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COMPARING THE BIDOMAIN AND MONODOMAIN
MODELS IN ELECTRO-CARDIOLOGY THROUGH
CONVERGENCE ANALYSIS

YVES BOURGAULT AND CHARLES PIERRE

ABSTRACT. The monodomain and bidomain models are widely used
in electro cardiology to simulate spreading of excitation potential
waves in the myocardium. The bidomain model is quite popular for
its physiological foundation and relevance whereas the monodomain
model simply is a heuristic approximation of the previous one, lacking
this physiological foundation but providing computational facilities.
The purpose of the present article is to numerically compare these
two models using a method of (numerical) convergence analysis. This
method enables to reach two different objectives of first importance in
biomedical engineering. Firstly it provides the discrepancy between
the models at the continuous level (and not between the discretised
equations only) by getting rid of the discretisation errors. Secondly,
it allows to estimate the discretisation error so providing necessary
grid resolution in order to run accurate enough simulation.

The comparison is held in terms of activation times, a quantity of ma-
jor physiological importance. Two test cases are considered, both in-
cluding enhanced cell membrane kinetic description, tissue anisotropy
and realistic macroscopic tissue parameters. The first test case is
based on an academic (a unit square) geometry. The second one in-
volves a 2d cut of a segmented human heart. It has been built from
3D medical data of the two ventricles and incorporates anisotropy
occurring from muscular fibre rotation around the ventricles.

Two conclusions are drawn from this study. In terms of activation
time relative error, the discrepancy between the two models is quite
small: of order 1% or even below. Moreover this error is smaller than
the discretisation error resulting from commonly used mesh size in
biomedical engineering.

1. INTRODUCTION

The bidomain model [29, 17, 1, 11, 30] is currently considered as the
most accurate and physiologically founded description for the electrical
cardiac behaviour and is widely used to simulate action potential spread-
ing in the myocardium as well as electrocardiograms. Its mathematical
formulation reads a system of two parabolic reaction diffusion equations,
or equivalently one parabolic reaction diffusion equation coupled with one
elliptic equation. This system is coupled with an ODE system describing
cell membrane kinetics. The mathematical properties of the bidomain
model are quite delicate to study. In [11] the bidomain model is studied
under the form of a degenerate system of parabolic reaction diffusion

Date: February 9, 2011.
Key words and phrases. Electro-cardiology, bidomain and monodomain models,
excitation process and activation time, reaction diffusion equations, numerical simu-

lations, anisotropic diffusion. 1



2 Y. BOURGAULT AND C. PIERRE

equations. It has been shown in [3] that it can also be reformulated into
one parabolic semi-linear PDE but including non locality in space. These
structural properties (degeneracy in one hand, non locality on the other)
bring numerical difficulties. One ill-conditioned linear system inversion
is required per time step. Moreover cardiac action potential involving
fast space and time potential variations, fine space and time grids must
be considered. For these two reasons simulating the cardiac electrical
activity with the bidomain model has a very high cost, and many ef-
forts towards the reduction of this cost have been made, e.g. [9, 14, 8|.
The monodomain model is a simplification of the bidomain model read-
ing a single parabolic reaction diffusion equation (still coupled with the
same ODE system modelling cell membrane). Although this simplifica-
tion has no mathematical general justification, and although the mon-
odomain model lacks physiological foundation, it is commonly used in
electro-cardiology: firstly because it obviously lead to much lower com-
putational efforts than the bidomain model (as analysed in [27]). The
second reason motivating the interest for the monodomain model is that,
as an approximation of the bidomain model, it may serve to improve
numerical scheme efficiency for the bidomain model [16] or to build pow-
erful preconditioners [15, 22]. The quality of the monodomain model
approximation cam moreover be numerically optimised as developed in
[20].

In comparison with the amount of papers dealing with the bidomain
and the monodomain models, quite few studies measuring the discrep-
ancy between these two models are available. In [10, 28], a precise approx-
imation of the bidomain model, namely the adapted monodomain model
(or modified monodomain), is stated and compared with the bidomain
model. In [10], Colli-Franzone et al. compared the two models on an aca-
demic 3D test case, a small slab of cardiac tissue, including anisotropy
(orthotropic or axysymmetric). Their comparison is based on activation
time, recovery time and action potential duration measurements. They
observed a strong qualitative agreement between the two models and a
noticeable quantitative difference (5 to 10 % of relative error on the ac-
tivation time e.g.). In [28], Potse et al. compared the two models on a
complete 3D human hear. The discrepancy between the models is here
reported to be small but not precisely measured (in terms of activation
time, recovery time and epicardial potential measurements). Although
a strong quantitative agreement for the epicardial potential depicted in
the paper is clear, quantitative differences are again visible.

Meanwhile, Potse et al. in [28] brought to the fore a fundamental ques-
tion: “when comparing the bidomain and monodomain models, how to
distinguish in the numerical results the amount of error due to the model
choice from the amount of error caused by discretisation ?” Precisely in
[28], potential wave velocities have been measured for both models on
two meshes of 0.1 and 0.2 mm resolution. On the finest grid the relative
error on the longitudinal velocity predicted by the two models is of 2.5
%. The same longitudinal velocity predicted by the bidomain model on
the two grids differ of 5.0 % (also of relative error). The error caused by
discretisation then is twice larger than the measured discrepancy between
the models. From the methodological point of view, no conclusion can be



drawn in such a situation concerning a quantification of the discrepancy
between the bidomain and monodomain models.

This example also illustrate that even on very fine meshes the discreti-
sation error might be as high as the model discrepancy. Appreciating this
error is not easy. From the theoretical point of view, a posteriori error
estimators for the quite complex bidomain model (involving enhanced
reaction terms in practice) and especially designed for physiologically
oriented criterion such as activation time or APD (action potential du-
ration) have not be developed yet. From the numerical point of view,
to the author knowledge very few studies intending to evaluate the dis-
cretisation errors through convergence analysis are available. Such a
convergence study has been presented in [2] concerning the approxima-
tion of the bidomain model by Discrete Duality Finite Volume . Though
the model setting was rather academical (involving in particular a very
simplified cell membrane description), it illustrates that the convergence
in terms of activation time is quite slow.

In this paper we propose a numerical methodology to evaluate the
discrepancy between the bidomain and adapted monodomain models at
the continuous level. Because of its particular physiological importance
the comparison criterion is here set to the activation time, though the
method used could also be applied to other criteria. The considered
method is a convergence analysis for the two models allowing to evaluate
the discretisation error and thus to get rid of it when evaluating the model
discrepancy. The two following purposes of same practical importance in
biomedical engineering are then addressed in this paper:

(1) measuring the discrepancy between the bidomain and monodomain
models,

(2) evaluating the discretisation error and providing necessary grid
resolution in order to obtain accurate simulations of cardiac spread-
ing of excitation.

Two different test cases are considered in dimension 2, both involving
complex ionic dynamics on the cell membrane and tissue anisotropy. A
first test for an academic geometry on the unit square. A second test case
on a 2D cut of a segmented human heart. For both test cases the Luo and
Rudy class II model of cell membrane [19] (for mammalian ventricular
cells) will be considered.

The paper is organised as follows. The bidomain and the adapted
monodomain models are formulated in Sec. 2. In Sec. 3 is presented the
methodology including the numerical implementation of the models and
the two tests case presentation. The simulation results are given in Sec.
4. Results are discussed and conclusions are drawn in Sec. 5.

2. MODELS

The heart of a living organism is assumed to occupy a fixed domain 2
that is a bounded open subset of R, d = 2,3. At the macroscopic scale
the cardiac tissue is considered as the superimposed of the intra-cellular
(1) and extra-cellular (e) media. The bidomain and adapted monodomain
models presented here describe the heart electrical activity at this scale.
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For a derivation of the bidomain model from physiological considerations
at the microscopic scale we refer to [29, 17, 1, 11, 30].

These two models involve two electrical potentials: the intra- and
extra-cellular potentials u;, u. : QQ — R, where () denotes the time-space
cylinder (0,7) x €. Their difference is referred to as the transmembrane
potential: v := u; —u, : @ +— R. The heart tissue has a fibrous or-
ganization into muscular fibres. This causes anisotropy for the electrical
conductivity described by two conductivity tensors o;(z) and o.(z) at
point z € (2. Introducing the conductivities gf’e, g;. longitudinal and
transverse to the fibres, these tensors read:

(1) oi(z) = Diag(gl, g!), oe(zx) = Diag(g., ¢t),

in a moving system of coordinates whose principal direction is given by
the fibre orientation at point x. The fibres are moreover assumed to be
tangent to the heart boundary 0f).

In this paper, we consider the case of an isolated heart (the interaction
with the surrounding tissues is neglected). This insulation assumption
reads a zero flux boundary condition on wu; and wu. physically meaning
that no current flows out of the heart. The fibres being tangent to OS2,
this condition is equivalent with:

(2) Vu;-n=Vu,-n=0 on 0,
(3) and so, Vv-n=0 on 0.

2.1. Bidomain model. The bidomain model reads the three following
equations, for (¢,z) € Q:

div((oi(z) + o.(x))Vu,.) = —div(o;(x)Vv),
(4) X (O + Lipn (v, W) — Ig(t, x)) = div(o;(2)V (ue + v)),
ow = g(v,w).

In equation 2, ¢ denotes the membrane surface capacitance, y is the rate
of cell membrane surface per unit volume (homogenization parameter),
Iy : @ — Ris the stimulation current (source term). I;,,(v, W) (reaction
term) denotes the surface ionic current distribution on the membrane: its
evolution is controlled by the gating variable w : Q — R via the ODE
system in line 3. The definitions of I;,, and of g are fixed by the chosen
ionic model in 2.4.

Equations in (4) are closed by the boundary condition (2) and by an
initial datum imposed on v and w:

(5) v(0,2) = vo(x), w(0,2) =wy(z), x€.

Clearly, the bidomain model equations (4), (2) and (5) are invariant
under the simultaneous change of u.,, u; into ue + k, u; + k for k € R:
we therefore impose the normalization condition

(6) /Que(t, Yz = 0.



2.2. Adapted monodomain model. The adapted monodomain model
is a simplification of the bidomain model where the transmembrane po-
tential is simply defined by a parabolic reaction-diffusion equation, for

(t,z) € Q:

0 { X (O + Lign (v, W) — Ig(t, x)) = div(oy, () Vo),

Orw = g(v, w),

with boundary condition (3) and initial condition (5). The conductivity
tensor o, is defined as the harmonic mean between o; and o,

(8) O () 1= 07 (z) + 0. ().

Again, since the fibres are tangent to the domain boundary, then o,,(z)n
and n have the same direction on 052, so that (3) precisely is the classical
homogeneous Neumann boundary condition on 9€) associated with the
operator div(c,,V-).

The potential v : @ — R being defined by equations (7) (3) (5), u. can
be recovered using the second equation in (4), this will not be discussed
here.

2.3. Comments. In the adapted monodomain model framework, v is
independent from wu.; whereas for the bidomain model, v and u. are
strongly coupled and in general none of these two quantities can be com-
puted independently from the other one. This illustrates a complete
difference of nature between these two models which we briefly discuss
here.

In [3] it has been showed that the bidomain model can be reformulated
in terms of v only as follows:

X (C@{U + [ion(v> W) - Ist(t7 .CE)) - AfUa atVV = g(”? W)7

where A denotes the harmonic mean between the two elliptic operators
div(o;V+) and div(c.V+). This operator is non-local in general, in the
following sense: Au(x) is not determined by the values of u in a neigh-
bourhood of the point z. Precisely, the definition of Au requires an
elliptic problem inversion. The strong coupling between v and u, pre-
cisely relies on this fact. However in some particular cases, namely in
dimension 1 or in case of equal anisotropy ratio (i.e. if o.(x) = k o;(x)
for some constant k& € R), one has the equality A = div(c,,,V-) for the
tensor o, in (8). In these cases, the two models coincide: they predict
exactly the same transmembrane potential v.

These cases are exceptional. In general A is non local and the two mod-
els do not match. The adapted monodomain model thus is based on
the heuristic approximation A ~ div(e,,V-). Its motivation is to benefit
from the numerical facilities provided by this approximation. On the
contrary of the bidomain model, no physiological interpretation for (7)
has to be sought.

We point out that the equal anisotropy ratio condition do not fit with the
experimental data. The conductivities considered in this paper (intro-
duced in the following subsection and given in Tab. 1) induce anisotropy
ratios between the longitudinal and transverse directions of 9.0 and 2.0
for the intra and extra-cellular media respectively.



6 Y. BOURGAULT AND C. PIERRE

2.4. Model settings. In (4) and (7), the reaction terms I;,, and g are
fixed by choosing an ionic model: such a model describes the ion transfer
across the cell membrane due to the cell metabolism. The gating variable
w being here aimed to characterise the state of the cell membrane. We
consider in this paper the Luo and Rudy II model [19] that has been
developed for mammalian ventricular cells.

Model parameters Value Unit
Cell membrane surface-to-volume ratio X € [1000,2000] [cm™]
Membrane surface capacitance c=1.0 [ F/em?]
Longitudinal intra-cellular conductivity gt =1.741 [mS/cm]
Transverse intra-cellular conductivity gl =0.1934 (mS/cm]
Longitudinal extra-cellular conductivity gl = 3.906 mS/cm)]
Transverse extra-cellular conductivity gt =1.970 [mS/cm]

TABLE 1. Bidomain and adapted monodomain model parameters

All along this paper, the reference length and time scales are respec-
tively set to the cm and ms. The macroscopic cardiac tissue parameters
are displayed in Tab. 1. In this table F and S stand for the Faraday and
the Siemens units.

Cardiac tissue conductivities are subject to strong individual variabilities
[7, 26]: ranges for these values are available in the review paper [6]. In
the present paper, conductivities are taken from [18]. The longitudinal
to transverse conductivity ratio is of 9.0 for the intra-cellular media and
of 2.0 for the extra-cellular media: thus clearly avoiding here the equal
anisotropy ratio where bidomain and monodomain models do coincide,
see Sec. 2.3. These conductivities induce an axial to transverse velocity
ratio of 2.6. Setting x to 1800 , axial and transverse velocities are of 0.5
and 0.19 m/s respectively, which data are in agreement with [26].

A wide range of values for the cell membrane surface to volume ratio
X also is available in the literature. In [25] the values of 3 300 and 6
600 cm ™1 is reported for a human adult and neonatal heart respectively.
A range of 2400 to 8400 cm™! is provided in [6]. Beyond physiological
questioning about valuing y we only focus In this paper on the impact of
its value for numerical computations. To measure this impact, a range
of x € [1000,2000] has been adopted here.

3. METHODOLOGY

3.1. Numerical methods. The following weak formulation of the bido-
main model is considered, Vi) € H'(Q):

(9)
/(ai + 0.)Vu, - Vipdr + / o; Vv - Vipdr = 0,
0 Q
(10)
X O /Q vpdr + X/Q(Ii(m(v,w) — Iy(x,t))de = /QUZ-V(ue +v) - Vipdz.

To this system is added the normalisation condition (6) to ensure unique-
ness on ..



This formulation is discretised in time using an Euler semi-implicit
scheme: implicit for the diffusion and explicit for the reaction. Spa-
tial discretisation has been led using Control Volumes Finite Elements
(CVFE, see eg [5]). One large linear system (symmetric and non-negative)
has to be inverted at each time step. These inversions are the main
numerical difficulty for the bidomain model: precise details on the im-
plementation, and on the preconditioning of the bidomain model are
available in [22].

The adapted monodomain model implementation is much simpler. We
consider the classical weak formulation of the parabolic equation (7). It
is discretised as for the bidomain model: using an Euler semi-implicit
scheme in time and a CVFE discretisation in space.

Remark 1. We eventually discuss the choice of the spatial discretisation.
We numerically experimented that the result quality is highly sensitive to
this choice. We compared 3 methods of order 2 (with respect to the mesh
size) for the elliptic problem discretisation: P1 finite element, Discrete
Duality Finite Volumes (DDFV, see eg [12, 2| as applied to the bidomain
model) and Control Volumes Finite Elements (CVFE, see eg [5]). The
CVFE method gave the best results and will be used here.

For the CVFE method the nodes are located at the mesh vertices, allow-
ing to associate to the numerical solution a P1 function on the mesh
elements, which property will be useful in the next subsection

3.2. Estimation of the errors. One searches to measure the discrep-
ancy between the bidomain and the adapted monodomain model at the
continuous level. For this one needs to get rid of the errors caused by the
discretisation. We proceed as follows:

- Firstly, we numerically study the convergence of the numerical
schemes for both the bidomain and the adapted monodomain
models, using series of successively refined meshes. An a poste-
riori error estimate then allows to evaluate the error induced by
discretisation.

- Secondly, the error between the (discrete) bidomain and adapted
monodomain models is computed on each mesh. Once this error
becomes wider than the discretisation errors measured in step
one, one can deduce the discrepancy between the (continuous)
bidomain and adapted monodomain models.

Because of its particular physiological importance, we adopt an error
criterion based on the activation time. Activation time ¢ : Q — R is
defined at each point x as the time ¢(z) such that v(¢(z),z) = v, for a
threshold value vy set here to —20 mV'. The value ¢(z) tells us at what
time the excitation wave reaches the point z. Activation time for test
cases 1 and 2 are depicted on Figs. 2 and 5 respectively.

Let us denote by ¥, the series of meshes. We consider the numerical
activation time ¢,, computed relatively to ¥,,. We compare ¢,,_ and ¢,
by introducing the projection én,l of ¢,_1 on the finer level ¥,,. For
this ¢,,_1 is considered as a P1 function (i.e. continuous piecewise affine)
on the elements of ¥, _;. The values of this function are computed on
the vertices of T,,, which data allows to define the considered projection
¢n_1 as a P1 function on the elements of ¥,,. The following relative error
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in L? norm is computed, as well as the (logarithmic) convergence rate r5
with respect to the mesh number of vertices denoted D,,:

o . log(ez'/ef)

11 3= [ dn1 = n B |
1) G he w1 = e

An error estimator €3,

||¢n - gbooHL2 < 5721’
[ dool| 2

on the relative error between the discrete activation time mapping ¢,
on ¥, and the activation time mappings ¢, for the continuous problem
is defined as follows. The asymptotic behaviour of e} is numerically
analysed using r5. Assuming that e} has a geometrical behaviour with
geometrical growth rate ¢, ie e} ~ geb ™', then we can derive the upper
bound:

||¢n - ¢oo||L2(Q) < ||¢n - ¢n+1||L2(Q) + ||¢n+1 - ¢n+2||L2(Q) + ...

IA

q
T qH(b" 1l 22(0)-
We thus will define
n q €
(12) €y 1= :
1 —qllomllize)
with M the index of the finest mesh ¥ ;.

We precise that saying that ej has an asymptotic geometrical be-
haviour is equivalent with saying that 5 goes to a constant r, in which
case ¢ can be deduced from r.

We define the (relative) discrepancy between the bidomain and adapted
monodomain models as:

165, — dnllr2(0)

1671l 22(0)
where b and m stands for bidomain and adapted monodomain respec-
tively.

(13) 0y =

3.3. Test cases.

3.3.1. Unit square. The following academic test case is considered. The
domain  is set to [0, 1]?, recalling that the cm is the reference length
scale. A series of 6 meshes (T,,),-16 of this domain, from 177 to 160 385
vertices, has been considered. These 6 meshes are triangle regular meshes
that have been generated using the Matlab mesher: the (n+ 1) mesh is
generated by cutting each triangle into 4 triangles. Thus, recalling that
D,, denotes the number of vertices of ¥,,, we have D,,.; =4D,,.

On this geometry the spreading of excitation potential waves is simulated
as depicted on Fig. 2. Excitation is initiated by applying a centered
stimulation during a short period of time, precisely: Iy(x,t) = 52 pA
for 5 <t < 5.1 and |xr — x9| < 0.1 (x¢ denoting the centre of 2) and
Iy (x,t) = 0 otherwise. Stimulation is applied at time ¢ = 5 rather than
t = 0 to ensure the ionic model to have reached its equilibrium rest state,
which state might not be reached initially because of the large number
of parameters in the Luo and Rudy II model and to possible rounding
errors on these parameters.



The model parameters are set following the data in Tab. 1: three dif-
ferent values for xy will be considered: y = 1000, y = 1500 or x = 2000
cm™ L.

Initial condition (5) is taken as the rest state for the ionic model: Iy, (vg, Wo) =
0 = g(vo,wp). The domain € is assumed to be composed of a bundle

of parallel horizontal muscular fibres, the following homogeneous tensors

are defined:

(14) 0i(x) = 0; .= Diag(g;, 9{) . 0e(w) = 0, == Diag(g., ge) -

3.3.2. 2D cut of a segmented heart. We now consider a realistic 2D set-
ting depicted on Fig. 1. The geometry has been obtained from the
segmentation of a medical image of a human heart [23]: it represents a
horizontal slice of the two ventricles with a resolution of 0.3 mm. The
geometry has a surface of 27 cm?.

F1GURE 1. Test case 2 settings: stimulation sites location
(above left) and fibrous structure of the tissue (above
right).

Four meshes (%,,),=1.4 of this geometry have been built using the algo-
rithm Distmesh! in [21]. These meshes precisely counting D; =117 285,
Dy =279 447, D3 =551 484 and D4 =1 110 270 vertices. Anisotropy is
given from the fibrous organisation of the tissue following (1). A set of
fibres rotating around the two ventricles and remaining tangent to the
boundary has been built. Stimulation is initiated at 4 sites (two on each
ventricle) on the endocardium. A stimulation current of 52 A is applied
during 0.1 ms at these locations at time 20 ms and 25 ms on the left
ventricle and right ventricle respectively. The stimulation site locations
as well as the delay of 5 ms between the stimulation of the left and of
the right ventricles is aimed to mimic experimental measurements on a
perfused heart in [13]. Stimulation is initiated at time t=20 ms rather
than ¢ = 0 for the same reason as in the Unit Square test case.

The model parameters are set following the data in Tab. 1, x is here
set to y = 1500 cm™1.

4. RESULTS

4.1. Unit square. The spreading of transmembrane potential wave v
(after centered stimulation at time ¢ = 5 ms) is depicted on Fig. 2 for

1DistMesh: “a simple mesh generator in  Matlab”,  http://www-
math.mit.edu/ persson/mesh/
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Bidomain Monodomain

FIGURE 2. Above: spreading of transmembrane potential
wave after stimulation (for the monodomain model, y =
1500). Potential maps are represented 3, 8 and 12 ms after
the stimulation. Below: comparison of the activation time
mappings predicted by the bidomain (left) and adapted
monodomain (right) models, on the finest mesh and also
for y = 1500 cm ™.

the adapted monodomain model and for y = 1500 cm~! on the finest

mesh. On Fig. 2 are also depicted the resulting activation time map-
pings for the bidomain and adapted monodomain models. As a first
observation, activation time predicted by both models are in qualitative
agreement, isolines displaying the same expected elliptical shape. A first
and simple quantitative comparison criterion on the propagation veloci-
ties also shows the concordance between the two model predictions: the
total time for the depolarisation wave to recover the whole domain is of
21.6 and 21.9 ms for the bidomain and monodomain models. Although
the bidomain model appears to be slightly faster, the relative error be-
tween these figures is of 1.4 %. This estimation can be reinforced by
comparing the relative error between the L? norm of the activation time
mappings:

||¢mono||L2 - ||¢bid||L2
15 ey = i
1) ’ 6iall 2

Computed on the finest mesh, we get ey = 0.85 1072, 0.97 1072 and
1.07 1072 for y = 1000, 1500 and 2000 respectively.

Numerical results on the convergence e and convergence rate r5 of the
activation time mappings in L? norm are displayed in Tab. 2 and Tab.
3 for the bidomain and adapted monodomain models respectively. For
both models the convergence of the activation time mapping is clearly ob-
served; it is moreover reasonable to assume an order -1 convergence with
respect to the mesh number of vertices D,,. This order -1 convergence
justifies the definition of the error estimator €3 in equation (12) taking
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F1GURE 3. Comparison of the discretisation error % (de-
fined in (12)) between the continuous and discrete solution
and of the relative discrepancy 05 (defined in (13)) between
the bidomain and monodomain models activation times in
L? norm. The comparison is depicted simultaneously for
the bidomain and monodomain models and for two values
of x.

q = 1/4, since D,, is here multiplied by 4 each time n is incremented of
1.

Results on the error estimator €5 are given in Tab. 4 for both models.
They also are displayed on Fig. 3 for the two values of x = 1000 and
X = 2000. Three immediate conclusions can be drawn from these figures.
Firstly the discretisation errors are quite similar for the bidomain and the
monodomain models. Secondly the discretisation error increases with .
Thirdly, obtaining a precise approximation using physiological values of
the parameter y necessitates to consider very fine meshes. These three
points will be discussed deeper on in the conclusion section 5.

The relative discrepancy §% between the (discrete) bidomain and adapted
monodomain models is quantified in Tab. 5. Numerical results in Tabs.
4 and 5 are summarised on Fig. 3 for y = 1000 and x = 2000. These
results clearly indicate that the discretisation error becomes smaller than
the discrepancy between the two models on the two finest meshes. More
precisely the discrepancy between the two models is larger than the dis-
cretisation error with roughly a factor 10 on the finest mesh. Thus the
discrepancy between the bidomain and the adapted monodomain models
on this test case appears to be smaller than 1%.

This estimation can be refined by examining more carefully the data in
Tab. 5. The sequence 05 decreases towards its limit for the three consid-
ered values of x, which limit we can try to extrapolate from the data. On
Fig. 4 is depicted 0% as a function of 1/D,, (D, still denoting the number
of vertices of the mesh ¥,,) in decimal logarithmic scale. For all the three
considered values of x the plots display an almost linear behaviour. The
slopes have been evaluated using a least square approximation taking
into account the 5 last data points only (i.e. skipping d3). The results
respectively are of 2.98, 3.10 and 3.20 for x = 1000, 1500 and 2000. This
means a convergence of order -0.33, -0.32 and -0.31 respectively of o5
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1.7
R Log(ég)

_ -1.75

- / | -1 .8

/

/Dy Log(1/D)
19 n

0.2 0.25 0.3 0.35 0.4 0.45 0.16 017 0.18 0.19 0.2

FIGURE 4. Extrapolation of the limit for 5 as n — +o0.
The discrepancy between the two models is depicted as a
function of 1/D,, in decimal logarithmic scale. Left: unit
square test case, for the three considered values of y. Right:
2D cut of a segmented heart test case.

with respect to D,,. From this we can conclude to a convergence of order
-1/3 of 0% with respect to the mesh number of vertices. The limit of 63
is then extrapolated by considering the intersection of this least square
best linear approximation of the 5 last data points with the y axis. The
extrapolated limits for 6% are of 0.26 %, 0.29 % and 0.30 % for x = 1000,
1500 and 2000 respectively.

We eventually point out that although these extrapolated limit values
are 2 to 3 times larger than the estimated discretisation errors in Tab 4
on the finest mesh, our numerical results remain too rough to provide a
precise approximation such as 0.3 %. We can however conclude that on
this test case, for the three considered values of y, the relative discrep-
ancy in L? norm between the activation time mapping predicted by the
bidomain and the adapted monodomain models is 2 to 3 times smaller
than 1 %.

4.2. 2D cut of a segmented heart. The spreading of transmembrane
potential wave v across the 2D segmented heart geometry is depicted on
Fig. 5 using the bidomain model (and for y = 1500 cm™!, which value is
fixed in this section). The activation time mappings simulated using the
bidomain and adapted monodomain models are displayed on the same
Fig. 5. As for the first test case, these activation times are in good
qualitative agreement. The total amount of time for the depolarisation
wave to recover the whole domain is of 77.48 and 79.34 ms for the bido-
main and monodomain models. The bidomain model again appears as
being slightly faster, the relative error between these two times is of 2.4
%. Computing the relative error between the L? norms of the activation
time mappings ey defined in (15) here gives e = 1.18 1072

The numerical results on the convergence are given in Tab. 6. We
here observe a convergence block between the third and the fourth mesh.
Although the L? distance ||¢,, — ¢n_1||z2 for n = 2, 3 normally decreases
(with a convergence rate 73 ~ —0.6 that could be in good agreement with
a -1 order of convergence with respect to D,, as observed for the previous
test case), this distance stops decreasing between meshes 3 and 4. This
convergence block moreover very similarly occurs for the bidomain and
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.99,3
79.7

1160.1
40,5

I20,9

Bidomain Monodomain

FIGURE 5. Above: spreading of transmembrane potential
wave across the segmented heart geometry, simulated using
the bidomain model on the finest mesh, y = 1500 cm™!.
Potential maps are represented 16, 32 and 48 ms after the
stimulation. Below: comparison of the activation time
mappings predicted by the bidomain (left) and adapted
monodomain (right) models, also on the finest mesh. Iso-
lines (in black) are separated by 10 ms. Stimulation is
initiated at time ¢ = 20 ms.

adapted monodomain models. Several assumptions can be advanced to
explain this phenomenon, that all rely on the quite complex setting of
this test case. The numerical geometry (the union of all triangles of the
mesh T,,) is not fixed. Practically, the inputs for the mesh construction
using the software Distmesh are the mesh size and a level set function.
This level set function itself is numerically defined on the underlying
segmentation grid. Because of the relative complexity of the segmented
domain, ¥, and ¥,,,; may not exactly recover the same region, so induc-
ing boundary errors for the projection ¢, of ¢, on T,.;. The anisotropy
tensors are not analytically defined and so do not converge to some limit
tensor: the anisotropy has been defined on the image segmentation grid
and simply projected on each meshes. This also is a plausible sourde of
error inducing the convergence block.

Despite this convergence block, the discretisation error estimator J
however has been computed as in the previous test case (that is assuming
a -1 order convergence with respect to the mesh number of vertices), the
results also are given in Tab 6. From these figures, it seems acceptable
to bound the relative discretisation error on the finest meshes to a few
percent: 3 to 4 %.

This range of discretisation error has to be put into perspective with the
first test case. The domain surface here is of 27 cm? and the finest mesh
approximately counts 40 000 vertices per cm?, and thus has the same
resolution as mesh 5 of the unit square. The discretisation error was
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for this mesh however 6 to 8 times smaller than presently. The complex
setting of this test case then induces a supplementary and significant
amount of discretisation error.

The relative discrepancy 95 between the bidomain and adapted mon-

odomain models itself do present a much finer behaviour that is depicted
on Fig. 4, data are precisely reported in Tab. 7. In decimal logarithmic
scale, 6% displays a linear dependence with 1/D,,, with slope 4.9 (using a
least square best approximation of the data with a linear mapping). Thus
0% seems to converge towards its limit with an order -1/5 convergence
with respect to the mesh number of vertices. Here again we observe a
slow down in the convergence as compared to the first test case where
the convergence (already quite slow) had been evaluated to be of order
—1/3 with D,,. Extrapolating the limit from this data provides us a
discrepancy between the continuous bidomain and adapted monodomain
models of 0.2 %.
Because of the convergence block previously discussed, and to the amount
of discretisation error evaluated to 3 to 4 %, it is not reasonable to raise
such a conclusion. From the quality of the result on 6%, we however
conclude to a discrepancy of order 1 % or even below 1 % between the
activation time mappings of the continuous bidomain and adapted mon-
odomain models.

5. DISCUSSION

This paper was aimed to present a precise and numerically documented
comparison of the bidomain and adapted monodomain models for the
simulation of cardiac electro-physiology. The models definition, their
numerical implementation and the general methodology for their com-
parison has been clearly stated. The comparison methodology relies on
two points: the definition of a physiologically relevant comparison crite-
rion (based on activation time comparison) and a numerical convergence
analysis of the two models to get rid of discretisation errors. Comparison
has been led on two test cases both involving complex ionic dynamics
and realistic macroscopic tissue parameter settings: the first one for an
academic unit square geometry and the second one for a complex 2D cut
of segmented human ventricles.

Two main conclusions are drawn by analysing these two test case re-
sults,

(1) the amount of error caused by discretisation for commonly used
grid resolutions is quite high,

(2) the discrepancy between the two model predictions is very small,
of order 1 % or even below 1 % of relative error in L? norm.

5.1. Discretisation error. The (relative) discretisation error on the ac-
tivation time has been evaluated on the two test cases. For both test
cases, this amount of error has been quantified to be quite large even
for fine grids (i.e. fine when compared to the mesh size commonly used
in biomedical engineering). This error moreover increases when going
towards complex settings. On the contrary, skipping from the bidomain
to the monodomain model has no real influence on this error. To the



15

author appreciation, once the ionic model set, the main factor of dis-
cretisation error is the value of the parameter y. The influence of x on
the discretisation error has been evaluated for the unit square test case.
As expected, the highest x, the largest the discretisation error. Indeed,
for both the bidomain and the monodomain models, y could be rescaled
to the value of 1 by changing the space variable z into z,/X. Therefore
the mesh number of vertices has to be proportional to y%? (with d the
space dimension). More phenomenologically, the greatest x the sharpest
the wave fronts: thus more points are needed to obtain a good approx-
imation inside the wave front location. The number of points needed
transversally to the wave front then is proportional to /X.

The physiological range of values for x (from 2400 to 8400 cm™! in [6])
then imply very important computational efforts. Numerical simulations
based on the bidomain or the monodomain models commonly depreciate
this value (from 1000 to 2000 in this paper, x =1000 in [10, 28], x = 500
in [24, 4], e.g.). As a simple illustration: to predict activation times with
a tolerance relative error of 5 % using the (physiologically still under es-
timated) value y = 2000 cm ™! necessitates to require a mesh resolution
of 0.1 mm on the unit square test case or even less for more complex
simulation. This would mean more than 1 million of points per cm? in
dimension 3. Asking for a 1 % relative error would increase this figure
to 8 million points per cm? (0.05 mm resolution grid). Although these
estimations are quite rough, context depending and could be decreased
using more accurate numerical methods (increasing the order e.g.), we
conclude that running accurate simulations of cardiac electrical activity
remains challenging in this context for physiological values of the param-
eter x.

5.2. Model comparison. For the two test cases the discrepancy has
been evaluated to be of order 1 % in terms of L? activation time relative
error.

The first test case involved a simple anisotropy type for the tissue and a
simple central excitation that resulted into basic patterns of excitation:
elliptical isolines for the activation time. The discrepancy in this case
has been evaluated to be even smaller than 1 % and was bounded above
by 1/2 or 1/3 % (uncertainties remaining due to numerical noise).

The second test case involved a much more sophisticated setting in terms
of geometry, anisotropy and stimulation settings inducing enhanced pat-
terns of excitation. Although the discrepancy analysis was made harder
in this case, we concluded to an order 1 % or even below of relative error
between the two models.

The following two points are interesting to notice. Firstly the discrep-
ancy was measured for three values of x in the first test case: 1000, 1500
and 2000 cm ~!. In first approximation the influence of x is not visi-
ble. Secondly the discretisation imply an over-estimation of the model
discrepancy: in Tabs. 5 and 7, d5 decreases with the mesh size.

Although we obtained a comparable order of discrepancy between the
models for two quite different test cases, our reported order of 1 % of error
cannot be generalised and its dependence with the model parameters
still need to be evaluated. As already mentioned y has no important
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influence on the model discrepancy. However the conductivities might
have a great impact since in case of equal anisotropy the discrepancy is
of zero. Considering the following ratio p:

_ 9i/9
gL/t

equal to 1 in case of equal anisotropy ratio and satisfying p > 1 in
physiological settings. The model discrepancy is expected to grow up
with p.

The only reported bidomain and monodomain discrepancy in terms of
activation time comparison available in the literature (and also computed
using L? norms) is available in [10]. In this paper Colli-Franzone et al.
measured this discrepancy on a 3D slab of tissue either with axisymmetric
or orthotropic anisotropy. They measured a significantly higher discrep-
ancy than we did: 6.3 % and 11.3 % for the two different anisotropic
settings respectively. Although they considered a different ionic model
(Luo and Rudy type I model) and a different value of y (1000 cm™!) we
think that the observed difference rather lies in the two following points.
Firstly the conductivities in [10] imply a value of p = 7.1 whereas p = 4.5
here: we then are further from the equal anisotropy ratio in this paper.
Secondly the mesh size in [10] is of 0.1 mm. The discretisation error on
such a fine grid might remain high in a complex 3D anisotropic setting
leading to an over estimation of the model discrepancy.

P

5.3. Conclusion. The discrepancy between the (continuous) bidomain
and adapted monodomain models has been evaluated to be of order 1
% in terms of relative error on the activation time. This is quite small:
such a range of error is negligible for a field (biological sciences) where
the tolerance on the data errors is much larger. Meanwhile the amount
of error induced by the discretisation shall be even higher than the model
discrepancy for commonly used mesh resolution in biomedical engineer-
ing. Therefore, to the authors feeling, the monodomain model should
be preferred to the bidomain model to simulate patterns of excitation
in the cardiac tissue taking advantage of its lightest implementation and
computational cost.
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APPENDIX A. TABLES

x = 1000 x = 1500 x = 2000
n| D, es | 1} e | 13 e | 13
1 177
2] 665 9.20 17.7 32.4
3| 2577 2.82 -0.87 4.79 -0.96 6.91 -1.14
4| 10 142 0.851 |-0.88 1.53 -0.83 2.29 -0.81
5| 40 257 0.151 | -1.25 0.300 |-1.18 0.490 |-1.12
6| 160 385 || 4.66 1072 [ -0.85 || 6.89 1072 | -1.06 | 9.63 1072 | -1.18
TABLE 2. Unit square. Bidomain model: convergence of
the activation time ¢,,. The error indicator e and conver-
gence rate ry being defined in (11).
x = 1000 x = 1500 x = 2000
n| D, ey | 1y ey | 1y es | 13
1 177
2] 665 9.79 19.6 37.7
3| 2577 3.04  [-0.86 5.15 [-0.99 | 7.44 |-1.20
41 10 142 0.949 |-0.85 1.68 |-0.82 2.49 | -0.80
51 40 257 0.198 |-1.14 || 0.314 |-1.09 || 0.590 | -1.05
6 | 160 385 || 3.731072 | -1.21 || 6.991072 [ -1.22 || 0.111 | -1.21
TABLE 3. Unit square. Adapted monodomain model: con-
vergence of the activation time ¢,. The error indicator e}
and convergence rate 5 being defined in (11).
ey: Bidomain eh: Adapted Monodomain
n D, x = 1000 [ x = 1500 | x = 2000 || x = 1000 [ x = 1500 | x = 2000
1 177
2| 665 0.21 0.35 0.59 0.22 0.39 0.68
3] 2577 [ 631072 | 9.6 1072 0.13 6.8 1072 0.10 0.13
4110142 [[ 191072 | 3.01072 | 421072 | 211072 | 3.31072 | 451072
5] 40257 [ 3.41072% | 6.0107% | 9.0107% || 441073 | 741073 | 1.1 1072
6160385 1.01073 [ 1.4102 [ 1.81072 | 83107 [ 1.4 1072 | 2.0 1073

TABLE 4. Unit square. Relative error estimation on ¢,
for the bidomain and adapted monodomain models. The
error indicator €} being defined in (12).
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n D, X:1000\x:1500\><:2000
1 177 418 1072]7.07 1072 0.11

2 665 2.871072[3.46 1072 [3.95 1072
3| 2577 [/2.001072]2.421072]2.73 1072
410142 [[1.471072[1.76 1072 | 1.99 102
5140257 [[1.121072[1.33 1072 1.49 1072
6| 160 3851 9.59 1073 1.10 1072 [ 1.20 1072

TABLE 5. Unit square.

Discrepancy between the (dis-

crete) bidomain and adapted monodomain models. The
relative discrepancy 0% is defined in (13).

Bidomain Monodomain
n D, ey | 3 | e} ey | 3 | e}
1| 117 285
2 279 447 || 17.2 431072 ] 18.1 4.4 1072
3] 551484 [[11.4]-0.60]4.0107211.8]-0.63 | 4.1 102
4111102701 11.0]-0.05[3.71072 [ 11.3|-0.06 | 3.8 1072

TABLE 6. 2D cut of a segmented heart. Convergence of
the activation time ¢, for the bidomain and the mon-
odomain models. The error indicator ej and convergence
rate ry being defined in (11). The discretisation error es-
timator €} is defined in (12).

n D, 0y

1] 117285 [ 1.94 1072
2| 279 447 [/ 1.65 1072
3| 551484 [[1.50 1072
411110270 1.35 1072
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TABLE 7. 2D cut of a segmented heart. Discrepancy be-
tween the (discrete) bidomain and adapted monodomain
models on the heart slice geometry (xy = 1500 cm™).
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