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A COMPARISON OF THE BIDOMAIN AND THE

ADAPTED MONODOMAIN MODELS IN

ELECTRO-CARDIOLOGY

CHARLES PIERRE AND YVES BOURGAULT

Abstract. In this paper we compare two commonly used mod-
els in electro-cardiology: the bidomain and the (adapted) mon-
odomain models. These models are used to simulate spreading of
excitation and recovery in myocardial tissues including anisotropic
conduction due to muscular fiber rotations. The comparison is
held numerically considering the activation time mappings pre-
dicted by the two models. Two test cases are considered: firstly a
two-dimensional academic test case and secondly a realistic setting
involving a complex geometry of the ventricles based on a medical
image segmentation and rotating anisotropy. To distinguish be-
tween the error induced by the discretisation and the discrepancy
between the models, a convergence numerical study is made. From
these numerical studies two facts are drawn: the discrepancy be-
tween the two models is quite small (of order or below 1%) and
smaller than the discretisation error for commonly ran simulations
in biomedical engineering.

1. Introduction

The bidomain model [23, 14, 1, 9, 24] is currently considered as the
most accurate and physiologically founded description for the electrical
cardiac behaviour and is widely used to simulate action potential speed-
ing in the myocardium as well as electrocardiograms. Its mathematical
formulation reads a system of two parabolic reaction diffusion equa-
tions, or equivalently one parabolic reaction diffusion equation coupled
with one elliptic equation. This system is coupled with an ODE sys-
tem describing cell membrane kinetics. The mathematical properties
of the bidomain model are quite delicate: it has been shown in [3] that
it can be reformulated into one parabolic semi-linear PDE but includ-
ing non locality in space. These structural properties bring numerical
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difficulties. One ill-conditioned linear system inversion is required per
time step. Moreover cardiac action potential involving fast space and
time potential variations, fine space and time grids must be consid-
ered. For these two reasons simulating the cardiac electrical activity
with the bidomain model has a very high cost, and many efforts to-
wards the reduction of this cost have been made, e.g. [7, 11, 6]. The
monodomain model is a simplification of the bidomain model read-
ing a single parabolic reaction diffusion equation (still coupled with
the same ODE system modelling cell membrane). Although this sim-
plification has no mathematical general justification, and although the
monodomain model lacks physiological foundation, it is commonly used
in electro-cardiology: firstly because it obviously lead to much lower
computational efforts than the bidomain model (as analyzed in [22]).
The second reason motivating the interest for the monodomain model
is that, as an approximation of the bidomain model, it may serve to
improve numerical scheme efficiency for the bidomain model [13] or to
build powerful preconditioners [12, 12]. The quality of the monodomain
model approximation cam moreover be numerically optimized as de-
veloped in [17]

In comparison with the amount of papers dealing with the bidomain
and the monodomain models, quite few studies measuring the discrep-
ancy between these two models are available. In [8, 19], a precise ap-
proximation of the bidomain model, namely the adapted or modified
monodomain model, is stated and compared with the bidomain model.
In [8], Colli-Franzone et al. compared the two models on an academic
3D test case, a small slab of cardiac tissue, including anisotropy (or-
thotropic or axysymmetric). Their comparison is based on activation
time, recovery time and action potential duration measurements. They
observed a strong qualitative agreement between the two models and
a noticeable quantitative difference (5 to 10 % of relative error on the
activation time e.g.). In [19], Potse et al. compared the two models
on a complete 3D human hear. The discrepancy between the models
is here reported to be small but not precisely measured (in terms of
activation time, recovery time and epicardial potential measurements).
Although a strong quantitative agreement for the epicardial potential
depicted in the paper is clear, quantitative differences are again visible.

One problem raised with these two papers is: what is the amount
of error really due to the change of model and what is the error due
to discretisation ? Although fine meshes have been considered (the
mesh size ∆x is of 0.1 mm in [8] and of 0.2 mm in [19]) it is not clear
whether this resolution is sufficiently small to dissipate discretisation
error from the results. Discretisation error are even pointed out in [19]:
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potential wave velocities are measured on two meshes of 0.1 and 0.2
mm resolution for both models. The discretisation errors are of order
5% and 20% for the velocities along and transversally to the muscular
fibres respectively. This illustrate that even on very fine meshes the
discretisation error might be as high as the model discrepancy.

In this paper we address the question of the discrepancy between the
two models at the continuous level. The error criterion is the activation
time. To get rid of the discretisation error, a convergence study is
made: using series of successively refined meshes. Two different test
cases are considered in dimension 2: an academic test case on the unit
square including constant anisotropy and a realistic second test case on
a slice of the two ventricles obtained via medical image segmentation
and including rotating anisotropy. For both test cases the Luo and
Rudy class II model of cell membrane [16] (for mammalian ventricular
cells) will be considered.

The paper is organized as follows. The bidomain and the adapted
monodomain models are formulated in Sec. 2. In Sec. 3 the numerical
implementation of the models is described as well as the two tests cases.
The simulation results are given in Sec. 4, conclusions are drawn in
Sec. 5.

2. Models

The heart of a living organism is assumed to occupy a fixed domain
Ω that is a bounded open subset of R

d, d = 2, 3. At the macro-
scopic scale the cardiac tissue is considered as the superimposed of
the intra-cellular (i) and extra-cellular (e) media. The bidomain and
adapted monodomain models presented here describe the heart elec-
trical activity at this scale. For a derivation of the bidomain model
from physiological considerations at the microscopic scale we refer to
[23, 14, 1, 9, 24].
These two models involve two electrical potentials: the intra- and

extra-cellular potentials ui, ue : Q 7→ R, where Q denotes the time-
space cylinder (0, T ) × Ω. Their difference is referred to as the trans-
membrane potential : v := ui − ue : Q 7→ R. The heart tissue has
a fibrous organization into muscular fibres. This causes anisotropy for
the electrical conductivity described by two conductivity tensors σi(x)
and σe(x) at point x ∈ Ω. Introducing the conductivities gli,e, g

t
i,e lon-

gitudinal and transverse to the fibres, these tensors read:

σi(x) = Diag(gli, g
t
i), σe(x) = Diag(gle, g

t
e),(1)
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in a moving system of coordinates whose principal direction is given
by the fibre orientation at point x. The fibres are moreover assumed
to be tangent to the heart boundary ∂Ω.

In this paper, we consider the case of an isolated heart (the in-
teraction with the surrounding tissues is neglected). This insulation
assumption reads a zero flux boundary condition on ui and ue physi-
cally meaning that no current flows out of the heart. Because of the
tangency of the fibres along ∂Ω, this condition is equivalent with:

∇ui · n = ∇ue · n = 0 on ∂Ω,(2)

and so, ∇v · n = 0 on ∂Ω.(3)

2.1. Bidomain model. The bidomain model reads the three following
equations, for (t, x) ∈ Q:

(4)











div((σi(x) + σe(x))∇ue) = −div(σi(x)∇v),

χ (c∂tv + Iion(v,w)− Ist(t, x)) = div(σi(x)∇(ue + v)),

∂tw = g(v,w).

In equation 2, c denotes the membrane surface capacitance, χ is the rate
of cell membrane surface per unit volume (homogenization parameter),
Ist : Q 7→ R is the stimulation current (source term). Iion(v,w)
(reaction term) denotes the surface ionic current distribution on the
membrane: its evolution is controlled by the gating variable w : Q 7→
R

N via the ODE system in line 3. The definitions of Iion and of g are
fixed by the chosen ionic model in 2.4.
Equations in (4) are closed by the boundary condition (2) and by an
initial datum imposed on v and w:

(5) v(0, x) = v0(x), w(0, x) = w0(x), x ∈ Ω.

Clearly, the bidomain model equations (4), (2) and (5) are invariant
under the simultaneous change of ue,, ui into ue+ k, ui + k for k ∈ R:
we therefore impose the normalization condition

(6)

∫

Ω

ue(t, ·)dx = 0.

2.2. Adapted monodomain model. The adapted monodomain model
is a simplification of the bidomain model where the transmembrane po-
tential is simply defined by a parabolic reaction-diffusion equation, for
(t, x) ∈ Q:

(7)

{

χ (c∂tv + Iion(v,w)− Ist(t, x)) = div(σm(x)∇v),

∂tw = g(v,w),
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with boundary condition (3) and initial condition (5). The conductivity
tensor σm is defined as the harmonic mean between σi and σe,

(8) σ−1
m (x) := σ−1

i (x) + σ−1
e (x).

Again, the tangency of the fibres to the domain boundary implies that
σm(x)n and n have the same direction on ∂Ω, so that (3) precisely is the
classical homogeneous Neumann boundary condition on ∂Ω associated
with the operator div(σm∇·).

The potential v : Q 7→ R being defined by equations (7) (3) (5),
ue can be recovered using the second equation in (4), this will not be
discussed here.

2.3. Comments. In the adapted monodomain model framework, v is
independent from ue; whereas for the bidomain model, v and ue are
strongly coupled and in general none of these two quantities can be
computed independently from the other one. This illustrates a com-
plete difference of nature between these two models which we briefly
discuss here.
In [3] it has been showed that the bidomain model can be reformulated
in terms of v only as follows:

χ (c∂tv + Iion(v,w)− Ist(t, x)) = Av, ∂tw = g(v,w),

where A denotes the harmonic mean between the two elliptic opera-
tors div(σi∇·) and div(σe∇·). This operator is non-local in general, in
the following sense: Au(x) is not determined by the values of u in a
neighbourhood of the point x. Precisely, the definition of Au requires
an elliptic problem inversion. The strong coupling between v and ue
precisely relies on this fact. However, in some particular cases (in di-
mension 1 or in case of equal anisotropy ratio, i.e. if σe(x) = k σi(x)
for k ∈ R) one has the equality A = div(σm∇·): i. e. the two models
here coincide.
These cases are exceptional. In general A is non local and the two
models do not match. The adapted monodomain model thus is based
on the heuristic approximation A ≃ div(σm∇·). Its motivation is to
benefit from the numerical facilities provided by this approximation.
On the contrary of the bidomain model, no physiological interpreta-
tion for (7) has to be sought.
We point out that the equal anisotropy ratio condition do not fit with
the experimental data. The conductivities considered in this paper
(introduced in the following subsection and given in Tab. 1) induce
anisotropy ratios between the longitudinal and transverse directions of
9.0 and 2.0 for the intra and extra-cellular medias respectively.
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2.4. Model settings. In (4) and (7), the reaction terms Iion and g
are fixed by choosing an ionic model: such a model describes the ion
transfer across the cell membrane due to the cell metabolism. The
gating variable w being here aimed to characterise the state of the cell
membrane. We consider in this paper the Luo and Rudy II model [16]
that has been developed for mammalian ventricular cells.

We shall use in this papers the parameters in Tab. 1. Cardiac
tissue conductivities as well as χ are values subject to strong individual
variabilities [5, 21]. A range for χ of 1500-2000 cm−1 seems suitable.
Conductivities are taken from [15]. They induce an axial/transverse
velocity ratio of 2.6. Setting χ to 1800 , axial and transverse velocities
are of 0.5 and 0.19 m/s respectively, which data are in agreement with
[21].

3. Methods

3.1. Test case 1. The following academic test case is considered. The
domain Ω is set to [0, 1]2, a series of 6 meshes (from 177 to 160 000
nodes) is considered. Space and time steps being divided by two from
level n to level n+1. On this geometry spreading of excitation potential
waves is stimulated as depicted on Fig. 2. Excitation is initiated by
applying a centered stimulation during a short period of time, precisely:
Ist(x, t) = 52 µA for 5 < t < 5.1 and |x − x0| < 0.1 (x0 denoting the
centre of Ω) and Ist(x, t) = 0 otherwise. Initial condition (5) is taken
as the rest state for the ionic model: Iion(v0,w0) = 0 = g(v0,w0). The
domain Ω is assumed to be composed of a bundle of parallel horizontal
muscular fibres, the following homogeneous tensors are defined:

(9) σi(x) = σi := Diag(gli, g
t
i) , σe(x) = σe := Diag(gle, g

t
e) .

3.2. Test case 2. We now consider a realistic 2D settings depicted on
Fig. 1. The geometry has been obtained from the segmentation of a
medical image of a human heart [20]: it represents a horizontal slice
of the two ventricles with a resolution of 0.3 mm. Four meshes of this
geometry have been built: from 143 000 to 1 257 000 nodes. Anisotropy
is given from the fibrous organisation of the tissue following (1). A set
of fibres rotating around the two ventricles and remaining tangent to
the boundary has been built. Stimulation is initiated at 4 places (two
on each ventricle) on the endocardium. A stimulation current of 52 µA
is applied during 0.1 ms at these locations at time 20 ms and 25 ms
on the left ventricle and right ventricle respectively.
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3.3. Implementation. The following weak formulation of the bido-
main model is considered, ∀ψ ∈ H1(Ω):

∫

Ω

(σi + σe)∇ue · ∇ψdx+

∫

Ω

σi∇v · ∇ψdx = 0,

(10)

χc∂t

∫

Ω

vψdx+ χ

∫

Ω

(Iion(v,w)− Ist(x, t))ψdx =

∫

Ω

σi∇(ue + v) · ∇ψdx.

(11)

To this system is added the normalisation condition (6) to ensure
uniqueness on ue.

This formulation is discretised in time using an Euler semi-implicit
scheme: implicit for the diffusion and explicit for the reaction. Spa-
tial discretisation has been led using Control Volumes Finite Elements
(CVFE, see eg [4]). One large linear system (symmetric and non-
negative) has to be inverted at each time step. These inversions are
the main numerical difficulty for the bidomain model: precise details
on the implementation, and on the preconditioning of the bidomain
model are available in [18].

The adapted monodomain model implementation is much simpler.
We consider the classical weak formulation of the parabolic equation
(7). It is discretised as for the bidomain model: using an Euler semi-
implicit scheme in time and a CVFE discretisation in space.

Remark 1. We eventually discuss the choice of the spatial discreti-
sation. We numerically experimented that the result quality is highly
sensitive to this choice. We compared 3 methods of order 2 for the
elliptic problem discretisation: P1 finite element, Discrete Duality Fi-
nite Volumes (DDFV, see eg [10, 2] as applied to the bidomain model)
and Control Volumes Finite Elements (CVFE, see eg [4]). The CVFE
method gave the best results and will be used here.
For the CVFE method the nodes are located at the mesh vertices, allow-
ing to associate to the numerical solution a P1 function on the mesh
elements, which property will be useful in the next subsection

3.4. Numerical test. One searches to measure the discrepancy be-
tween the bidomain and the adapted monodomain model at the con-
tinuous level. For this one needs to get rid of the errors caused by the
discretisatrion. We proceed as follows:

- Firstly, we numerically study the convergence of the numerical
schemes for both the bidomain and the adapted monodomain
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models, using series of successively refined meshes. An a pos-
teriori error estimate then allows to evaluate the error induced
by discretisation.

- Secondly, the error between the (discrete) bidomain and adapted
monodomain models is computed on each mesh. Once this error
becomes wider than the discretisation errors measured in step
one, one can deduce the discrepancy between the (continuous)
bidomain and adapted monodomain models.

Because of its particular physiological importance, we adopt an error
criterion based on the activation time. Activation time φ : Ω 7→ R is
defined at each point x as the time φ(x) such that v(φ(x), x) = vs for
a threshold value vs set here to −20 mV . The value φ(x) tells us at
what time the excitation wave reaches the point x. Activation time for
test cases 1 and 2 are depicted on Figs. 2 and 3 respectively.

Let us denote by Tn the series of meshes. We consider the numerical
activation time φn computed relatively to Tm. We compare φn and
φn+1 by introducing the projection φ̃n of φn on the finer level Tn+1. For
this φn is considered as a P1 function (i.e. continuous piecewise affine)
on the elements of Tn. The values of this function are computed on the
vertices of Tn+1, which data allows to define the considered projection
φ̃n as a P1 function on the elements of Tn+1. The following error is
computed:

(12) en2 := ‖φ̃n − φn−1‖L2(Ω) , rn2 :=
en−1
2

en2
.

We define the discrepancy between the bidomain and adapted mon-
odomain models as:

(13) δn2 :=
‖φb

n − φm
n ‖L2(Ω)

‖φb
n‖L2(Ω)

,

where b and m stands for bidomain and adapted monodomain respec-
tively.

4. Results

Test case 1. Numerical results on the convergence of the activation
time are displayed in Tab. 2 and Tab. 3 for the bidomain and adapted
monodomain models respectively. In both cases assuming an order 2
convergence with respect to the mesh size ∆x seems reasonable.
Let us denote by φ∞ the activation time for the continuous problem.
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Following (rough) estimate,

‖φn − φ∞‖L2(Ω) ≤ ‖φn − φn+1‖L2(Ω) + ‖φn+1 − φn+2‖L2(Ω) + . . .

≤
1/4

1− 1/4
‖φn − φn−1‖L2(Ω).

We introduce a relative error estimator εn2 as:

(14) εn2 :=
1

3

en2
‖φ6‖L2(Ω)

.

which estimator will be considered as an upper bound on ‖φn−φ∞‖L2(Ω)/‖φ∞‖L2(Ω).
Numerical results on εn2 are given in Tab. 4. These results illustrate
that to obtain a good approximation of φ∞ necessitates to consider
really fine meshes: for an approximation of order 1% a space resolution
of order 0.05 mm is needed.

The discrepancy δn2 between the (discrete) bidomain and adapted
monodomain models is quantified in Tab. 5. Comparing these fig-
ures with Tab 4, one can see that for the finest mesh the discrepancy
between the two models is higher than the discretisation errors with a
factor 10. Thus the discrepancy between the bidomain and the adapted
monodomain models appears of order 1%. Moreover one can infer from
the figures in Tab. 5 a convergence of δn2 of order 3/2 with respect to
the number of nodes. From this constatation one concludes to a dis-
crepancy of 0.7 % ± 0.1%. It is remarkable that this estimate seems
to be independent with the value of χ.

Test case 2. Convergence of both models is harder to observe
in such a precise way as in test case 1 here. This is caused by the
complexity of the model: the numerical geometry (the union of all
triangles of one mesh) is not constant but simply converging towards
the segmented heart domain. More precisely, the numerical results
obtained showed that the discretisation error on the finest mesh is less
than 3% for both models. This discretisation error is here 2 or 3 times
higher than for test case one when comparing at equal mesh size.

The discrepancy δn2 between the (discrete) bidomain and adapted
monodomain models has been computed and is given in Tab. 6. The
figures are coherent enough to postulate a a discrepancy of roughly 1%
that is moreover coherent with the results of test case 1.

5. Conclusion

The activation time computed with the bidomain and the adapted
monodomain models were compared using firstly a two-dimensional
academic test case and secondly a realistic setting involving a complex
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geometry of the ventricles and rotating anisotropy. We draw the fol-
lowing two conclusions from this numerical study.

Firstly the discrepancy between the (continuous) bidomain and adapted
monodomain models is quite small: in terms of relative error on the
activation time, it is of order 1% for test case 2 and even smaller for
test case 1. For the authors, Such a range of error is negligible for a
field (biological sciences) where the tolerance on the data errors is much
larger. It is also interesting to notice that this discrepancy (or rather
its numerical approximation at first order) seems to be independent
from the scaling parameter χ.

Secondly, the convergence study we made shows that the amount of
error induced by the discretisation is high even on quite fine meshes.
As expected, the higher χ, the larger this error. Using a realistic value
for χ in computations (χ ∈ [1500, 2000]) necessitates to use very fine
meshes. The comparison between the two test cases moreover shows
that this discretisation error is increased when considering complex ge-
ometries and non constant anisotropy.

As a result it appears that for usually ran simulations in biomedical
engineering, the amount of error induced by the discretisation shall be
higher than the real discrepancy between the models.
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Value Unit

Cell membrane surface-to-volume ratio χ = 1000− 2000 [cm−1]
Membrane surface capacitance c = 1. [µ F/cm2]
Longitudinal intra-cellular conductivity gli = 1.741 [mS/cm]
Transverse intra-cellular conductivity gti = 0.1934 [mS/cm]
Longitudinal extra-cellular conductivity gle = 3.906 [mS/cm]
Transverse extra-cellular conductivity gte = 1.970 [mS/cm]
Table 1. Bidomain and adapted monodomain models parameters

Figure 1. Test case 2 settings: stimulation sites loca-
tion (above left) and fibrous structure of the tissue (above
right).

# nodes en2 rn2 en2 rn2 en2 rn2
665 9.20 17.7 32.4
2 577 2.82 3.3 4.79 3.7 6.91 4.7
10 142 0.851 3.3 1.53 3.1 2.29 3.0
40 257 0.151 5.6 0.300 5.1 0.490 4.7
160 385 4.66 10−2 3.2 6.89 10−2 4.4 9.63 10−2 5.1
Table 2. Bidomain model: convergence of the activa-
tion time φn From left to right: χ = 1000, 1500 and 2000
cm−1.
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Université de Pau et du Pays de l’Adour

av. de l’Université BP 1155

64013 PAU Cedex - FRANCE

E-mail address: charles.pierre@univ-pau.fr

Department of mathematic and statistics, University of Ottawa.

E-mail address: ybourg@uottawa.ca



13

Figure 2. Activation time (above-left) and transmem-
brane potential wave spreading for the adapted mon-
odomain model, χ = 1500 on the finest mesh. The iso-
lines (in black, above-left) are separated by 3 ms. Poten-
tial mappings are represented 3, 8 and 12 ms after the
stimulation. Stimulation is initiated at time t = 5 ms.

# nodes en2 rn2 en2 rn2 en2 rn2
665 9.79 19.6 37.7
2 577 3.04 3.2 5.15 3.8 7.44 5.1
10 142 0.949 3.2 1.68 3.1 2.49 3.0
40 257 0.198 4.8 0.314 4.5 0.590 4.2
160 385 3.7310−2 5.3 6.9910−2 5.4 0.111 5.3

Table 3. Adapted monodomain model: convergence of
the activation time φn. From left to right: χ = 1000,
1500 and 2000 cm−1.
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# nodes εn2 εn2 εn2
665 0.21 0.35 0.59
2 577 6.3 10−2 9.6 10−2 0.13
10 142 1.9 10−2 3.0 10−2 4.2 10−2

40 257 3.4 10−3 6.0 10−3 9.0 10−3

160 385 1.0 10−3 1.3 10−3 1.8 10−3

εn2 εn2 εn2
0.22 0.39 0.68

6.8 10−2 0.10 0.13
2.1 10−2 3.3 10−2 4.5 10−2

4.4 10−3 7.4 10−3 1.1 10−2

8.3 10−4 1.4 10−3 2.0 10−3

Table 4. Relative error estimation on φn for the bido-
main model (left) and adapted monodomain model
(right) for χ = 1000, 1500, 2000 from left to right.

# nodes δn2 δn2 δn2
177 4.18 10−2 7.07 10−2 0.11
665 2.87 10−2 3.46 10−2 3.95 10−2

2 577 2.00 10−2 2.42 10−2 2.73 10−2

10 142 1.47 10−2 1.76 10−2 1.99 10−2

40 257 1.12 10−2 1.33 10−2 1.49 10−2

160 385 9.59 10−3 1.10 10−2 1.20 10−2

Table 5. Discrepancy between the (discrete) bidomain
and adapted monodomain models. From left to right:
χ = 1000, 1500 and 2000 cm−1.

Figure 3. Test case 2. Activation time on the finest
mesh (1 257 312 nodes) for the bidomain model (left)
and the adapted monodomain model (right), isolines in
black are separated by 10 ms, from 30 to 90 ms.
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# nodes δn2
117 285 1.94 10−2

279 447 1.65 10−2

551 484 1.50 10−2

1 110 270 1.35 10−2

Table 6. Discrepancy between the (discrete) bidomain
and adapted monodomain models on the heart slice ge-
ometry (χ = 1500 cm−1).


