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viral infection and immune response
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Abstract

In this work we extend the ODE model for virus infection and immune response proposed by P.
Getto et al (Modelling and analysis of dynamics of viral infection of cells and of interferon resis-

tance, J. Math. Anal. Appl., No. 344, 2008, pp. 821-850) to account for the spatial effects of the
processes, such as diffusion transport of virions, biomolecules and cells. This leads to two different
nonlinear PDE models, a first one where the cells and the biomolecules diffuse (which we call the
reaction-diffusion model) and a second one where only the biomolecules can diffuse (the hybrid model).

We show that both the reaction-diffusion and the hybrid models are well-posed problems, i.e.,
they have global unique solutions which are non-negative, bounded, and depend continuously on the
initial data. Moreover, we prove that there exists a “continuous” link between these two models, i.e.,
if the diffusion coefficient of the cells tends to zero then the solution of the reaction-diffusion model
converges to the solution of the hybrid model.

We also prove that the solutions are uniformly bounded and integrable for all times. We char-
acterize the asymptotic behavior of the solutions of the hybrid system and present several relations
concerning the survivability of viruses and cells. Finally, we show that the solutions of the hybrid
model converge to the steady state solutions, which implies that the latter are globally stable.
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feron, immune response.
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1 Introduction

1.1 Spatial effects of viral infection and immunity response

When a virion, i.e., an individual viral particle, enters a healthy cell, it modifies the genetic structure
of its host. After infection, the altered biochemical machinery of the host starts to create new virions.
The virions are then released from the host cell and may infect other cells. However, the infected cell
activates intrinsic host defenses, which include, among others, activation of the innate immunity system
and release of biomolecules called interferons (IFN), which communicate with the other cells and induce
them to deploy protective defenses. The dynamics of such complex virus-host system results from the
intra- and extracellular interactions between invading virus particles and cells producing substances,
which confer resistance to virus.

These key processes have been addressed by the mathematical model proposed by Getto, Kimmel and
Marciniak-Czochra in [2]. The model was motivated by the experiments involving vesicular stomatitis
virus (VSV) [1, 4] and respiratory syncytial virus (RSV). The work of P. Getto et al [2] is focused on
the study of the role of heterogeneity of intracellular processes, reflected by a structure variable, in the
dynamics of the system and stability of stationary states. It is shown that indeed the heterogeneity of the
dynamics of cells in respect to the age of the individual cell infection may lead to the significant changes
in the behavior of the model solutions, exhibiting either stabilizing or destabilizing effects.

Another interesting aspect of the dynamics of the spread of viral infection and development of resis-
tance is related to the spatial structure of the system and the effects of spatial processes, such as random
dispersal of virions and interferon particles. In a series of experiments on the vesicular stomatitis virus
infection [1, 4], it was observed that the spatial structure of the system may influence the dynamics of
the whole cell population. The role of spatial dimension and diffusion transport of virions and interferon
molecules were experimentally studied using two type of experiments: a one-step growth experiment in
which all cells were infected simultaneously, and a focal-infection experiment in which cell population
was infected by a point source of virus. A spreading cicular wave of infection followed by a wave of
dead cells was observed. The experiments were performed on two different cell cultures: DBT (murine
delayed brain tumor) cells, which respond to IFN and can be activated to resist the replication of viruses,
and BHK (baby hamster kidney) cells, which are not known to produce or respond to IFN. In case of
focal infection both in DBT and BHK populations spread of infection (rings) was observed. The size
of the rings was dependent on the type of the virus (N1, N2, N3, N4 -gene ectopic strains as well as
M51R mutant and XK3.1). However, for all virus types, it was observed that in DBT cells the speed
of the infection propagation was decreasing with time, while in case of BHK the radius of the infected
area was growing linearly in time. Results of the experiments showed that the rate of infectious progeny
production in one-step growth experiments was a key determinant of the rate of focal spread under the
absence of IFN production. Interestingly, the correlation between one-step growth and focal growth did
not apply for VSV strains XK3.1 and M51R in the cells producing IFN. Focal infection in DBT cells led
only to the limited infection, the spread of which stopped after a while.

These experiments indicated suitability of focal infections for revealing aspects of virus-cell interac-
tions, which are not reflected in one-step growth curves. Motivated by Duca et al experiments, we devise
a model of spatio-temporal dynamics of viral infection and interferon production, which involves virions,
uninfected, infected and resistant cells, as well as the interferon. We assume that interferon is produced
by infected cells and spread by diffusion to neighboring uninfected cells, making them resistant. At the
same time, the virus is spread, also by diffusion and the final outcome is the result of competition beween
these two processes.
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1.2 The original model

The point of departure for this work is a system of nonlinear ordinary differential equations developed by
P. Getto et al [2] to model wild-type cells interacting with virions and the consequent interferon-based
immune response. The model describes time dynamics of five different types of entities interacting in a
culture: three different types of cells (wild-type, infected and resistant) and two different biomolecules
(virions and interferons).

P. Getto et al [2] considered a culture of wild-type cells infected by virions. When a wild-type cell
interacts with a virion it becomes an infected cell. Infected cells produce further virions, but they also
release interferons. If an interferon reaches a wild-type cell before a virion does, then this cell becomes
a resistant cell. Virions, interferons and infected cells are supposed to have an exponential death rate,
whereas there is no death rate associated to wild-type and resistant cells, because they are considered
to live longer than infected cells. In the other words, the model describes the time scale of in vitro
experiments, which is short comparing to the life span of healthy cells.

Under these hypotheses the following nonlinear ODE model was proposed:























W ′ = −iW − vW , ← wild-type cells
I ′ = −µII + vW , ← infected cells
R′ = iW , ← resistant cells
v′ = −µvv + αvI − α4vW , ← virions
i′ = −µii + αiI − α3iW , ← interferons

(1)

where all coefficients are non-negative constants.

1.3 Biological hypotheses of the new model

In this work we will modify the ODE model (1) by introducing spatial random dispersion of cells, virions
and IFN molecules. We consider two models: In the first model (which we call the reaction-diffusion
model) we assume that all cells, virions and interferons diffuse, whereas the second model (which we call
the hybrid model) is based on the hypothesis that only virions and interferons diffuse. The diffusion
terms are supposed to follow Fick’s Law with constant diffusion coefficients and it is modeled by adding
Laplacian operators to the ODE system.

Concerning the boundary conditions, we assume that the whole system is isolated within a bounded
domain Ω ⊂ R

N (N = 2, 3). This implies no-flux boundary conditions, i.e., homogeneous Neumann
conditions, on Γ = ∂Ω. It is worth to remark, however, that the results presented here are also valid for
other boundary conditions such as homogeneous Dirichlet and Robin (mixed).

Since the cells are far bigger than the interferon molecules and the virions, we can suppose that d
is much smaller than both di and dv. In order to compare the two latter diffusion coefficients, one can
recall that interferons are biolomecules and virions in general have several proteins (including DNA or
RNA). Under the light of this argument we assume that dv is smaller than di, but both are of the same
order. This leads to the following conditions,

0 < d≪ dv ≤ di .
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1.4 The reaction-diffusion (RD) model

Let Ω ⊂ R
N (N = 2, 3) be a bounded domain with Lipschitz boundary Γ, and let T > 0. We consider in

Ω× [0, T ] a reaction-diffusion (RD) system























∂tW = d∆W − iW − vW ,
∂tI = d∆I − µII + vW ,
∂tR = d∆R + iW ,
∂tv = dv∆v − µvv + αvI − α4vW ,
∂ti = di∆i− µii + αiI − α3iW ,

(2)

with boundary conditions






















∇W · n(σ, t) = 0 on Γ× [0, T ],
∇I · n(σ, t) = 0 on Γ× [0, T ],
∇R · n(σ, t) = 0 on Γ× [0, T ],
∇v · n(σ, t) = 0 on Γ× [0, T ],
∇i · n(σ, t) = 0 on Γ× [0, T ],

(3)

and initial conditions






















W (x, 0) = W0(x) ,
I(x, 0) = I0(x) ,
R(x, 0) = R0(x) ,
v(x, 0) = v0(x) .
i(x, 0) = i0(x) .

(4)

1.5 The hybrid model

Since d is much smaller than both di and dv it is plausible to consider that d = 0. Under this assumption
we obtain a hybrid model consisting of PDE equations for the interferons i and virions v and ODE
equations for the three types of cells W, I, R. The system takes the form























∂tW = −iW − vW ,
∂tI = −µII + vW ,
∂tR = iW ,
∂tv = dv∆v − µvv + αvI − α4vW ,
∂ti = di∆i− µii + αiI − α3iW ,

(5)

with boundary conditions
{

∇v · n(σ, t) = 0 on Γ× [0, T ],
∇i · n(σ, t) = 0 on Γ× [0, T ].

(6)

2 Main results

In this Section we formulate main results of the work. The proofs are presented in the following sections.



6 M. Labadie · A. Marciniak-Czochra

2.1 Existence and uniqueness results

Throughout this work we denote ‖ · ‖ the norm in L2(Ω) and ‖ · ‖∞ the norm in L∞(Ω).

We will prove that both the RD and the hybrid models are well-posed problems, i.e., they have unique
solutions which are non-negative, uniformly bounded, and depend continuously on the initial data.

Theorem 1 Fix any T > 0. If the initial conditions (4) are non-negative a.e. and lie in L∞(Ω), then
the RD system (2)-(3) has unique solutions W (x, t), I(x, t), R(x, t), v(x, t) and i(x, t) on Ω × [0, T ].
Moreover, these solutions are non-negative, uniformly bounded, and depend continuously on the initial
data.

Theorem 2 Fix any T > 0. If the initial conditions (4) are non-negative a.e. and lie in L∞(Ω) then
the hybrid system (5)-(6) has unique solutions W (x, t), I(x, t), R(x, t), v(x, t) and i(x, t) on Ω× [0, T ].
Moreover, these solutions are non-negative, bounded, and depend continuously on the initial data.

We also prove that there is a “continuous link” between these two models, as the next result shows.

Theorem 3 If d → 0 then there is a subsequence (W d, Id, Rd, vd, id) of solutions of the RD system
(2)-(3), which converges to the solution (W, I, R, v, i) of the hybrid system (5)-(6), in the following sense:

• Strongly in L2
(

0, T ;L2 (Ω)
)

.

• Weakly in L2
(

0, T ;H1 (Ω)
)

.

• Weakly-⋆ in L∞(Ω× (0, T )).

Moreover, any convergent subsequence (W d, Id, Rd, vd, id) has the same limit (W, I, R, v, i).

2.2 Asymptotic results for the RD system

Theorem 4

1. The solutions W, I, R, v, i of the RD system (2)-(3) are globally-defined and belong to L∞(Ω ×
(0,∞)).

2. If W, I, R, v, i are non-negative, steady-state solutions of the RD system (2)-(3) then

W (x) = W0 ≥ 0 constant,

I(x) ≡ 0,

R(x) = R0 ≥ 0 constant,

v(x) ≡ 0,

i(x) ≡ 0.



Viral infection and immune respose 7

2.3 Asymptotic results for the hybrid system

Regularity of solutions W, I, R, v, i follows from a classical theory for evolution systems and depends on
the regularity of initial conditions (see eg. [6], for reaction-diffusion systems coupled with ODEs). In the
reminder of this paper we assume that the solutions are (at least) C1.

Theorem 5 If W, I, R, v, i are non-negative, steady-state solutions of the hybrid system (5)-(6) then

I(x) ≡ 0,

v(x) ≡ 0,

i(x) ≡ 0.

Moreover, suppose that the initial conditions belong to L∞(Ω). Then the solutions of the hybrid system
(5)-(6) are globally-defined and have the following asymptotic properties:

1. I(x, t) belongs to L1(0,∞;L2(Ω)), i.e.,

lim
t→∞

∫ t

0

∫

Ω

I2(x, s) dΩ ds <∞.

2. v(x, t) and i(x, t) belong to L1(0,∞;H1(Ω)), i.e.,

lim
t→∞

∫ t

0

(
∫

Ω

v2(x, s) dΩ +

∫

Ω

|∇v(x, s)|2 dΩ

)

ds <∞ ,

lim
t→∞

∫ t

0

(
∫

Ω

i2(x, s) dΩ +

∫

Ω

|∇i(x, s)|2 dΩ

)

ds <∞ .

3. v(x, t)W (x, t) and i(x, t)W (x, t) belong to L1(0,∞;L1(Ω)), i.e.,

lim
t→∞

∫ t

0

∫

Ω

v(x, s)W (x, s) dΩ ds <∞ and lim
t→∞

∫ t

0

∫

Ω

i(x, s)W (x, s) dΩ ds <∞ .

4. For any x ∈ Ω,
lim

t→∞
I(x, t) = 0 , lim

t→∞
v(x, t) = 0 , lim

t→∞
i(x, t) = 0 .

5. For any x ∈ Ω, W0(x) > 0 if and only if

lim
t→∞

W (x, t) > 0.

Theorem 6 Consider the hybrid system (5)-(6) and suppose that µv = 0. Then:

1. If v∞(x) is a steady-state solution then ‖∇v∞‖ = 0.

2. Define
v∞(x) := lim sup

t→∞
v(x, t).

If αv ≥ α4µI then
∫

Ω

v∞(x) dΩ ≥

∫

Ω

v0(x) dΩ.

In particular, if v0 6≡ 0 then v∞ 6≡ 0.
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3 The fixed point operator and a priori estimates

3.1 Construction of the fixed point operator R

Our approach follows the ideas used by M. Labadie and K. Hamdache in [3].

Define

K :=
{

(v♯, i♯) ∈ L2
(

0, T ;
[

L2 (Ω)
]2

)

∩ [L∞(Ω× [0, T ])]
2

: v♯(x, t) ≥ 0, i♯(x, t) ≥ 0 a.e. in Ω× [0, T ]
}

.

Fix (v♯, i♯) ∈ K and set

∂tW − d∆W + i♯W + v♯W = 0 in Ω× (0, T ),

∂tI − d∆I + µII − v♯W = 0 in Ω× (0, T ),

∂tR− d∆R− i♯W = 0 in Ω× (0, T ), (7)

∇W · n(σ, t) = 0 on Γ× [0, T ],

∇I · n(σ, t) = 0 on Γ× [0, T ],

∇R · n(σ, t) = 0 on Γ× [0, T ].

For any finite time interval [0, T ], the linear system (7) has a unique solution (W (x, t), I(x, t), R(x, t)),
which is non-negative and bounded.

With these functions W (x, t), I(x, t) and R(x, t) set

∂tv − dv∆v + µvv − αvI + α4vW = 0 in Ω× (0, T ),

∂ti− di∆i + µii− αiI + α3iW = 0 in Ω× (0, T ), (8)

∇v · n(σ, t) = 0 on Γ× [0, T ].

∇i · n(σ, t) = 0 on Γ× [0, T ],

Again, for any finite time interval [0, T ] the linear, uncoupled system (8) has a unique solution (v(x, t), i(x, t)),
which is non-negative and bounded.

Our goal is to show that the operator R[(v♯, i♯)] := (v, i), defined for the chain of maps (v♯, i♯) 7→
(W, I, R) 7→ (i, v) constructed above, has a fixed point.

3.2 Positivity of solutions

From now on we will assume that the coefficients

d, dv, di, µI , µv, µi, α3, α4

are all positive, and that the initial conditions (4) are non-negative and bounded.

Lemma 1 Let (v♯, i♯) 7→ (W, I, R) 7→ (v, i) be solutions of (7)-(8).

1. If v♯ and i♯ are non-negative and bounded then W , I and R are non-negative and bounded.
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2. If W , I and R are non-negative and bounded then v and i are non-negative and bounded.

Proof:

1. The equation for W is

∂tW − d∆W + (i♯ + v♯)W = 0 in Ω× (0, T ),

∇W · n(σ, t) = 0 on Γ× [0, T ],

W (x, 0) = W0(x) ≥ 0 in Ω.

Applying Maximum Principle we obtain that W (x, t) ≥ 0 for all (x, t) ∈ Ω× (0, T ).

Define Z1 := W − γ1, where γ1 ∈ R. Then Z1 solves

∂tZ1 − d∆Z1 + (i♯ + v♯)Z1 = −(i♯ + v♯)γ1 in Ω× (0, T ),

∇Z1 · n(σ, t) = 0 on Γ× [0, T ],

Z1(x, 0) = W0(x)− γ1 in Ω.

Choosing γ1 = ‖W0‖∞ and using non-negativity of i♯ and v♯ we obtain

∂tZ1 − d∆Z1 + (i♯ + v♯)Z1 ≤ 0 in Ω× (0, T ),

∇Z1 · n(σ, t) = 0 on Γ× [0, T ],

Z1(x, 0) ≤ 0 in Ω.

Hence, Maximum Principle implies that Z1(x, t) ≤ 0 for all (x, t) ∈ Ω× (0, T ), and in consequence
W (x, t) ≤ ‖W0‖∞ for all (x, t) ∈ Ω× (0, T ).

For I, notice that v♯ and W are non-negative. Therefore, similarly as above Maximum Principle
yields that I(x, t) ≥ 0 for all (x, t) ∈ Ω× (0, T ).

Now, due to the boundedness of I, the function Z2 := I − γ2 solves

∂tZ2 − d∆I + µIZ2 = v♯W − µIγ2 in Ω× (0, T ),

∇Z2 · n(σ, t) = 0 on Γ× [0, T ],

Z2(x, 0) = I0(x)− γ2 in Ω.

Choosing

γ2 = max

{

‖I0‖∞,
‖v♯‖∞‖W0‖∞

µI

}

and applying Maximum Principle, we obtain that W (x, t) ≤ γ2 for all (x, t) ∈ Ω× (0, T ).

Finally, Maximum Principle implies that R(x, t) ≥ 0 for all (x, t) ∈ Ω×(0, T ). For the boundedness
of R, define Z3 := R− γ3(t). It yields

∂tZ3 − d∆I = i♯W − γ′
3(t) in Ω× (0, T ),

∇Z3 · n(σ, t) = 0 on Γ× [0, T ],

Z3(x, 0) = R0(x)− γ3(0) in Ω.
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Choosing

γ3(t) = ‖R0‖∞ + t‖i♯‖∞‖W0‖∞

and applying Maximum Principle we obtain that R(x, t) ≤ γ3(t) for all (x, t) ∈ Ω× (0, T ).

2. Using the same argument as before we can prove that 0 ≤ v(x, t) ≤ γ4 and 0 ≤ i(x, t) ≤ γ5 for all
(x, t) ∈ Ω× (0, T ), where

γ4 = max

{

‖v0‖∞,
αv‖I0‖∞

µv

}

, γ5 = max

{

‖i0‖∞,
αi‖I0‖∞

µi

}

. �

3.3 A priori estimates

Lemma 2 Let (v♯, i♯) 7→ (W, I, R) 7→ (v, i) be solutions of (7)-(8). Then the functions W, I, R, v, i belong
to L2

(

0, T ;H1(Ω)
)

.

Proof:

• Multiply (7) by W and integrate by parts to obtain

1

2

d

dt
‖W‖2 + d‖∇W‖2 = −

∫

Ω

(i♯ + v♯)W 2 dΩ .

Since i♯ and v♯ are non-negative, it follows that

1

2

d

dt
‖W‖2 + d‖∇W‖2 ≤ 0 .

Integrating over [0, t] yields

‖W (t)‖2 + 2d

∫ t

0

‖∇W (s)‖2 ds ≤ ‖W (0)‖2 .

• Multiply (7) by I and integrate by parts to obtain

1

2

d

dt
‖I‖2 + d‖∇I‖2 + µI‖I‖

2 =

∫

Ω

v♯WI dΩ .

Recall the identity
∫

Ω

|v♯WI| dΩ ≤
1

4ε

∫

Ω

|v♯W |2 dΩ + ε

∫

Ω

|I|2 dΩ .

Choosing ε = µI/2 and using the uniform bounds in Lemma 1, it follows that there is a constant
C > 0, depending on the L∞ norm of the initial data, such that

d

dt
‖I‖2 + 2d‖∇I‖2 + µI‖I‖

2 ≤ C .

Here we can keep or discard the term µI‖I‖
2, leading to two different estimates:
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– If we discard the term, the integration over [0, T ] yields

‖I(t)‖2 + 2d

∫ t

0

‖∇I(s)‖2 ds ≤ ‖I(0)‖2 + Ct ,

which implies that I ∈ L2
(

0, T ;H1(Ω)
)

.

– If we keep the term, after multiplying by eµIt and integrating over [0, T ],

‖eµItI(t)‖2 + 2d

∫ t

0

eµIs‖∇I(s)‖2 ds ≤ ‖I(0)‖2 + C(eµIt − 1) .

Therefore,

‖I(t)‖2 + 2d

∫ t

0

e−µI(t−s)‖∇I(s)‖2 ds ≤ ‖I(0)‖2e−µIt + C(1− e−µIt) .

This estimate will be useful for the study of the asymptotic behavior when t→∞.

• Multiply (7) by R and integrate by parts to obtain

1

2

d

dt
‖R‖2 + d‖∇R‖2 =

∫

Ω

iWR dΩ .

Therefore,
d

dt
‖R‖2 + 2d‖∇R‖2 ≤ C + ‖R‖2 .

Multiplying by e−t and integrating over [0, t] leads to

‖R(t)‖2 + 2d

∫ t

0

et−s‖∇R(s)‖2 ds ≤ ‖R(0)‖2et + C(et − 1) .

• Repeating the argument for v and i yields

‖v(t)‖2 + 2dv

∫ t

0

‖∇v(s)‖2 ds ≤ ‖v(0)‖2 + Ct,

‖v(t)‖2 + 2dv

∫ t

0

e−µv(t−s)‖∇v(s)‖2 ds ≤ ‖v(0)‖2e−µvt + C(1− e−µvt),

‖i(t)‖2 + 2di

∫ t

0

‖∇i(s)‖2 ds ≤ ‖i(0)‖2 + Ct,

‖i(t)‖2 + 2di

∫ t

0

e−µi(t−s)‖∇i(s)‖2 ds ≤ ‖i(0)‖2e−µit + C(1− e−µit). �

3.4 Continuity of the operator R

Let (v♯
1, i

♯
1) 7→ (W1, I1, R1) 7→ (v1, i1) and (v♯

2, i
♯
2) 7→ (W2, I2, R2) 7→ (v2, i2) be two solutions of the sys-

tems (7)-(8), with the same initial conditions (v♯
0 = v0, i

♯
0 = i0, W0, I0, R0, v0, i0).
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Define

v̂♯ = v♯
2 − v♯

1 ,

î♯ = i♯2 − i♯1 ,

Ŵ = W2 −W1 ,

Î = I2 − I1 ,

R̂ = R2 −R1 ,

v̂ = v2 − v1 ,

î = i2 − i1 .

Lemma 3 There exists a positive continuous function C(t) such that

[
∫ t

0

(

‖v̂‖2 + ‖̂i‖2
)

ds

]

≤ C(t)

[
∫ t

0

(

‖v̂♯‖2 + ‖̂i♯‖2
)

ds

]

. (9)

Proof: The differences v̂, î, Ŵ , Î, R̂ solve the system

∂tv̂ − dv∆î + µv v̂ + α4W2v̂ + α4v̂1Ŵ − αv Î = 0 ,

∂tî− di∆î + µiî + α3W2î + α3i1Ŵ − αiÎ = 0 ,

∂tŴ − d∆Ŵ + i♯2Ŵ + W1î
♯ + v♯

2Ŵ + W1v̂
♯ = 0 .

∂tÎ − d∆Î + µI Î + W2v̂
♯ + v♯

1Ŵ = 0 ,

∂tR̂− d∆R̂ + i♯2Ŵ + W1î
♯ = 0 .

with homogeneous initial and boundary conditions.

Multiply the equation for Î by Î and integrate by parts to obtain

1

2

d

dt
‖Î‖2 + d‖∇Î‖2 + µI‖Î‖

2 = −

∫

Ω

v̂♯W2Î dΩ +

∫

Ω

v♯
1Ŵ Î dΩ .

Noticing that all the functions are in L∞, we deduce that there exists C > 0, depending on the initial
conditions and the model coefficients, such that

d

dt
‖Î‖2 + 2d‖∇Î‖2 ≤ C

(

‖v̂♯‖2 + ‖Ŵ‖2 + ‖Î‖2
)

. (10)

Using the same argument we can show that

d

dt
‖Ŵ‖2 + 2d‖∇Ŵ‖2 ≤ C

(

‖̂i♯‖2 + ‖v̂♯‖2 + ‖Ŵ‖2
)

, (11)

d

dt
‖R̂‖2 + 2d‖∇R̂‖2 ≤ C

(

‖̂i♯‖2 + ‖Ŵ‖2
)

.

From (10)-(11) and d ≥ 0, it follows that

d

dt

(

‖Ŵ‖2 + ‖Î‖2 + ‖R̂‖2
)

≤ C
(

‖̂i♯‖2 + ‖v̂♯‖2 + ‖Ŵ‖2 + ‖Î‖2
)

.
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Integrating over [0, t] we obtain that

‖Ŵ‖2 + ‖Î‖2 + ‖R̂‖2 ≤ C

[
∫ t

0

(

‖̂i♯‖2 + ‖v̂♯‖2
)

ds

]

+ C

[
∫ t

0

(

‖Ŵ‖2 + ‖Î‖2
)

ds

]

.

Applying Gronwall’s Lemma it follows that there exists a positive continuous function C(t) such that

‖Ŵ‖2 + ‖Î‖2 + ‖R̂‖2 ≤ C(t)

[
∫ t

0

(

‖̂i♯‖2 + ‖v̂♯‖2
)

ds

]

. (12)

On the other hand, multiply the equation for î by î and integrate by parts to obtain

1

2

d

dt
‖̂i‖2 + di‖∇î‖2 + µi‖̂i‖

2 + α3

∫

Ω

W2î
2 dΩ = −α3

∫

Ω

i1Ŵ î dΩ + αi

∫

Ω

Î î dΩ .

Proceeding as before we can show that there exists a constant C1 > 0 such that

d

dt
‖̂i‖2 + 2di‖∇î‖2 ≤ C1

(

‖̂i‖2 + ‖Ŵ‖2 + ‖Î‖2
)

.

Analogously, we can show that

d

dt
‖v̂‖2 + 2dv‖∇v̂‖2 ≤ C1

(

‖v̂‖2 + ‖Ŵ‖2 + ‖Î‖2
)

.

Using (12) we obtain that

d

dt

(

‖̂i‖2 + ‖v̂‖2
)

≤ C1

(

‖̂i‖2 + ‖v̂‖2
)

+ C(t)

[
∫ t

0

(

‖̂i♯‖2 + ‖v̂♯‖2
)

ds

]

.

Integrating over [0, t] yields

‖̂i‖2 + ‖v̂‖2 ≤ C1

[
∫ t

0

(

‖̂i‖2 + ‖v̂‖2
)

ds

]

+ C(t)

[
∫ t

0

(

‖̂i♯‖2 + ‖v̂♯‖2
)

ds

]

.

Applying Gronwall’s Lemma, it follows that

‖̂i‖2 + ‖ŵ‖2 ≤ C(t)

[
∫ t

0

(

‖̂i♯‖2 + ‖v̂♯‖2
)

ds

]

.

Integrating again over [0, t] we obtain (9). �

4 Proof of the theorems

4.1 Proof of Theorem 1

Lemma 4 Fix a positive time T > 0. Then:

1. K is a convex closed subset of L2
(

0, T ;
[

L2 (Ω)
]2

)

.



14 M. Labadie · A. Marciniak-Czochra

2. R : K → K.

3. R : L2
(

0, T ;
[

L2 (Ω)
]2

)

→ L2
(

0, T ;
[

L2 (Ω)
]2

)

is continuous.

4. R(K) is relatively compact in L2
(

0, T ;
[

L2 (Ω)
]2

)

.

Proof:

1. By construction, K is convex and closed.

2. If i♯ ≥ 0 and v♯ ≥ 0 then from Lemma 1 it follows that i ≥ 0 and v ≥ 0.

3. By Lemma 3 the operator R is continuous.

4. We will use Aubin’s compactness theorem (see Theorem 5.1 in Lions [5], Section 5.5, pp. 57-64, and
Tartar [7], Chapter 24, pp. 137-141). Suppose that the sequence {(v♯

n, i♯n)} is uniformly bounded

in L2
(

0, T ;
[

L2(Ω)
]2

)

. Then, by the continuity of R, the sequence {R[(v♯
n, i♯n)] = (vn, in)} is also

uniformly bounded in L2
(

0, T ;
[

L2(Ω)
])

, and the estimates in Lemma 2 imply that {(vn, in)} is

uniformly bounded in L2
(

0, T ;
[

H1(Ω)
]2

)

. Furthermore, the sequence of derivatives {(∂tvn, ∂tin)}

is uniformly bounded in L2
(

0, T ;
[

H−1(Ω)
]2

)

, because the expressions

∂tvn = ∇ · (dv∇vn)− µvvn + αvIn − α4vnWn ,

∂tin = ∇ · (di∇in)− µiin + αiIn − α3inWn ,

define two uniformly bounded sequences of distributions in H1(Ω). Therefore, applying Aubin’s

theorem to the spaces
[

H1(Ω)
]2
⊂

[

L2(Ω)
]2
⊂

[

H−1(Ω)
]2

, we obtain that the sequence {(vn, in)}

is relatively compact in L2
(

0, T ;
[

L2(Ω)
]2

)

. �

We can now conclude the existence of solutions of the reaction-diffusion system (2)-(3):

From Lemma 4 we see that the operator R satisfies Schauder’s Fixed Point Theorem (Corollary B.3,
p. 262 in Taylor [8]). Therefore, the system (2)-(3) has solutions W, I, R, v, i. Moreover, from the fact
that v and i coincide with v♯ and i♯, respectively, we can derive two consequences. First, from Lemma 1 it
follows that W, I, R, v, i are non-negative and bounded. Second, from Lemma 2 we have that W, I, R, v, i

belong to L2
(

0, T ;
[

H1(Ω)
]2

)

.

Lemma 5 The solutions W (x, t), I(x, t), R(x, t), v(x, t) and i(x, t) of the reaction-diffusion system
(2)-(3) are unique and depend continuously on the initial data (4).
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Proof: Notice that v and i coincide with v♯ and i♯, respectively. Bearing this in mind, and repeating
the arguments in Lemma 3, we can show that there is a positive constant C such that

d

dt

(

‖Ŵ‖2 + ‖Î‖2 + ‖R̂‖2 + ‖v̂‖2 + ‖̂i‖2
)

≤ C
(

‖Ŵ‖2 + ‖Î‖2 + ‖R̂‖2 + ‖v̂‖2 + ‖̂i‖2
)

.

Therefore, Gronwall’s lemma implies that there exists a positive continuous function C(t) such that

‖Ŵ‖2 + ‖Î‖2 + ‖R̂‖2 + ‖v̂‖2 + ‖̂i‖2 ≤ C(t)
(

‖Ŵ0‖
2 + ‖Î0‖

2 + ‖R̂0‖
2 + ‖v̂0‖

2 + ‖̂i0‖
2
)

. �

4.2 Proof of Theorem 2

So far we have only considered the reaction-diffusion system (2)-(3). However, for the hybrid system
(5)-(6) the same results hold. Indeed, on one hand, in Lemmas 2-5 we have only used that d ≥ 0. On
the other hand, we can use the integral representations of W , I and R in order to deduce that they are
bounded and non-negative, which proves Lemma 1 in the hybrid case. �

4.3 Proof of Theorem 3

For any 0 < d ≤ d0 let (W d, Id, Rd, vd, id) be a weak solution of (2)-(3) and let d→ 0.

First, from Lemma 2 it follows that the sequence W d is bounded in

L2
(

0, T ;H1 (Ω)
)

∩ L∞(Ω× (0, T )) ,

which implies that a subsequence, still denoted W d, converges weakly in L2
(

0, T ;H1 (Ω)
)

and weakly-⋆
in L∞(Ω× (0, T )) to W 0. This result is also valid for the sequences Id, Rd vd and id.

Second, using classical estimates of type

∫ T

0

∫

Ω

|idW d − i0W 0| dΩdt ≤ C1‖i
d − i0‖+ C2‖W

d −W 0‖

it can be shown that the sequence ∂tW
d is uniformly bounded in L2

(

0, T ;H−1 (Ω)
)

. In consequence,

applying Aubin’s compactness theorem yields the strong convergence id → i0 in L2
(

0, T ;L2 (Ω)
)

. This
result is also valid for the sequences Id, Rd vd and i0.

Finally, we obtain that a subsequence (W d, Id, Rd, vd, id) of weak solutions of (2)-(3) converges
strongly in L2

(

0, T ;L2 (Ω)
)

, weakly in L2
(

0, T ;H1 (Ω)
)

and weakly-⋆ in L∞(Ω × (0, T )). Since the
limit (W 0, I0, R0, v0, i0) is by construction a weak solution of (5)-(6), the uniqueness of the hybrid sys-
tem (5)-(6) implies that the limit is the same for any converging subsequence. �

4.4 Proof of Theorem 4

Lemma 6 The solutions W, I, R, v, i of the RD system (2)-(3) are globally-defined and belong to L∞(Ω×
(0,∞)).

Proof:
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1. Define N(x, t) := W (x, t) + I(x, t) + R(x, t). Then N satisfies

{

∂tN − d∆N ≤ 0 in Ω× [0, T ],
∇N · n = 0 on Γ× [0, T ].

Therefore, Maximum Principle provides

N(x, t) ≤ ‖N0‖∞ ∀(x, t) ∈ Ω× [0, T ].

Moreover, since this bound is independent of t and T , it follows that N(x, t) is defined for all t ∈ R.
In consequence, the positivity of W, I, R implies that these three functions exist for all times and
that they are uniformly bounded, i.e.,

W (x, t), I(x, t), R(x, t) ≤ ‖N0‖∞ ∀(x, t) ∈ Ω× [0,∞).

2. From Lemma 1 we obtain that 0 ≤ v(x, t) ≤ γ4 and 0 ≤ i(x, t) ≤ γ5 for all (x, t) ∈ Ω × (0, T ),
where

γ4 = max

{

‖v0‖∞,
αv‖I0‖∞

µv

}

, γ5 = max

{

‖i0‖∞,
αi‖I0‖∞

µi

}

.

Again, since the bounds are independent of t and T , the solutions v and i exist for all times. �

Lemma 7 If W, I, R, i, v are non-negative, steady-state solutions of the RD system (2)-(3) then

W (x) = W0 ≥ 0 constant,

I(x) ≡ 0,

R(x) = R0 ≥ 0 constant,

v(x) ≡ 0,

i(x) ≡ 0.

Proof: If W, I, R, i, v are non-negative, steady-state solutions of system (2)-(3), then























−d∆W = −iW − vW ,
−d∆I = −µII + vW ,
−d∆R = iW ,
−dv∆v = −µvv + αvI − α4vW ,
−di∆i = −µii + αiI − α3iW ,

(13)

with boundary conditions






















∇W · n(σ) = 0 on Γ,
∇I · n(σ) = 0 on Γ,
∇R · n(σ) = 0 on Γ,
∇v · n(σ) = 0 on Γ,
∇i · n(σ) = 0 on Γ.

(14)
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Multiplying the equation for W by W and integrating by parts we obtain

d‖∇W‖2 +

∫

Ω

(i + v)W 2 dΩ = 0.

Therefore iW = vW = 0 and W (x) = W0 constant. Using same argument for I yields

d‖∇I‖2 + µI‖I‖
2 = 0,

which implies that I(x) ≡ 0. For R we obtain

d‖∇R‖2 = 0,

and therefore, R(x) = R0 is constant, whereas for v, i we obtain

dv‖∇v‖2 + µv‖v‖
2 = 0,

di‖∇i‖2 + µi‖i‖
2 = 0,

and, in consequence, v(x) = i(x) ≡ 0. �.

4.5 Proof of Theorem 5

Lemma 8 If W, I, R, i, v are non-negative, steady-state solutions of the hybrid system (5)-(6) then

I(x) ≡ 0,

v(x) ≡ 0,

i(x) ≡ 0.

Proof: The steady-state-solutions of system (5)-(6) solve






















0 = −iW − vW ,
0 = −µII + vW ,
0 = iW ,

−dv∆v = −µvv + αvI − α4vW ,
−di∆i = −µii + αiI − α3iW ,

(15)

with boundary conditions
{

∇v · n(σ) = 0 on Γ,
∇i · n(σ) = 0 on Γ.

(16)

From the first tree equations in (15)-(16) it follows immediately that

iW = vW = µII = 0.

Since µi > 0 then I = 0. Moreover, v and i solve

−dv∆v = −µvv,

−di∆i = −µii.

In consequence, since µv > 0 and µi > 0 it follows that v = i = 0. It is worth to mention that in this
case we have no restriction on W and R. �
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Lemma 9 Suppose that the initial conditions belong to L∞(Ω). For any x ∈ Ω, the solutions of the
hybrid system (5)-(6) are integrable in the following sense:

1.

lim
t→∞

∫ t

0

I(x, s) ds <∞ and lim
t→∞

∫ t

0

∫

Ω

I(x, s) dΩ ds <∞.

2.

lim
t→∞

∫ t

0

v(x, s)W (x, s) ds <∞ and lim
t→∞

∫ t

0

∫

Ω

v(x, s)W (x, s) dΩ ds <∞.

3.

lim
t→∞

∫ t

0

i(x, s)W (x, s) ds <∞ and lim
t→∞

∫ t

0

∫

Ω

i(x, s)W (x, s) dΩ ds <∞.

Proof:

1. Adding the equations of W, I, R we obtain that

∂tW + ∂tI + ∂tR + µII ≤ 0.

Integrating over [0, t] it follows that, for any (x, t) ∈ Ω× [0,∞) we have

W (x, t) + I(x, t) + R(x, t) + µI

∫ t

0

I(x, s)ds ≤W (x, 0) + I(x, 0) + R(x, 0). (17)

Therefore, from (17) and using uniform boundedness of the initial conditions we can deduce that

lim
t→∞

∫ t

0

I(x, s) ds <∞ and lim
t→∞

∫ t

0

∫

Ω

I(x, s) dΩ ds <∞.

2. Integrating over [0, t] the equation for I yields

I(x, t)− I(x, 0) +

∫ t

0

I(x, s) ds =

∫ t

0

v(x, s)W (x, s) ds.

Therefore, using the previous result on the integrability of I we obtain that

lim
t→∞

∫ t

0

v(x, s)W (x, s) ds <∞ and lim
t→∞

∫ t

0

∫

Ω

v(x, s)W (x, s) dΩ ds <∞.

3. Integrating over [0, t] the equation for W yields

W (x, t)−W (x, 0) +

∫ t

0

vW (x, s) ds =

∫ t

0

i(x, s)W (x, s) ds.

Since the left-hand side has a limit so does the right-hand side, i.e.,

lim
t→∞

∫ t

0

i(x, s)W (x, s) ds <∞ and lim
t→∞

∫ t

0

∫

Ω

i(x, s)W (x, s) dΩ ds <∞. �
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Lemma 10 The solutions of the hybrid system satisfy the following properties:

1. ∂tI is uniformly bounded for t ∈ [0,∞). Moreover, for any x ∈ Ω,

lim
t→∞

I(x, t) = 0, lim
t→∞

∫

Ω

I2(x, t) dΩ <∞ and lim
t→∞

∫ t

0

∫

Ω

I2(x, s) dΩ ds <∞.

2.

lim
t→∞

∫ t

0

(

‖v(s)‖2 + ‖∇v(s)‖2
)

ds <∞ and lim
t→∞

∫ t

0

(

‖i(s)‖2 + ‖∇i(s)‖2
)

ds <∞.

3. ∂tv and ∂ti are bounded distributions in L1
(

0,∞;H1(Ω)
)

.

Proof:

1. Since the functions I, v and W are uniformly bounded in Ω × (0,∞), from the equation for I it
follows that ∂tI is uniformly bounded as well. Therefore, using

lim
t→∞

∫ t

0

I(x, s) ds <∞

we can infer that
lim

t→∞
I(x, t) = 0 for all x ∈ Ω.

Now consider a sequence
0 < t0 < t1 < · · · < tn →∞

and define
fn(x) := I(x, tn).

We have already proven that

lim
n→∞

fn(x) = 0 and 0 ≤ fn(x) ≤ N0(x),

where
N0(x) := W (x, 0) + I(x, 0) + R(x, 0) ∈ L∞(Ω).

Therefore, we can apply Lebesgue’s Dominated Convergence Theorem to obtain

lim
n→∞

∫

Ω

f2
n(x)dΩ =

∫

Ω

lim
n→∞

f2
n(x)dΩ =

∫

Ω

0dΩ = 0.

Since this holds for any arbitrary sequence (tn)n∈N then

lim
t→∞

∫

Ω

I2(x, t) dΩ = 0.

For the last statement, if we integrate the equation for I over Ω× [0, t] we obtain

‖I(t)‖2 + 2µI

∫ t

0

∫

Ω

I2(x, s) dΩ ds = ‖I(0)‖2 + 2‖I‖L∞(Ω×(0,t))

∫ t

0

∫

Ω

v(x, s)W (x, s) dΩ ds.

Since the right-hand side converges as t→∞ then the left converges as well, which implies that

lim
t→∞

∫ t

0

∫

Ω

I2(x, s) dΩ ds <∞.
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2. Multiplying the equation for v by v and integrating by parts yields

1

2

d

dt
‖v(t)‖2 + dv‖∇v(t)‖2 + µv‖v(t)‖2 = αv

∫

Ω

Iv dΩ− α4

∫

Ω

v2W dΩ.

Integrating over [0, t] it can be shown that there is a constant C > 0, independent of t, such that

‖v(t)‖2 + 2dv

∫ t

0

‖∇v(s)‖2 ds + µv

∫ t

0

‖v(s)‖2 ds ≤ ‖v(0)‖2 + C

∫ t

0

∫

Ω

I2(x, s) dΩ ds.

But from the previous results it follows that the right-hand side converges. In consequence, the
left-hand side converges, i.e.,

lim
t→∞

∫ t

0

(

‖v(s)‖2 + ‖∇v(s)‖2
)

ds <∞.

The proof for i is exactly the same as for v.

3. Let ϕ(x, t) be a test function in L1
(

0,∞;H1(Ω)
)

. Calculating the dual product in L1
(

0, t;H1(Ω)
)

yields

〈∂tv, ϕ〉 = −dv

∫ t

0

∫

Ω

∇v · ∇φ dΩ dt− µv

∫ t

0

∫

Ω

vϕ dΩ dt

+αv

∫ t

0

∫

Ω

Iϕ dΩ dt− α4

∫ t

0

∫

Ω

vWϕdΩ dt .

Using the uniform boundedness and integrability of I and W it can be shown that there exist three
positive constants C1, C2 and C3, independent of t, such that

|〈∂tv, ϕ〉| ≤ C1 + C2‖ϕ‖L1(0,t;H1(Ω)) + C3‖v‖L1(0,t;H1(Ω)) .

This implies that |〈∂tv, ϕ〉| is bounded for any test function in L1
(

0, t;H1(Ω)
)

with norm less than

one, uniformly in t. Therefore, ∂tv is a bounded distribution in L1
(

0,∞;H1(Ω)
)

.

The proof for i is exactly the same as for v. �

Lemma 11 Suppose that the initial conditions belong to L∞(Ω). For any x ∈ Ω fixed, the solutions of
the hybrid system (5)-(6) satisfy the following properties:

1.
lim

t→∞
v(x, t)W (x, t) = 0 and lim

t→∞
i(x, t)W (x, t) = 0,

2.
lim

t→∞
v(x, t) = lim

t→∞
i(x, t) = 0.

3.

lim
t→∞

∫ t

0

v(x, s) ds <∞ and lim
t→∞

∫ t

0

i(x, s) ds <∞ .
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Proof:

1. Integrating the equation for I over [0, t] we obtain

∫ t

0

v(x, s)W (x, s)dt = I(x, t)− I(x, 0) + µI

∫ t

0

I(x, s)ds .

On one hand, using the previous results it follows that the right-hand side is uniformly bounded in
t. In consequence,

lim
t→∞

∫ t

0

v(x, t)W (x, t)ds <∞.

On the other hand,
∂t(vW ) = v∂tW + W∂tv

is uniformly bounded because v, W , ∂tv and ∂tW are all uniformly bounded. In consequence,

lim
t→∞

v(x, t)W (x, t) = 0.

2. Integrating over Ω× [0, t] the equation for v and using Fubini’s Theorem yields

∫

Ω

v(x, t) dΩ−

∫

Ω

v(x, 0) dΩ =

∫ t

0

∫

Ω

∆v(x, t) dΩ dt− µv

∫ t

0

∫

Ω

v(x, t) dΩ dt

+αv

∫ t

0

∫

Ω

I(x, s) dΩ dt + α4

∫ t

0

∫

Ω

v(x, s)W (x, s) dΩ dt.

Now recall that v satisfies homogeneous Neumann boundary conditions. Therefore,

∫ t

0

∫

Ω

∆v(x, t) dΩ dt =

∫ t

0

∫

∂Ω

∇v(x, t) · n dS dt = 0,

which implies that

∫

Ω

v(x, t) dΩ−

∫

Ω

v(x, 0) dΩ = −µv

∫ t

0

∫

Ω

v(x, t) dΩ dt + αv

∫ t

0

∫

Ω

I(x, s) dΩ dt

+α4

∫ t

0

∫

Ω

v(x, s)W (x, s) dΩ dt.

From the previous results and the uniform boundedness of W , I and v it follows that

lim
t→∞

∫ t

0

∫

Ω

v(x, t) dΩ dt <∞.

Since ∂tv is uniformly bounded it follows that

lim
t→∞

∫

Ω

v(x, t) dΩ = 0. (18)

Now let ε > 0 and choose x0 ∈ Ω. Define

B(ε, x0) = {x ∈ Ω : |x− x0| < ε}.
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From (18) there exists T (ε) > 0 such that

∫

Ω

v(x, t) dΩ < ε|B(ε, x0)| for all t ≥ T (ε).

In consequence,
∫

Ω

v(x, t) dΩ ≤

∫

Ω

v(x, t) dΩ < ε|B(ε, x0)|,

which implies that
1

|B(ε, x0)|

∫

Ω

v(x, t) dΩ ≤ ε.

Therefore, since v(x, t) is continuous, we have

v(x0, t) = lim
|B(ε,x0)|→0

1

|B(ε, x0)|

∫

Ω

v(x, t) dΩ ≤ ε,

which implies that
lim

t→∞
v(x0, t) ≤ ε.

Since ε > 0 and x0 ∈ Ω are arbitrary it follows that

lim
t→∞

v(x, t) = 0 for all x ∈ Ω.

The proof for i is exactly the same.

3. Define

C∞ := lim
t→∞

∫ t

0

∫

Ω

v(x, s) dΩ ds.

From the previous results we have that C∞ is well-defined, finite and positive. Now, for any n ∈ N

define

An :=

{

x ∈ Ω : lim
t→∞

∫ t

0

v(x, s) ds > nC∞

}

.

On the one hand,

lim
t→∞

∫ t

0

∫

An

v(x, s) dΩ ds > nC∞|An| .

On the other hand,

lim
t→∞

∫ t

0

∫

An

v(x, s) dΩ ds ≤ lim
t→∞

∫ t

0

∫

Ω

v(x, s) dΩ ds = C∞ .

Therefore,

|An| <
1

n
. (19)

Moreover, since
A1 ⊃ A2 ⊃ · · · ⊃ An ⊃ · · ·
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it follows that

A∞ :=

{

x ∈ Ω : lim
t→∞

∫ t

0

v(x, s) ds diverges

}

=

∞
⋂

n=1

An.

In consequence, from (19) we obtain that |A∞| = 0, which implies that

lim
t→∞

∫ t

0

v(x, s) ds <∞ a.e. in Ω.

Finally, since t 7→ v(x, t) is continuous we conclude that

lim
t→∞

∫ t

0

v(x, s) ds <∞ for all x ∈ Ω.

The proof for i is the same. �

Lemma 12 For any x ∈ Ω, W0(x) > 0 if and only if

lim
t→∞

W (x, t) > 0.

Proof: Integrating over [0, t] the equation for W we obtain

W (x, t) = W0(x)× exp

{

−

∫ t

0

v(x, s) ds−

∫ t

0

i(x, s) ds

}

.

In consequence, the result follows immediately from Lemma 11. �

4.6 Proof of Theorem 6

Lemma 13 If v∞(x) is a steady-state solution of the hybrid system (5)-(6) and µv = 0 then ‖∇v∞‖ = 0.

Proof: Following the proof of Lemma 8 it follows that

dv∆v∞ = 0.

Therefore, integrating by parts yields ‖∇v∞‖ = 0. �

Lemma 14 If v is solution of the hybrid system (5)-(6) and µv = 0 then

lim
t→∞

∫

Ω

v(x, t) dΩ ≥

∫

Ω

v0(x) dΩ + (αv − α4µI)

∫ ∞

0

∫

Ω

I(x, s) dΩ dt.

Proof: Integrating over Ω× [0, t] the equation for v and using Fubini’s Theorem yields

∫

Ω

v(x, t) dΩ−

∫

Ω

v(x, 0) dΩ =

∫ t

0

∫

Ω

∆v(x, t) dΩ dt+αv

∫ t

0

∫

Ω

I(x, s) dΩ dt+α4

∫ t

0

∫

Ω

v(x, s)W (x, s) dΩ dt.
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Now recall that v satisfies homogeneous Neumann boundary conditions. Therefore,

∫ t

0

∫

Ω

∆v(x, t) dΩ dt =

∫ t

0

∫

∂Ω

∇v(x, t) · n dS dt = 0,

which implies that

∫

Ω

v(x, t) dΩ =

∫

Ω

v(x, 0) dΩ + αv

∫ t

0

∫

Ω

I(x, s) dΩ dt + α4

∫ t

0

∫

Ω

v(x, s)W (x, s) dΩ dt.

On the other hand, integrating the equation for I yields

∫ t

0

v(x, s)W (x, s) dt = I(x, t)− I0(x) + µI

∫ t

0

I(x, s) dt.

In consequence,

∫

Ω

v(x, t) dΩ =

∫

Ω

v0(x) dΩ + (αv − α4µI)

∫ t

0

∫

Ω

I(x, s) dΩ dt (20)

+α4

∫

Ω

I(x, t) dΩ− α4

∫

Ω

I0(x) dΩ .

Now recall that I0(x) is non-negative and

lim
t→∞

∫

Ω

I(x, t) dΩ = 0.

Therefore, taking the limit t → ∞ and applying Lebesgue’s dominated convergence theorem in (20) we
obtain

lim
t→∞

∫

Ω

v(x, t) dΩ ≥

∫

Ω

v0(x) dΩ + (αv − α4µI)

∫ ∞

0

∫

Ω

I(x, s) dΩ dt. �

Lemma 15 Define
v∞(x) := lim sup

t→∞
v(x, t).

If αv ≥ α4µI then
∫

Ω

v∞(x) dΩ ≥

∫

Ω

v0(x) dΩ.

In particular, if v0 6≡ 0 then v∞ 6≡ 0.

Proof: If αv ≥ α4µI then from Lemma 14 we have

lim
t→∞

∫

Ω

v(x, t) dΩ ≥

∫

Ω

v0(x) dΩ .

Recall that v(x, t) is uniformly bounded. Therefore, applying Fatou’s lemma we obtain
∫

Ω

v∞(x) dΩ ≥ lim
t→∞

∫

Ω

v(x, t) ≥

∫

Ω

v0(x) dΩ. �
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5 Discussion

We proved that both the reaction-diffusion and the hybrid models are well-posed problems, i.e., they have
global unique solutions, which are non-negative, bounded and depend continuously on the initial data.
We also showed that, when d → 0, the solution of the reaction-diffusion model coverges to the solution
of the hybrid model.

We provided several asymptotic estimates for the solutions of the hybrid model. First, we proved
tat the solutions are uniformly bounded and integrable over Ω× (0,∞). Second, we showed that virions
and wild-type cells cannot coexist, because the product of their concentrations tends to zero as t → ∞.
Third, we proved that if µv > 0 then the virus concentration tends to zero as t → ∞ and W tends to a
non-zero, non-homogeneous limit. Fourth, if µv = 0 and αv ≥ α4µI then the global virus concentration
is bigger than the original concentration.

One striking result for the hybrid model is the global stability of the steady-state solutions. Indeed, we
characterized the steady-state solutions and showed that they coincide with the limits of the corresponding
time-dependent solutions. Indeed, for µv > 0,

lim
t→∞

I(x, t) = 0 = I∞(x) ,

lim
t→∞

v(x, t) = 0 = v∞(x) ,

lim
t→∞

i(x, t) = 0 = i∞(x) ,

whereas W (x, t) has an explicit limit,

W∞(x) = W0(x) exp

{

−

∫ ∞

0

v(x, s) ds−

∫ ∞

0

i(x, s) ds

}

.
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