started A |stopped(A), sp(A): activity A is stopped. It is issued as a result of action stop(A). (stopped(A)) = stopped A |active(A), ac(A): activity A is in the active state. (active(A)) = ac A |hanging(A), hg(A): activity A is in the suspended state. (hanging(A)) = hg A where the two rst events are produced as seen above, and the two conditions are produced in relation with the de nition of the status of activity A: ac A := (c = active) hg A := (c = hanging) 6.2.2 Actions on activities. The actions related to activities concern the control of their status, i.e., starting, stopping, suspending (putting in hanging status) or resuming an activity: |start(A) puts an activity A in status active: (start(A); Clk) = st A next(st A) := Clk where next(st A) updates the counter of contributing values to variable st A. |stop(A) puts an activity A in status inactive: (stop(A); Clk) = sp A next(sp A) := Clk |suspend(A) puts an activity A in status hanging: (suspend(A); Clk) = sd A next(sd A) := Clk |resume(A) puts an activity A in status active: (resume(A); Clk) = rs A next(rs A) := Clk

 Fig. 17. con ict

 Fig. 17. con ict 7.2.1.1 Example.. For the Statechart of the Figure17, if the con guration is (S1, S6) and t1, t2, t3 and t4 are enabled transitions, the maximal non con icting sets of transitions are: |ft4, t1g |ft4, t2g |ft4, t3g Here, t3 has higher priority over t1 and t2 (Statemate semantics) and t3 is chosen. This is preserved in the Signal translation since the clock of substates depends on the transitions of the higher state, where the triggers to the transition labels are computed before. t3 is chosen as an enabled transition and then, the process Three will not sense any inputs because the active state is S4.When t1 and t2 are enabled but not t3, we need to choose one to re. There is a non-deterministic con ict and any one of the two transitions could be chosen. If

 (c,nc) := nextstate {S1}(tick, localclock, ^0, time, t) | t := t1 when (K default true) default t2 | t1 ^* t2 ^= t1 ^* t2 ^* K

Fig. 18 .

 18 Fig. 18. Con icting transitions in Statecharts

 tivitycharts. It models states and the transition relation in the Signal equational style. Also related are Sequential Function Charts (also called Grafcet), a graphical language with places and transitions, related to Petri nets; they can be modeled in Signal Marc e and Le Parc 1993; Marc e et al. 1996]. The Sequential Function Charts are part of the international standard IEC 1131 IEC 1993] of the International Electrotechnical Commission. The norm concerns di erent aspects of the control of industrial systems using Programmable Logic Controllers (PLC). Part 3 of this norm describes several programming languages corresponding to di erent aspects of the design, or to di erent cultural backgrounds of the designers: |graphical languages feature: |Function Block diagrams, a block-diagram-based formalism, |Ladder Diagrams, inherited from relay ladders with which these industrial controllers were implemented and designed before the massive introduction of micro-controllers, |and the Sequential Function Charts (SFC). |textual languages:

Fig

 Fig. 19. A Statechart containing instantaneous states n1 and n2

 t1 := transition {S1,n1} (c_t, C1 when e1) | t2 := transition {S2,n1} (c_t, C2 when e2) | t3 := transition {n1,S3} (t1 default t2, C3 when e3) | t4 := transition {S3,n2} (c_t, C4 when e4) | t5 := transition {n2,S1} (t4, C5 when e5) | t6 := transition {n2,S2} (t4, C6 when e6) | c_t := c when ((not ^control) default localclock) | (c,nc) := nextstate {Sinit} (tick, localclock, control, time, t3 default t5 default t6)

Fig. 20 .

 20 Fig. 20. Events emitted upon activation and deactivation

 Fig. 21. Example of a two-state Statechart

 Actions relative to time: timeouts and schedules are noted: timeout(e,d) and schedule(a,d). In Statemate-Magnum, the time referential is given when generating code; it can be an external physical clock (second, millisecond, etc.). In order to support di erent time units, we have introduced a signal Time, propagated through the structural Signal model. The translation of timeout(e,d) uses a counter initialized to d upon occurrence of e, and then decremented by one at each occurrence of Time. The resulting event timeout(e,d) is emitted when this couter reaches 0. The counter remains at the value -1 until afterwards. The translation uses instanciations of the process:process Timeout = (? event Time, e; integer d; ! event timeout;) (| timeout := when (counter = 0) | counter := d when e default (zcounter -1) when (zcounter >

 Hierarchical modelThe reactive box is used in a hierarchical manner to build the model, which has consequences in the compilation.4.2.1 Structural translation. As was presented in Section 3, a Statemate specication is a hierarchy of Statemate entities (Activitycharts ot Statecharts), each with associated actions, and sub-components (sub-activities of an activity, possibly a control activity, and subcharts of a Statecharts And-or Or-state). The structural translation proposed here follows the top-down approach where, at each level of this Statemate hierarchy, we have a reactive box. At the highest level, its interface is connected to the environment (see Section 7.1). Such a box contains representations of the local behaviour, of sub-components and their interactions: |for each variable declared at that level or scope, a model of a memory (see Section 4.6), |a model of the local behaviour, which can involve state and transitions (see Sections 4.4 and 4.5), |for each sub-component, a reactive box, with the appropriate input-output prole, and for each of them: |the global tick and time are transmitted as such, |a local clock is computed from that of the current level component, and can depend on its state and actions, |a control signal is computed from that received from the upper level by the current one, and can depend on its state, actions, and transitions. |the stability signals from all sub-components models are collected and compute a stability value for the current level.

	4.2	Inputs	Tick	LocalClock	Control	Time
		Outputs			Stable	
			Fig. 6. The reactive box model	
	position of two processes is the intersection of the behaviors of the constituent processes. This is similar to the solutions of an equational system. This reactive box model is compositional in the same sense and gives a compositional semantics for Statecharts. A reactive box is a box with input and output signals. Some of these interface signals are common to every box:
	|Tick is the clock of the whole design. It has been added because in Statemate, the events generated by a step are sensed only at the beginning of the following step (generated events are shifted). This signal is the reference clock used for the purpose of shifting these events and value changes by one instant of the global clock 2 .
	|LocalClock is the clock of the box. This clock is present whenever the corre-sponding Statecharts component is active.
	|Control is an enumerated-typed signal with values in fStart, Stop, Resume, LocalResumeg. This type is called tcontrol. It is used inside the box to know when and how the box is (re)entered. If its value is Start, all the (sub)levels of the box need to be reset. If its value is LocalResume (e.g., the corresponding state is activated through a history connector) the box needs to be reset for all the levels apart from the level where the LocalResume connector belongs. Resume means that the box is activated but no reset has to be performed. The Resume value is useful because, for instance, in Statemate, a state may contain entering in the trigger part of a static reaction that enables the static reaction when the state is entered. Similarly with exiting, the value Stop is used when leaving a state in Statemate.
	|Time is a signal recording the passing of the outside time. It can be given by impulses of the event type, or by values of dates.
	|Stable is a Boolean signal that is true when the inner box has completed its job for the current reaction to inputs, and is ready to synchronize with its environ-ment in order to accept new input. The clock of Stable is the clock of the box. Stable is used to cope with superstep semantics.

 Interface:. x is the signal to be shifted, y the shifted signal (their types will be inferred for each instantiation), tick the clock of the Statemate step, and Stable the stability Boolean.4.6.3 Behavior:. A trace example with integer values for x is shown Figure9.

	1 Signal encoding:
	process shift =
	(? x;
	event tick;
	! y; boolean Stable;)
	(| value_x := x default y
	| value_x ^= ^x default tick
	| y := value_x $1
	| Stable := not ^x default tick
	|)
	where value_x;
	end;
	4.6.2 Tick x value x 1 1 2 2 2 2 3 4 5 t t t t t t t t t 1 2 3 4 5 y 1 1 2 2 2 2 3 4
	Fig. 9.

A trace of the shift process with x integer

 1.1.2 State re nement.. The state Running of the top level is now re ned as being the process running. Its interface is built according to the reactive box scheme introduced in Section 4.1. Its single input variable is a since e and f are

	Tick Toplevel LocalClock t t (future) nc	t t	t t t t t t t t t t	t t	t ... t ...

 Execution trace for the example in Figure4not used inside. Its outputs are b and d. The clock of the con guration variables re ning Running is de ned as follows:

	Sub Running Up Sub Running Down	e f a b LocalClock Control nc c c t LocalClock Control nc c c t	R t t t t t t t t S1 S1 S2 S1 S1 S1 S1 R I ... t ... t t ... Start Stop S1 S1 S1 S2 S1 S1 S1 ... S1 S1 S2 S1 S1 ... t t t t t t ... Start Stop ... S3 S3 S3 S3 S4 S4 S4 ... S3 S3 S3 S3 S3 S4 S4 ... S3 S3 S3 S3 S4 ...
		Fig. 10.	

localclock_running:= when (c=Running)

 Stable i ,output i) := Sub i (tick, localclock, control, input i) (there are no sub-processes for nodes that are leaves in the hierarchy). |Concerning the combination of Stable signals from sub-nodes and shifts, the part of the design is considered stable if its sub-nodes are stable, and locally memorized signals are; hence, |for an And-node a conjunction has to be made (using the synchronous operator and is possible, because all sub-nodes have the same clock; alternaltely when works too) |for an Or-node, only one sub-node at a time is active, hence signals Stable i

	2.2).
	|concerning state (Or-nodes), in all cases:
	c t := c when ((not ^Control) default LocalClock) if H*(statename) or H(statename) then:
	(Stable s ,c,nc):=nextstatefsubdef aultg(Tick, LocalClock, ^0, Time, default(t 1 ; :::; t nbtr))
	else:
	default Control
	|in_S, en_S and ex_S are special events signalling respectively activity, activa-tion and desactivation of state S. Their occurrence instants are represented in Figure 22.
	(en S,Stable1) := shift(when Control=Start default
	when Control=Resume default
	when Control=LocalResume,Tick)
	(ex S,Stable2) := shift(when Control=Stop, Tick)
	|if OR(statename) then 8i = 1::nbss:
	in Sub i := when (c=Sub i)
	(Stable i ,output i) := Sub i (tick, in Sub i, subcontrol i , input i) else if it is an And-node 8i = 1::nbss:

(Stable s ,c,nc):=nextstatefsubdef aultg(Tick, LocalClock, Control, Time, default(t 1 ; :::; t nbtr)) |if H*(statename) then 8i = 1::nbss: subcontrol i := ^0 else 8i = 1::nbss: subcontrol i := Start when (Control=LocalResume) default Start when (^+(t ei1 ; :::; t eip)) default Stop when (^+(t xi1 ; :::; t xiq)) default LocalResume when (^+(t hi1 ; :::; t hir)) default Resume when (^+(t ki1 ; :::; t kis)) (

 Input-output pro leThe signals related to activities also contribute to the computation of input-output pro les: w.r.t. the one described in Section 5.3, if an action on a transition, in a static reaction or in a mini-spec contains start(A), stop(A), suspend(A) or resume(A) then st A, sp A, rs A or sd A is added to actionvar. Also, variables used in a mini-spec (except if already in actionvar) are to be added to transitionvar. Events ac A and hg A are featured in the outputs of the activity A.

	Tick start(A) stop(A) suspend(A) resume(A) started(A) t t t t t t t t t ... t t ... t t ... t ... t ... t ... stopped(A) t t ... active(A) t t t t t ... hanging(A) t ...
	Fig. 16. Control of an activity
	6.3

6.4 Activities throughout or within a state

It is a possible in Statemate to associate an Activitychart A with one state S in a Statechart, according to two modes: "throughout" or "within". In the "throughout" mode, entering state S activates A and exiting S deactivates

A.

This can be encoded by adding the following static reactions to S entering/st A;; exiting/sp A

 Example of a two-state Statechart In this example, one sees that: |LocalClock respectiveley for S1 and for S2 are complementary, i.e., exclusive, and their union is the LocalClock of S, |exiting for the state which is left is simultaneous with entering for the new state, |in(x) correspond to LocalClock for the process encoding state x, |entering and exiting are present at the same times as Start and Stop, J.-R. Beauvais, E. Rutten, T. Gautier, R. Houdebine, P. Le Guernic, Y.-M. Tang Fig. 22. Occurrences of special events (entering, exiting, etc.) in Figure 21 |events en(x) and ex(x) are shifted of one Tick w.r.t. entering and exiting for process x.

	in S (future) (present) (for transition) in S1 in S2	Tick LocalClock t t t t nc S1 S1 S2 S2 S2 S2 S1 S1 S1 ... t t t t t t t ... t t t t t t t ... c S1 S1 S1 S2 S2 S2 S2 S1 S1 ... c t S1 S1 S1 S2 S2 S2 S2 S1 S1 ... e1 t ... e2 t ... LocalClock t t t t t ... Control Stop Start ... entering t ... exiting t ... in(S1) t t t t t ... en(S1) t ... ex(S1) t ... LocalClock t t t t ... Control Start Stop ... entering t ... exiting t ... in(S2) t t t t ... en(S2) t ... ex(S2) t ...

STATEMATE: STATECHARTS AND ACTIVITYCHARTSThe Statecharts formalism was introduced by[START_REF] Harel | Statecharts : A visual formalism for complex systems[END_REF]. It is a graphical language based on automata. It is integrated into the Statemate environment, along with another language called Activitycharts, which is block-diagram oriented. It is implemented in the tool Magnum, designed by i-Logix.The speci cation of a model in Statemate is composed of charts. To each chart is associated the declaration of data-items (i.e., variables with a given type) and events, hence de ning their scope: these are known inside the chart. Other dataitems and/or events can be exchanged with the environment. The chart is further de ned by either an Activitychart or a Statechart, which can be itself decomposed hierarchically into sub-charts. The entry point for a model is an Activitychart, which describes a structural decomposition by being divided into sub-activities, recursively. Some sub-activities, called control activities, can be de ned by a Statechart.

Note that, however, memorization associated with the shifting process will be managed with optimizations w.r.t inactive sub-Statecharts

ACKNOWLEDGMENTS

We wish to thank William W. Wadge for reading and discussing the paper with us, as well as the anonymous reviewers for their contructive comments.

APPENDIX A. COMPLEMENTS TO THE TRANSLATION OF STATEMATE INTO SIGNAL A.1 Memorization of events

If shift is used with events where there is no value to memorize, a speci c version is used, called shift_event, where a Boolean is used to memorize presence of the input event: Here, the shifted event y is present at the shifted clock shift instant x, and shift_event behaves like: y := when yb | (yb,Stable) := shift((x default not tick), tick)

A.2 Events associated to variables We have: |for all variables: |read(X) (abbreviated in rd(X)) emitted when variable X is read by action read_data(X): to the basic process shift, we must add an input read_data_X and the equation:

(read X, Stable) := shift event(read data X, Tick)

|written(X) (abbreviated in wr(X)) emitted when variable X is written by action write_data(X) or by an assignment (i.e., the clock of presence of X): the basic process shift needs to be added an input write_data_X and the equation:

(written_X, Stable) := shift_event(write_data_X default event X, Tick) |changed(X) (abbreviated in ch(X)) emitted when variable X has a value di erent from that memorized in the shift process: the basic process shift needs to be added an output changed_X and the equation:

(changed_X, Stable) := shift_event(when not (shift_value_x = value_x), Tick)

Concerning the rst value of X, it is the initialization of y in the process shift which decides whether or not there is a change. In Statemate-Magnum, integers for example are initialized to 0, hence if the rst value given to X is di erent from 0, then there is a change. |for Booleans only: |true(C) (abbreviated in tr(C)) emitted when the condition C becomes true:

(true_X, Stable) := shift_event(when not (shift_value_x when value_x), Tick)

|false(C) (abbreviated in fs(C)) emitted when the condition C becomes false:

false_X := shift_event(when (shift_value_x when not value_x), Tick)

These control events make as much sense in Signal as in Statemate, and it is foreseen that future versions of the Signal compiler will support the computation, based on the clock calculus, of the clocks at which a signal is actually used, or produced. Having these facilities in the compiler would simplify the modelling of the Statemate events. Modelling schedule is less simple because they can be started in unbounded numbers, which falls out of the scope of what can be modelled in a synchronous framework. However, a restriction allowing for only one schedule at a time on a given action, makes it possible to have a translation re-using the Timeout process: clock_a:=Timeout (Time, schedule, d) where event schedule is generated when executing the action schedule(a,d).