N
N

N

HAL

open science

Automated Translation of C/C++4 Models into a
Synchronous Formalism

Hamoudi Kalla, Jean-Pierre Talpin, David Berner, Loic Besnard

» To cite this version:

Hamoudi Kalla, Jean-Pierre Talpin, David Berner, Loic Besnard. Automated Translation of C/C++
Models into a Synchronous Formalism. 13th Annual IEEE International Symposium and Workshop
on Engineering of Computer Based Systems, ECBS 06, Mar 2006, Potsdam, Germany. pp.426-436,
10.1109/ECBS.2006.27 . hal-00546021

HAL Id: hal-00546021
https://hal.science/hal-00546021
Submitted on 13 Dec 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00546021
https://hal.archives-ouvertes.fr

Automated Trandation of C/C++ Modelsinto a Synchronous For malism

Hamoudi Kalla, Jean-Pierre Talpin, David Berner, Loic Besnard
IRISA-INRIA, ESPRESSO team,
Campus Universitaire de Beaulieu
35042 Rennes, Cedex France
{kal | a, tal pi n, dberner, | besnard}@risa.fr

Abstract

For complex systems that are reusing intellectual prop-
erty components, functional and compositional design cor-
rectness are an important part of the design process. Com-
mon system level capture in software programming lan-
guages such as C/C++ allow for a comfortable design entry
and simulation, but mere simulation is not enough to en-
sure proper design integration. Validating that reused com-
ponents are properly connected to each other and function
correctly has become a major issue for such designs and re-
quires the use of formal methods. In this paper, we propose
an approach in which we automatically translate C/C++
programs into the synchronous formalism SIGNAL, hence
enabling the application of formal methods without having
to deal with the complex and error prone task to build for-
mal models by hand. The main benefit of considering the
model of SIGNAL for C/C++ languages lies in the formal
nature of the synchronous language SIGNAL, which sup-
ports verification and optimization techniques. The C/C++
into SIGNAL transformation process is performed in two
steps. We first translate C/C++ programs into an inter-
mediate Static Single Assignment form, and next we trans-
late this into SIGNAL programs. Our implementation of the
SIGNAL generation is inserted in the GNU Compiler Col-
lection source code as an additional Front end optimization
pass. It does benefit from both GCC code optimization tech-
niques as well as the optimizations of the SIGNAL compiler.
Keywords:. Static Single Assignment, GNU Compiler Col-
lection, SIGNAL, Synchronous Formalism, Functional and
Compositional Design Correctness, Formal Methods

1. Introduction

Number of software programming languages such as
C/C++ are used to describe hardware and software function-
ality of embedded systems. Designers often write system
models using such languages to verify the functional cor-

rectness and the performance behavior of the entire design
as well as for fast functional simulation. In the aim to reduce
design cost and to accelerate the design process of complex
embedded systems, designers are bound to reuse existing
Intellectual Property components (IPs). An IP can be any
piece of design artifact that is reusable in space (by other
groups or companies) or time (in subsequent projects) [23].
The reuse of customizable IPs may lead to significant im-
provements in design productivity and reliability.

Functional and compositional correctness of IPs, are an
important part of the system design process, however they
are typically a weak spot of general purpose imperative pro-
gramming languages. The problem is even more apparent
when designers use pointers in the system models. Many
automated simulator and test tools [16] have been devel-
oped to deal with design verification problems. However,
mere simulation with non-formal development tools does
by no means cover all design errors. What we therefore
need is to use formal methods to ensure the quality of sys-
tem designs. One major problem with formal methods how-
ever is the building of the formal system models. This is still
considered too complex for a standard design engineer and
an error prone and time consuming task. This paper is hence
trying to leverage the situation by automatically generating
formal models from standard C/C++ programs [8].

The solution we propose is based on SIGNAL [4], a
multi-clocked synchronous data-flow formalism predomi-
nantly used in embedded system design. The implicit use
of the synchronous language SIGNAL promises to ensure
a higher-quality of the overall system design by taking ad-
vantage of the formal nature of the synchronous language
to validate system designs. SIGNAL models are automat-
ically generated from C/C++ component descriptions with
the help of the GNU Compiler Collection (GCC) [5] and its
static single assignment (SSA) intermediate representation.
We use GCC to transform C/C++ programs into SSA form
and then apply a translation scheme to transform SSA into
SIGNAL processes (Figure 1). SIGNAL programs are them-
selves represented by the CDFG (control-data flow graph)

{kalla, talpin, dberner, lbesnard}@irisa.fr

structure of the Polychrony workbench [10], the tool that
implements SIGNAL. In order to reduce system valida-
tion time, code optimization techniques can be performed
at GNU Compiler Collection level and at SIGNAL compiler

level.

[C/C++ system model]

l GNU Compiler

[SSA representation]

l SSA to Signal

[Formal model]

Functional and compositional
verification

Figure 1. Our methodology

Section 2 shortly presents the intermediate representa-
tions under consideration. Section 3 gives a short overview
on hardware/software design using the C/C++ program-
ming language. Section 4 presents basic translation rules
to transform SSA trees into SIGNAL’s CDFGs, an example
of which is detailed in Section 5. Finally, Section 6 presents
the some implementation details of our technique.

2. Preliminaries
2.1. Synchronous data-flow

SIGNAL [3] offers a formal framework to give exe-
cutable specifications of hardware/software components. In
SIGNAL, an executable specification is represented by a
process P, which itself consists of the simultaneous compo-
sition of elementary equations z := y f z or x := f(y, 2).
Equations and processes are combined using synchronous
composition P|Q to denote the simultaneity of P and Q
with respect to a common timing model. Restricting a sig-
nal name z to the lexical scope of a process P is written
P/z.

(process) P,Q:=z:=y fz|(P|Q)|P/x

Informally, the structure of a process in concrete syntax is
as follows:

process NAME =
{ [parameters] }
(? [input signals];
! [output signals])

(1
[equati ons]
)
wher e
[l ocal declarations];
end;

The inputs and outputs of an equation are signals. A
signal is the sampling of a continuous stream of values at a
given symbolic clock (see Figure 2). An event corresponds
to the value carried by the signal at a given sample of time
or instant.

A signal x is represented by an ordered sequence of
events v, composed of a sampled value v and of a time tag ¢.
When the signal does not carry a value that is relevant to the
time-sampling t, it is regarded as absent, noted L.

In SIGNAL, the presence of a value along a signal x is

denoted by the proposition z that refers to the clock of z

and can be defined by a boolean operation, e.g., y :="x def

y := (z = x). In the example of Figure 2, the signals = and
y are synchronous, i.e they are always present (or absent)
at the same time samples. By contrast, the signals = and z
(resp. y and z) are not synchronous.

z: 1 2 1 2 19 1 8 L
y: 03 L 6 5 5 L 3 L
z: 2 L 1 1L 2 1L 4 L1 6

Figure 2. Three signals z, y and z.

In SIGNAL, an equation “z := yfz” denotes a relation
between the input signals y and z and an output signal x by
an operator f. Particular some basic operators are:

e Delay “$”, which gives access to the value of a signal
at its previous time sample. The delayed value z$ of =
is defined at the same clock as .

e Initialization “init” defines the initial value of a de-
layed signal: the equation “y := x$ init v” defines the
value of y by v and then by the previous value of the
signal .

Example. For “y := z$ init 1”7, we have:

z: 0 5 L 04 1L 1 3 L 2 ...
y: 1 0 L 5 0 L 41 L 3 2

e Sampling or conditioning, “when” operator: the
equation “z := x when b” defines z by = when b is
present with the value true. Not that the input signals
2 and b may have unrelated clocks.

Example. For z := x when b, we have:

x: 4 3 10 18 1
b: true false L true true false
z: 4 € 10 18 €

e Merging, “default” operator: the equation “x :=
y default 2” merges the signals y and z with a priority
to y when both y and z are present.

Example. For z := x default y, we have:

z: 4 L 1L 5 1 L 1 0 1L
y: 001 1 1 2 L1 0 2 4
z: 41 L 5 1 L 1 0 4

2.2. Control Data Flow Graph

In compilation technology, a Control Data Flow Graph
(CDFG) represents a procedure or a program as a directed
graph G = (V, E), where the set V' represents the con-
trol flow nodes or vertices and the relation E represents the
jumps in the control flow. We define a control flow node as
one of the following type of vertices:

e Basic blocks: are instructions without any jumps.

e Test blocks: describe conditional branching expres-
sions.

e Join blocks: the end of the conditional Branch is rep-
resented by a Join node. Every Test node T; has a cor-
responding Join successor node J;.

Figure 3 gives the example of a CFDG with four Basic
blocks { B1, B2, B3, B4}, one Test block T'1 and one Join
block J1.

2.3. Static Single Assignment

Many compiler optimization methods use information
provided by CDFGs. SSA is a form of CDFG that allows
optimizations to be done efficiently and easily. Since the
release of version 4.0 in spring 2005, GCC uses SSA as
an intermediate representation and pivotal format for all
optimization passes. In SSA, every variable receives ex-
actly one assignment during its lifetime. Two steps are re-
quired to translate the CDFG form into SSA. In the first
step, each variable x is given a new name z; for each z
assignment statement (see Figure 3). In the second step, a

n e

= axb

a*c
7 !

if (y > z) goto Ba
else goto B3

B> /\ Bs

0 &)
=, &

Figure 3. A Control Data Flow Graph

special assignment statement, called ¢ function, is added to
Join blocks J,,. It merges all the different versions of the
variables coming from the predecessors of .J,,,. It has the
formaz; = ¢(...,x;,..., 2k, ...), where operands of ¢ are
the new names of 2 associated with the predecessors of .J,,,.
The @ function returns as output the value of x; that appears
on the execution path. Figure 4 gives the SSA form of the
CDFG graph of Figure 3.

B1

ay * by
aj * cy

)
N @
[
I

7 !

if (y1 > z1) goto Ba
else goto B3

Jl\‘ /
[3 = ¢(x1, 72)]
By ‘
[T‘Esultzm:;,*al]

Figure 4. A Static Single Assignment Graph

3. Hardwar e/Softwar e Design using C/C++

Over the past decade, important efforts have been de-
voted on proposing modeling and design environments for
hardware/software architectures using general purpose pro-
gramming languages such as C/C++. The goal pursued with
SpecC, SystemC, HandelC, and other environments is to en-
able engineers and programmers to design, simulate and

evaluate embedded systems descriptions comprising both
hardware and software components using mostly standard
C/C++ development environments.

Moreover, many tools such as CONES [18] from AT&T
Bell Laboratories have been developed that attempt auto-
mated behavioral synthesis of C/C++ descriptions. Behav-
ioral synthesis consists in transforming a behavioral (algo-
rithmic) description of a design into a Register Transfer
Level (RTL) description of the design.

It cannot be denied that system design with C/C++ does
not present any problems. High-level programming con-
structs and data-structures such as pointer and arbitrary con-
trol flow operations make the program optimization process
and design validation difficult in getting behavioral infor-
mation, which is untraceable to most program analysis al-
gorithms.

Also, compositional verification of the designed system
correctness is equally difficult in the presence of pre-defined
libraries and IP ("intellectual property™) components. Many
simulators and test tools have been developed to validate
system design, but simulation can only check for a limited
number of input vectors whose effectiveness naturally de-
creases with the increased complexity of systems. When
reaching certain levels of system complexity, simulation
does not give sufficient confidence on the actual functional
correctness of the system being modeled. Therefore, there
is a need for new validation techniques to ensure a "reason-
able" design quality that goes beyond what pure simulation
and testing can do.

4. Trandating C/C++ System Models into
SIGNAL Processes

In this section, we present a framework to automati-
cally transform C/C++ design descriptions into a formal de-
scription where we are able to use formal methods such
as correct-by-construction transformation algorithms and
model checking techniques to ensure design optimization
and correctness.

An important point here is to hide the actual complexity
of the underlying formal framework to a great extent, hence
facilitating access to formal methods that otherwise would
be impossible to use or only with important time and effort.
The transformation scheme that we propose is a two-step
process. In the first step, we use GCC to translate C/C++
programs that model the system behavior into SSA repre-
sentations. And second, we automatically transform these
SSA representations into SIGNAL process descriptions.

Here we are only presenting how SSA is transformed
into SIGNAL. The C/C++ to SSA transformations are
largely discussed in the literature [14, 15] and need no fur-
ther analysis. We first present basic rules to translate SSA
nodes and edges into SIGNAL equations. Then, we give the

equivalent SIGNAL equations of SSA assignment and con-
ditional branching statements. Finally, we show how C++
pointer variables can be encoded in SIGNAL.

4.1. Encoding SSA Graph

4.1.1 Encoding SSA blocks

There are three types of SSA blocks (or nodes): Basic, Test,
and Join. Each of these blocks contains atomic statements,
and every variable in Basic and Join blocks receives exactly
one assignment. It is therefore possible to execute all atomic
statements of a block in one logical instant, meaning that
these statements may be conditioned by one boolean con-
dition or clock. Therefore, for each Basic block we create
a boolean signal, and the statements of that block are then
scheduled for execution only when this signal is present and
its value is true.

Figure 5 shows concretely, how a Basic B; block is rep-
resented by a boolean signal B; in the SIGNAL code.

Block B; e
()
N
(@. (b).

Figure 5. Encoding (a). SSA Basic blocks into
(b). SIGNAL

In contrast to this, we do not need to create boolean sig-
nals for Test and Join Blocks. This is because their state-
ments can be scheduled for execution only when the signal
of its Basic predecessor block is present and its value is true.

4.1.2 Encoding Assignment Statements

An SSA assignment statement never contains more than
three operands (except function calls) and has no implicit
side effects. SIGNAL assignment equations have the same
form than the SSA assignment statement, which makes
it straightforward to provide for each SSA assignment an
equivalent SIGNAL equation.

Since statements are executed only when their corre-
sponding block is activated, we condition the execution of
their SIGNAL counterparts by the boolean signal of the cor-
responding block as shown in Figure 6 (except for Join
block statements).

boolean B;

x1 := (y1 — z1) when B;

(). (b).

Figure 6. An SSA assignment statement (a)
and its SIGNAL representation (b)

4.1.3 Encoding ¢ Functions

The ¢ function of a Join block J;, merges all the different
versions of the variables coming from the predecessors of
Jy. It produces as output the most recent version of a vari-
able. In SIGNAL, we represent this function by a sampling
equation. For example, the statement of the block J; of
Figure 7:

Ny

N

z3 = (w1, 2)

Figure 7. A ¢ function

is represented in SIGNAL by the equation:
x3 1= x1 when B; default x2 when B; Q)

where, z; is defined on block B; and z, is defined on
block B;.

Equation (1) means that x3 takes the value of x; (resp.
x2) When signal B; (resp. B;) is present and true. Note that,
the value of x is depending on the present value of B; and
B; and not on their previous value.

4.1.4 Encoding Conditional Branching Statements

Each SSA Test block defines a conditional branching state-
ment. In Figure 8, the execution of the two successors
blocks B; and By, of a Test block T,, depends on the value
of its conditional expression (y; > z1). Therefore, state-
ment of 7,,, defines B; and By, in SIGNAL by the equations:

B; = truewhen (y1 > 2z1) default false
By = truewhennot (y1 > z1) default false

Figure 8. A Conditional Branching State-
ments

However, The execution of the conditional expression
(y1 > #1) of T,,, depends on the signal of its predecessor
block B;. Therefore, the new equations of B; and By, are
given by:

B; = truewhen (y1 > z1) when B;
default false

By = truewhen not (y; > z1) when B;
default false

4.1.5 Encoding Loop Statements

Figure 9 shows how a followed loop statement is repre-
sented on SSA:

{ ...
for(i=1;i<10;i++)
{

}...

Bj
J
T y
J

if (ig < 10) goto B
else goto By,

B

Figure 9. A Loop Statement

In this SSA graph the block B; of the loop statement is
defined before its conditional expression (io < 10), and
its execution is depend on the value of this conditional ex-
pression. We use the same rules defined on Sections 4.1.1

and 4.1.3 to encode blocks B;, By and J on SIGNAL. How-
ever, statements of block B; are defined before their use
in the SSA graph. Therefore, we use the delay operator $
of SIGNAL to encode statements of this block. We encode
each variable used in statements of block B; and defined
after the block B; by its previous value.

In our example, we encode the statement of B; in
SIGNAL by the followed equation:

i3 =128 +1 when B;)

where, i2$ is the previous value of is.
The equations of B; and By, are given by:

B; = truewhen (i2$ < 10) when pre_B;
default false
By, := truewhen not (i; < 10) when Bj

default false

where,
pre_B; = B;$ init true (3)

4.2. Encoding Pointers

On of the major problem designers encounter during the
validation of C/C++ models is pointer alias analysis. In this
section, we propose a solution as how to encode pointers
in SIGNAL that allows fast alias analysis. Our solution is
based on the approach proposed in [17] to encode pointer
variables for the behavioral synthesis from C. The encoding
process is performed in two steps:

1. The first step is applicable at SSA level, where we re-
place each pointer p by two new variables: p_tag and
start_p. Since each pointer p may point to more than
one variable - as is the case for arrays for example -,
we associate to each pointer variable p points another
variable p_tag with an integer value that represents the
index within an array. Thus, the value stored in the
variable p_tag refers to the index within the variable
pointed to by the pointer p. For example, (p_tag = 0)
means that p points-to the first variable of the set that
p points-to. The second variable start_p defines the
value of this variable. As a result, we first replace each
occurrence of the assignment statement (p = &) in
SSA graph by (p_tag = i), assuming that x; is the
it" variable of the set that p points-to. Then, assum-
ing that v is the first variable of the set that p points-
to, we replace each assignment statement of the form

“a; = f(...,*p,...)" by the conditional statements:
if(p_tag==0) start_p, =y
else . @)
else if(p_tag==1) start_p, =x1
else

followed by the assignment statement:

ay = f(...,start_pm,...) (5)

In our transformation, we apply SSA renaming vari-
ables to start_p only for different conditional state-
ments, and we may use more than one definition for
p_tag inside a procedure or function.

2. The second step to encode pointers consists of trans-
forming each assignment (p_tag = ¢) of block By, into
SIGNAL by the following partial equation (p_tag may
be defined in one or more SSA blocks):

p_tag = i when By

A partial equation “z ::= ...” in SIGNAL allows us
to give multiple definitions to a signal z, provided that
these clocks are mutually exclusive (and hence the re-
sulting signal definition deterministic).

In this step, we transform the conditional statements of
equation (4) of block Bj, into:

start_py = y1 when (p_tag = 0) when By
default
default

z1 when (p_tag = i) when By
default

(6)

and, we transform the assignment statement of equa-
tion (5) of block By, into:

ap = f(...,start_pm,...) when B (7)

5. Example

Figure 10 gives a small example of our approach by
showing the corresponding SIGNAL formal model of the
SSA form of Figure 4.

Bi1 := truewhen start_proc defaultfalse

y1i = (a1 xb1) when By

z1 = (a1 *c1) when By

By = truewhen (y1 > z1) when Bi default false

1 = (y1— z1) when B

Bs := truewhen not (y1 > z1) when By default false

z2 = (21 —y1) when B3

rs := x1 when Bs default o when Bs

By = true when B default true when Bs default
false

result := (w3 *a1)when By

Figure 10. SIGNAL equations of SSA code of
Figure 4

Here, the SSA form of Figure 10 represents a procedure
with three inputs {a, b, c}. This procedure is transformed
into the following SIGNAL process:

process NAME =

(? integer a1, b1, c1; boolean start_proc;
I integer results)

(| equations of Figure 10
| Bi'=By= Bs'= By
1)

where

boolean Bi, B2, Bs, Bu;

integer xi, T2, 3, Y1, 21;

end

The procedure is activated only if the boolean signal
start_proc is present and its value is true. Therefore, the
signal B; of its first block is conditioned by this new input
signal. Finally, we synchronize all boolean signals in the
last equations of the signal process.

6. Implementation

One of the main reasons why we chose to use the SSA
form in our work is that SSA has been adopted as an op-
timization framework by compilers, such as GCC and the
Java virtual machine Jikes RVM [9]. This allows an easy
use of our approach by designers using a common software
programming language to describe their systems. In this
work, as we are targeting C/C++ system models for which
we have implemented our SSA to SIGNAL translation using
GCC. Designers using C/C++ can easily integrate our trans-
lator in their installed C/C++ software programming frame-
work. We are using the GCC version 4, which implements
a new optimization framework (Tree-SSA [22]) based on

SSA that operates on GCC’s tree representation. Figure 11
describes our translation scheme as a two step process:

1. Converting C/C++ into SSA: The first step of our
translation scheme consists in converting C/C++ mod-
els into SSA form. This step is performed by GCC,
where it first translates C/C++ programs into Gimple
Trees [11]; these are a high-level intermediate repre-
sentation derived from GCC parse trees. These trees
contain complete control, data, and type information
of the original program. Next, GCC translates these
trees into a control-flow graph (CFG) which is then
transformed into SSA form. The transformations of
this step are implemented in the files “gimplify.c”, “c-
simplify.c”, “tree-cfg.c” and “tree-ssa.c” of GCC ver-
sion 4. An overview of the SSA implementation in
GCC is presented in [6].

2. Converting SSA into SIGNAL: The next step of our
translation scheme consists in converting SSA into
SIGNAL processes. The translation scheme is imple-
mented in the GCC front end, where we have inte-
grated new C file called “ssa2signal.c”. This file im-
plements several debugging functions which represent
all the transformation rules presented in Section 4. The
output of this step is a SIGNAL program. As we can
see in Figure 11, our implementation of the SIGNAL
generation is inserted in the GCC source tree as an ad-
ditional Front end optimization pass. GCC 4 currently
features over 50 optimization passes. We can choose
to use all of these by inserting our pass at the very end,
but it may also make sense to exclude some of the opti-
mizations since depending on the input code they may
result in less performing code.

One advantage of our translation scheme is that systems
modeled using some programming languages that are sup-
ported by GCC other than C/C++, such as Java and Fortran,
can be easily translated into SIGNAL processes with no ad-
ditional effort (see Figure 11). Finally, in our approach to
translate C/C++ programs into SIGNAL process, designers
can optimize their code by using first the GCC optimiza-
tion passes based on SSA, and then the SIGNAL compiler
optimization (see Figure 11).

7. Related Work

The idea of validating C/C++ system design using for-
mal approach rather than simulator and test tools have been
discussed on previews work. Authors of [2, 19, 21, 20]
present approaches for validating modular system design.
They describe how SystemC [7] imperative components can
be transformed into a formal model. [1] presents a front

GNU Compiler Collection

|
1 GCC optimization
|
|

» C
| parser
|
|
C++ | ;
C++ Gimple |
H: parser — trees ™ CFG > SSA
|
| :
Java | Tva
o parser

SSA pass 1
.p S/G/\/
AL opy:
. Plim;.
. 12at;,
SSA passi | ! On
gt T !
: SIGNAL |
: I Functional
\ : and
| compositional
SSA passN | verification
|
|
|
|

Figure 11. Translating C/C++ models into SIGNAL processes

end for SystemC called SystemCXML that uses an XML-
based approach to extract structural information from Sys-
temC models, which can be easily exploited by back end
passes for analysis, visualization and other structural analy-
Sis purposes.

A different approach is illustrated in [13, 12] where a
SystemC front end is created that uses GCC’s front end to
parse all C++ constructs and infer the structural information
of the SystemC model by executing the elaboration phase.
Pinapa examines the data structures of SystemC’s scheduler
and creates its own IR.

As in [1, 2, 19, 21, 20], we use the synchronous ap-
proach to validate system designs. The main contribution
of this paper is to implement and to extend these works, and
automate the actual translation process. In particular, we
propose a solution to encode pointer variables in SIGNAL
which allows easy pointers analysis to be performed. Our
approach is implemented using GCC which is an advantage
for designers using C/C++ to describe their system models
as well as it can benefit of present and future optimization
passes within the GCC.

8. Conclusion

In this work, we try to improve functional and compo-
sitional correctness of IP-based system design using the
C/C++ programming language. We propose an approach
to automatically create formal models from C/C++ system
models. A formal model allows designers to verify the
correctness of their design using methods of mathematical
proof rather than simulation and testing to ensure the quality
of the design. Our solution is based on the internal repre-
sentation SSA of GCC and uses the synchronous language
SIGNAL as a formal platform.

Using GCC we have built a compiler that translates, SSA
representations into SIGNAL processes. SSA representa-

tions can be automatically generated by the GCC compiler.
Our implementation of the SIGNAL generation is inserted in
the GNU Compiler Collection source code as an additional
Front end optimization pass. Right now, we are working on
reducing the number of variables generated by our transla-
tor and on implementing array conversions into SIGNAL.

References

[1] D. Berner, H. Patel, D. Mathaikutty, J.-P. Talpin, and
S. Shukla. SystemCXML: An extensible SystemC front
end using XML. In Proceedings of the Forum on specifi ca-
tion and design languages (FDL), Lausanne, Switzerland,,
September 2005.

[2] D. Berner, J.-P. Talpin, S. K. Shukla, and P. Le Guernic.
Modular design through component abstraction. In Proceed-
ings of the International Conference on Compilers, Architec-
ture, and Synthesis for Embedded Systems (CASES), pages
202-211, Washington DC, USA, September 2004.

[3] M.L.Borgne, H. Marchand, E. Rutten, and M. Samaan. For-
mal verification of signal programs: Application to a power
transformer station controller. In Springer-Verlag, editor,
Proceedings of the Fifth International Conference on Al-
gebraic Methodology and Software Technology AMAST’ 96,
pages 271-285, Munich, Germany, Juillet 1996.

[4] Espresso Team, IRISA. Polychrony tool.
http://lwww.irisa.fr/espresso/Polychrony.

[5] Free Software Foundation. The GNU compiler collection.
http://gcc.gnu.org.

[6] GCC Developers Summit. Proceedings of the 2003 GCC
Developers Summit, Ottawa, Ontario Canada, May 2003.

[7] T. Grotker. System Design with SystemC. Kluwer Academic
Publishers, Norwell, MA, USA, 2002.

[8] A. Hall. Seven myths of formal methods. |IEEE Software,
7(5):11-19, Sept. 1990.

[9] Jalapeno research project. Java virtual machine-jikes rvm.
http://jikesrvm.sourceforge.net.

[10] P. Le Guernic, J.-P. Talpin, and J.-C. Le Lann. Polychrony
for system design. Circuits, Systemsand Computers, Special
Issue on Application Specifi c Hardware Design, 2003.

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

J. Merrill. Generic and gimple: A new tree representation for
entire functions. In Proceedings of the 2003 GCC Summi,
Ottawa, Canada, May 2003.

M. Moy, F. Maraninchi, and L. Maillet-Contoz. Lussy: A
toolbox for the analysis of systems-on-a-chip at the transac-
tional level. In ACSD, pages 26-35. IEEE Computer Society,
2005.

M. Moy, F. Maraninchi, and L. Maillet-Contoz. Pinapa:
an extraction tool for systemc descriptions of systems-on-
a-chip. In EMSOFT ' 05: Proceedings of the 5th ACM inter-
national conference on Embedded software, pages 317-324,
New York, NY, USA, 2005. ACM Press.

D. Novillo. Tree ssa— a new high-level optimization frame-
work for the gnu compiler collection. Proceedings of the
Nord/USENIX Users Conference, February 2003.

D. Novillo. Design and implementation of tree-ssa. In GCC
Summit Proceedings, Ottawa, Canada, 2004.

OSCI, SC-HDL and NC-SystemC. Simulators for systemc.
http://www.systemc.org/.

L. Semeria and G. D. Micheli. Resolution, optimization, and
encoding of pointer variables for the behavioral synthesis
from c¢. In IEEE Transactions on Computer Aided Design,
pages 213-233, Feb. 2001.

C. Stoud, R. Munoz, and D. Pierce. Behavioral model
synthesis with cones. |EEE Design & Test of Computers,
5(3):22-30, June 1988.

J.-P. Talpin, D. Berner, S. Shukla, A. Gamatié, P. Le Guer-
nic, and R. Gupta. A behavioral type inference system for
compositional system-on-chip design. In International Con-
ference on Application of Concurrency to System Design
(ACSD), Hamilton, Canada, June 2004.

J.-P. Talpin, D. Berner, S. K. Shukla, A. Gamatié, P. Le
Guernic, and R. Gupta. Formal Methods and Modelsfor Sys-
tem Design, chapter Behavioral Type Inference for Compo-
sitional System Design. Kluwer Academic Publishers, June
2004.

J.-P. Talpin, P. Le Guernic, S. Shukla, and R. Gupta. Compo-
sitional behavioral modeling of embedded systems and con-
formance checking. International Journal on Parallel pro-
cessing, special issue on testing of embedded systems, 2005.
The Tree SSA project. Tree-SSA.
http://gcc.gnu. org/ projects/tree-ssa.

J. Zhu and W. S. Mong. Specification of non-functional
intellectual property components. In Proceedings of the
conference on Design, Automation and Test in Europe
(DATE' 03), Washington, DC, USA, 2003. IEEE Computer
Society.

http://gcc.gnu.org/projects/tree-ssa

	. Introduction
	. Preliminaries
	. Synchronous data-flow
	. Control Data Flow Graph
	. Static Single Assignment

	. Hardware/Software Design using C/C++
	. Translating C/C++ System Models into Signal Processes
	. Encoding SSA Graph
	Encoding SSA blocks
	Encoding Assignment Statements
	Encoding Functions
	Encoding Conditional Branching Statements
	Encoding Loop Statements

	. Encoding Pointers

	. Example
	. Implementation
	. Related Work
	. Conclusion

