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Abstract

This paper deals with the numerical modeling of transient mechanical waves
in linear viscoelastic solids. Dissipation mechanisms are described using the
Zener model. No time convolutions are required thanks to the introduc-
tion of memory variables that satisfy local-in-time differential equations. By
appropriately choosing the Zener parameters, it is possible to accurately de-
scribe a large range of materials, such as solids with constant quality factors.
The evolution equations satisfied by the velocity, the stress, and the mem-
ory variables are written in the form of a first-order system of PDEs with
a source term. This system is solved by splitting it into two parts: the
propagative part is discretized explicitly, using a fourth-order ADER scheme
on a Cartesian grid, and the diffusive part is then solved exactly. Jump
conditions along the interfaces are discretized by applying an immersed in-
terface method. Numerical experiments of wave propagation in viscoelastic
and fluid media show the efficiency of this numerical modeling for dealing
with challenging problems, such as multiple scattering configurations.
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1. Introduction

Wave motion in real media differs in many aspects from motion in an ide-
alized elastic medium. The dispersion and attenuation induced, for instance,
by grain-to-grain friction can greatly affect the amplitude of the waves and
their arrival times. In the case of small perturbations, linear models of vis-
coelasticity provide reasonably accurate means of describing these effects.
Viscoelastic constitutive laws give the stress in terms of the past strain rate
history.

The aim of this paper is to simulate the propagation and the diffraction
of transient viscoelastic waves. We propose a new approach in three steps:

(i) The Zener model is used [8]. The convolution products are then replaced
by a set of local-in-time differential equations coupled with the evolu-
tion equations of velocity and stress. Moreover, usual attenuation laws
can be approximated closely.

(ii) The evolution equations are splitted into two parts: a propagative part,
which is solved using a fourth-order finite-difference ADER scheme on
a Cartesian grid [29]; and a diffusive part, which is solved analytically.
Doing so ensures an optimal condition of stability.

(iii) The jump conditions along the interfaces are discretized by an immersed
interface method, which introduces a subcell resolution of the geometry
and maintains the convergence rate of the scheme despite the non-
smoothness of the solution. See [19] for an overview of these methods.

The model of Zener (i) has been addressed by various means, such as finite
difference methods [28, 31], spectral methods [7], spectral-element methods
[16], finite element methods [14, 3], to cite only a few. The steps (ii) and
(iii) combine the computational efficiency of Cartesian grid methods and an
accurate description of the interfaces, as stated in the case of non-dissipative
media [22, 23] and applied to computationally challenging configurations [9].

The article is organized as follows. In section 2, the Zener model is
presented; the method used to determine its parameters to simulate a given
quality factor is also described. In section 3, the evolution equations are
written in the form of a first-order hyperbolic system with a source term; the
jump conditions along the interfaces are also stated. The numerical methods
used are introduced in section 4, including the numerical scheme and the
splitting for the integration of the evolution equations, and the immersed
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interface method for the discretization of the jump conditions. Numerical
experiments are presented in section 5 in the case of a viscoelastic / fluid
interface. Comparisons with analytical solutions are made in some academic
cases. A numerical experiment involving multiple scattering in a random
medium also confirms the efficiency of the approach. Lastly, the perspectives
are discussed in section 6.

2. Physical modeling

2.1. Constitutive law

In a viscoelastic solid undergoing small perturbations, the stress depends
linearly on the history of the past strain rates. In 1D, one writes

σ = ψ ∗
∂ ε

∂ t
, (1)

where σ is the stress, ε = ∂ u
∂ x

is the strain, u is the displacement, ψ(t) is the
relaxation function, and ∗ denotes the time convolution. The Zener model

for viscoelasticity chosen here accurately mimics the mechanical behavior of
classical viscoelastic media during relaxation experiments:

ψ(t) = πr

(

1 +
N
∑

ℓ=1

κℓ e
−θℓ t

)

H(t), (2)

where H refers to the Heaviside distribution, N is the number of relaxation
mechanisms, θℓ are relaxation frequencies, and the coefficients κℓ are strictly
positive. The instantaneous unrelaxed state is denoted by πu, and at the
end of the process, the relaxation function has returned completely to the
positive relaxed modulus πr, where 0 < πr < πu. The phase velocity of the
waves propagating in a Zener material increases with the frequency, from
c0 =

√

πr/ρ at null frequency to c∞ =
√

πu/ρ at infinite frequency, where ρ
is the density [8].

2.2. Determination of the parameters

Let F be the Fourier transform of a function g(t)

F (g) =

∫ +∞

−∞

g(t) e− i ω t dt, (3)
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where ω is the angular frequency. From (2), the modulus of viscoelasticity
M(ω) = F(∂ ψ

∂ t
) is:

M(ω) = πr

(

1 + i ω
N
∑

ℓ=1

κℓ
θℓ + i ω

)

, (4)

and the ratio between the imaginary and real parts of M is:

Q−1(ω) =

N
∑

ℓ=1

ω θℓ κℓ
θ2ℓ + ω2

1 +

N
∑

ℓ=1

ω2 κℓ
θ2ℓ + ω2

. (5)

The quality factor Q characterizes the attenuation of the viscoelastic waves.
To determine the 2N coefficients κℓ and θℓ in (2), we choose to minimize

the distance between Q−1(ω) and a given Q−1
ref (ω) in a band of angular fre-

quencies [ω0, ω1]. Here we have implemented a classical linear least-squares
minimization procedure in the L2 norm [12, 13, 4]. Relaxation frequencies
are distributed linearly on a logarithmic scale of N points, ranging from
f0 = ω0 / (2 π) to f1 = ω1 / (2 π) [14]

θℓ =
ω0

2 π

(

ω1

ω0

)
ℓ−1
N−1

, ℓ = 1, ..., N. (6)

The angular frequencies ω0 and ω1 obviously depend on the spectra of the
source. The coefficients κℓ are then obtained by solving the over-determined
linear system deduced from (5)

N
∑

ℓ=1

ω̃k
(

θℓ − ω̃kQ
−1
ref(ω̃k)

)

θ2ℓ + ω̃2
k

κℓ = Q−1
ref(ω̃k), k = 1, ..., 2N − 1, (7)

where ω̃k are distributed linearly on a logarithmic scale of 2N − 1 points

ω̃k = ω0

(

ω1

ω0

)
k−1

2 (N−1)

, k = 1, ..., 2N − 1. (8)

In our numerical experiments, calculations based on (7) have never yielded
non-physical negative values of κℓ, even with highly attenuating media (typ-
ically Qref = 5). If necessary, more sophisticated methods can be applied.
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For instance, a nonlinear least-squares constraint optimization was used in
[3] to ensure that the coefficients κℓ were positive. An alternative method of
optimization in the norm L∞ was presented in [2], but this latter method is
restricted to materials with constant Qref .

To determine the number of relaxation mechanisms N , one can compare
Qref and the quality factor Q deduced from (5) after optimization. However,
the modeling error in the time domain is not easily deduced. A second idea
consists in comparing the transient 1-D analytical solutions associated with
Qref and Q. These solutions are calculated using classical Fourier techniques,
which are not described here.

2.3. Numerical examples

The determination of the parameters in (2) is illustrated in figure 1. The
set up is the same here as in section 5: the source is a smoothly truncated
sinusoid of central frequency fc = 50 Hz; the optimization of the quality
factor is done between f0 = fc / 10 and f1 = 10 fc; the physical parameters
are ρ = 1200 kg/m3, c0 = 2800 m/s, Qref = 20. Considering a constant
Qref is usual in geosciences, where the real media show a quasi-constant
quality factor within very wide frequency ranges [1]. In addition, the exact
solution associated with a constant Qref is particularly simple to obtain,
involving the Kjartansson formula [17]. Note that non-constant Qref can
also be considered in numerical modeling without any restrictions.

Figure 1 compares the quality factor (a) and the time-domain exact so-
lutions (b), when N = 1 or N = 3. Increasing N clearly decreases the error
introduced by describing the constant quality factor medium in terms of a
finite number of relaxation mechanisms. At the same time and as seen in
section 3.2, increasing N greatly increases the computational cost, especially
the memory requirements. In practice, N > 3 is rarely implemented in the
literature, and N = 1 is widely used, especially in the 3-D context [28].

Dispersion and relaxation curves shown in figure 1 (c) and (d) are com-
puted taking N = 3 relaxation mechanisms. One observes the predicted
behavior: strict increase of the phase velocity from c0 to c∞ (c), strict de-
crease of the relaxation function from πu to πr (d).
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Figure 1: Determination of Zener parameters, with Qref = 20, fc = 50 Hz, and N = 1
or N = 3 relaxation mechanisms. Quality factors (a); the solid horizontal line gives the
exact value 1 /Qref . Time-domain 1-D analytical solutions obtained with the constant-Q
model (Kjartansson’s model) and the Zener model (b). Phase velocity (c) and relaxation
function (d) obtained with N = 3. Physical parameters are those used in section 5. In (a)
and (c), the dotted vertical lines give the relaxation frequencies when N = 3.
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3. Initial boundary-value problem

3.1. Constitutive law in two-dimensions

The viscoelastic law (1) is generalized so that it applies to all space di-
mensions. In the 2-D case, the constitutive law governing a linear isotropic
viscoelastic medium is [8]

σij = (ψπ(t)− 2ψµ(t)) ∗
∂ εkk
∂ t

δij + 2ψµ(t) ∗
∂ εij
∂ t

, (9)

where σij and εij are the components of the stress and strain tensors, and δij
is the Kronecker symbol. With the Zener model, the relaxation functions ψπ
and ψµ are given by

ψπ(t) = πr

(

1 +
N
∑

ℓ=1

κpℓ e
−θℓ t

)

H(t),

ψµ(t) = µr

(

1 +

N
∑

ℓ=1

κsℓ e
−θℓ t

)

H(t),

(10)

where πr = ρ c2p0 and µr = ρ c2s0 are relaxed moduli under compressional and
shear loads. The phase velocities of the compressional (P) and shear (S)
waves at zero frequency are denoted cp0 and cs0. The unrelaxed moduli are
written

πu = πr

(

1 +
N
∑

ℓ=1

κpℓ

)

= ρ c2p∞, µu = µr

(

1 +
N
∑

ℓ=1

κsℓ

)

= ρ c2s∞, (11)

where cp∞ and cs∞ are the phase velocities of P and S waves at infinite
frequency. The parameters θℓ, κ

p
ℓ and κ

s
ℓ in (10) are determined as in section

2.1 from the quality factors Qp
ref and Q

s
ref of P and S waves. Usually, Qs

ref <
Qp
ref : the S waves are more attenuated than the P waves. The relaxation

frequencies θℓ are the same with both P and S waves, since they depend only
on the frequency band of interest (6). In addition, describing P and S waves
with identical relaxation times, as well as identical numbers of relaxation
mechanisms, greatly reduces the memory requirements [28, 31].
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3.2. Evolution equations

To obtain the evolution equations satisfied by σij , the constitutive law
(9) is differentiated in terms of t, taking (10). If i = j, we obtain

∂ σij
∂ t

= (πu − 2µu)
∂ vk
∂ xk

+ 2µu
∂ vi
∂ xj

+
N
∑

ℓ=1

ξijℓ, (12)

where the ξijℓ are called memory variables

ξijℓ = −θℓ (πr κ
p
ℓ − 2µr κ

s
ℓ) e

−θℓ tH(t)∗
∂ vk
∂ xk

−2µr θℓ κ
s
ℓ e

−θℓ tH(t)∗
∂ vi
∂ xj

. (13)

These memory variables satisfy the differential equations

d ξijℓ
d t

= −θℓ

(

ξijℓ + (πr κ
p
ℓ − 2µr κ

s
ℓ)
∂ vk
∂ xk

+ 2µr κ
s
ℓ

∂ vi
∂ xj

)

, ℓ = 1, ..., N.

(14)
In the same way, if i 6= j, we obtain

∂ σij
∂ t

= µu

(

∂ vi
∂ xj

+
∂ vj
∂ xi

)

+
N
∑

ℓ=1

ξijℓ, (15)

with the memory variables

ξijℓ = −µr θℓ κ
s
ℓ e

−θℓ tH(t) ∗

(

∂ vi
∂ xj

+
∂ vj
∂ xi

)

, (16)

that satisfy the differential equations

d ξijℓ
d t

= −θℓ

(

ξijℓ + µr κ
s
ℓ

(

∂ vi
∂ xj

+
∂ vj
∂ xi

))

, ℓ = 1, ..., N. (17)

The convolutions in (13) and (16) induced by the convolution in (9) are
no longer involved in (14) and (17): adding a set of memory variables that
satisfy local-in-time differential equations avoids to store the past values of
the solution. In 2-D contexts, combining (12), (14), (15) and (17) with
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Newton’s law yields a system of 5 + 3N partial differential equations
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





























∂ v1
∂ t

−
1

ρ

(

∂ σ11
∂ x

+
∂ σ12
∂ y

)

= 0,

∂ v2
∂ t

−
1

ρ

(

∂ σ12
∂ x

+
∂ σ22
∂ y

)

= 0,

∂ σ11
∂ t

− πu
∂ v1
∂ x

− (πu − 2µu)
∂ v2
∂ y

=

N
∑

ℓ=1

ξ11ℓ,

∂ σ12
∂ t

− µu

(

∂ v1
∂ y

+
∂ v2
∂ x

)

=
N
∑

ℓ=1

ξ12ℓ,

∂ σ22
∂ t

− (πu − 2µu)
∂ v1
∂ x

− πu
∂ v2
∂ y

=

N
∑

ℓ=1

ξ22ℓ,

∂ ξ11ℓ
∂ t

+ θℓ

(

πr κ
p
ℓ

∂ v1
∂ x

+ (πr κ
p
ℓ − 2µr κ

s
ℓ)
∂ v2
∂ y

)

= −θℓ ξ11ℓ, ℓ = 1, ..., N

∂ ξ12ℓ
∂ t

+ µr θℓ κ
s
ℓ

(

∂ v1
∂ y

+
∂ v2
∂ x

)

= −θℓ ξ12ℓ, ℓ = 1, ..., N

∂ ξ22ℓ
∂ t

+ θℓ

(

(πr κ
p
ℓ − 2µr κ

s
ℓ)
∂ v1
∂ x

+ πr κ
p
ℓ

∂ v2
∂ y

)

= −θℓ ξ22ℓ, ℓ = 1, ..., N.

(18)
Setting

U = (v1, v2, σ11, σ12, σ22, ξ111, ..., ξ11N , ξ121, ..., ξ12N , ξ221, ... ξ22N)
T , (19)

one can write (18) in the form of a first-order linear system with a source
term

∂

∂ t
U+A

∂

∂ x
U+B

∂

∂ y
U = −SU, (20)

where A, B and S are (5 + 3N)× (5 + 3N) matrices. The eigenvalues of A
and B are real: ±cp∞, ±cs∞, and 0 with multiplicity 3N + 1. As deduced
from (6), the spectral radius of S is

R(S) = θN =
ω1

2 π
= f1. (21)

For further use, we introduce the restriction of U to the velocity and stress
components and without any memory variables:

U = (v1, v2, σ11, σ12, σ22)
T . (22)
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An overline is also used to denote the restricted 5 × 5 matrices A and B
involving only the velocity and stress components.

Even in non-viscoelastic subdomains, the evolution equations are written
in the same way as (20). For instance, Ω1 is assumed to be a fluid medium
in section 3.3 and in the numerical experiments. In this case, U = U =
(v1, v2, p)

T , where p is the acoustic pressure, A and B are 3 × 3 matrices,
and S = 0. Lastly, subscripts will be used to denote the medium under
investigation: as an example, A0 is the matrix A in Ω0.

3.3. Interface conditions

n

t
P

Ω
0

Ω
1

Γ

Figure 2: Interface Γ between two media Ω0 et Ω1.

The physical parameters defined in section 3.2 can vary discontinuously
across interfaces. In what follows, we will focus on two domains Ω0 and
Ω1, which are separated by a stationary interface Γ described by a paramet-
ric equation (x(τ), y(τ)) (figure 2). The domain Ω0 contains a viscoelastic
medium described by Zener’s model: the constitutive law and the evolu-
tion equations in Ω0 are described in sections 2.1 and 3.2. The domain Ω1

can contain vacuum, a perfect fluid, an elastic solid or any other viscoelas-
tic medium: all these combinations have been implemented numerically and
tested. In the rest of the study, we will focus on the case where Ω1 contains
a fluid. In this case, the interface conditions are

[v.n] = 0, (σ.n).n = −p.n2, (σ.n).t = 0, (23)

where [.] refers to the jump from Ω0 to Ω1, and the unit tangential vector t
and the unit normal vector n are

t =
1

√

x′2 + y′2

(

x
′

, y
′

)T

, n =
1

√

x′2 + y′2

(

y
′

, −x
′

)T

. (24)
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Derivatives x
′

= d x
d τ

and y
′

= d y
d τ

are assumed to be continuous everywhere
along Γ, and to be differentiable as many times as required.

The system of PDEs (18) does not involve spatial derivatives of ξijℓ. The
memory variables therefore do not satisfy any interface conditions. As a
consequence, only the velocity and stress components of U in (22) are con-
sidered when dealing with interface conditions. In section 4.2, we will write
the interface conditions satisfied by the spatial derivatives of U up to the
k-th order, and hence the following notation is introduced:

Uk
m = lim

M→P,M∈Ωm

(

U
T
, ...,

∂α

∂ xα−β ∂ yβ
U
T
, ...,

∂k

∂ yk
U
T
)T

, (25)

where α = 0, ..., k, β = 0, ..., α, and m = 0, 1 denotes the number of the
medium Ωm. The interface conditions of U are then written

C0
1U

0
1 = C0

0U
0
0,

L0
1U

0
1 = 0, L0

0U
0
0 = 0,

(26)

where C0
m are the matrices of the jump conditions, and L0

m are the matrices
of the boundary conditions. With this formalism, the viscoelastic / fluid
interface conditions (23) and the vectors (24) yield

C0
0(τ) =

(

y
′

−x
′

0 0 0

0 0 y
′2

−2 x
′

y
′

x
′2

)

,

C0
1(τ) =

(

y
′

−x
′

0

0 0 −
(

x
′2 + y

′2
)

)

,

L0
0(τ) =

(

0 0 x
′

y
′

y
′2 − x

′2
−x

′

y
′
)

, L0
1(τ) =

(

0 0 0
)

.

(27)

4. Numerical modeling

4.1. Numerical scheme

Let us take a uniform grid, with the spatial mesh size ∆ x = ∆ y and the
time step ∆ t. An approximationUn

i,j ofU(xi = i∆ x, yj = j∆ y, tn = n∆ t)
is sought. The numerical methods recalled in section 1 usually consist in
simultaneously discretizing the propagating part and the source term in (20).
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This approach has two drawbacks. First, building unsplit methods for (18)
is a difficult task [18], whereas large classes of methods already exist for
hyperbolic systems without the source term SU. Secondly, a Von-Neumann
stability analysis typically yields

∆ t ≤ min

(

γ∆ x

cp∞
,

2

R(S)

)

, (28)

where γ depends on the scheme. Based on (21) and (28), the spectral radius
of S induces a more restrictive bound than the classical CFL condition if
f1 ≥ 2 cp∞ / (γ∆ x), where f1 is the maximum frequency considered during
the determination of the parameters (section 2.2). The efficiency of the
scheme is therefore penalized if large values of f1 are taken.

A more efficient approach consists in splitting (18) and alternatively solv-
ing the propagative part

∂

∂ t
U +A

∂

∂ x
U +B

∂

∂ y
U = 0, (29)

and then the diffusive part

∂

∂ t
U = −SU, (30)

with Strang’s splitting [18]. During the first of these two stages, the vis-
coelastic medium behaves like an elastic medium with Lamé coefficients
λ = πu − 2µu and µ = µu. The equation (29) can be solved by apply-
ing any explicit two time step spatially-centered flux-conserving scheme for
hyperbolic systems, giving U

n+1/2
i,j . In the numerical experiments performed

in section 5, a fourth-order ADER scheme [29] is used, with a centered stencil
comprising 25 nodes. On Cartesian grids, this scheme amounts to a fourth-
order Lax-Wendroff scheme. It is dispersive of order 4 and dissipative of
order 6, with a stability limit γ = 1 [21]. Other single-grid schemes can be
used without any restrictions.

The equation (30) is then solved exactly:

vn+1
p = vn+1/2

p ,

σn+1
pq = σn+1/2

pq +

N
∑

ℓ=1

1

θℓ

(

1− e−θℓ T
)

ξ
n+1/2
pqℓ ,

ξn+1
pqℓ = e−θr T ξ

n+1/2
pqℓ , ℓ = 1, ..., N,

(31)
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where (p, q) = {(1, 1), (1, 2), (2, 2)}, T = ∆ t
2

at the first and last iterations,
and T = ∆ t otherwise [18]. The splitting (29)-(30) and the exact integration
(31) yields the optimum CFL stability condition: cp∞ ∆ t

∆x
≤ γ.

Since the matricesA and B do not commute with S, the Strang’s splitting
decreases the theoretical order of convergence from 4 to 2 [18]. It is neverthe-
less preferable to use a fourth-order accurate scheme such as ADER 4 rather
than a second-order scheme such as the Lax-Wendroff scheme: the stability
limit is higher, and the numerical artifacts such as dispersion, attenuation
and anisotropy, are much smaller in the case of ADER 4.

4.2. Immersed interface method

P

Γ

Ω 1

Ω 0

+ + +

+

+ +

+ +

+

+

+

+

+

+

I

J M(I,J)

q

Figure 3: M(xI , yJ) ∈ Ω1 is a grid node where a modified value U
∗

I,J is computed; P
is the orthogonal projection of M onto the interface Γ. The grid nodes used to compute
U

∗

I,J are inside the circle with radius q and centered on P ; they are denoted by +.

To solve the propagative part (29) accurately at a grid node, the solution
U has to be sufficiently smooth on the whole stencil around this node. In
practice, we can focus on the velocity and stress components in U (22):
the system (18) shows that no spatial derivatives are applied on the memory
variables, and hence the numerical integration of (29) does not involve values
of the memory variables at other nodes.

At the irregular points where the stencil crosses the interface, the smooth-
ness requirement is no longer satisfied. To maintain the accuracy at these
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points, an immersed interface method is implemented [27, 22, 23]. Let us

take an irregular point (xi, yj) ∈ Ω0. The numerical computation of U
n+1/2
i,j

requires to use a value at (xI , yJ) ∈ Ω1 (figure 3). Instead of using naively
the numerical value U

n

I,J , a modified value U∗
I,J is injected into the scheme,

corresponding to a smooth extension of the velocity and stress components
on Ω0 into Ω1.

Before describing the four steps involved in building U∗
I,J , it is recalled

that during the propagative part (29), the viscoelastic medium behaves like
an elastic medium with unrelaxed parameters. The forthcoming derivation
is therefore in line with the algorithm developed for elastic media [22], with
appropriate physical parameters.

Step 1: high-order interface conditions. First, we seek the interface
conditions satisfied by the spatial derivatives of the velocity and stress com-
ponents at P . For this purpose, the zero-th order interface conditions (26)
are differentiated in terms of t. The time derivatives are replaced by spa-
tial derivatives, using the propagative part (29). For instance, the boundary
condition L0

0U
0
0 = 0 results in

∂

∂ t
(L0

0U
0
0) = −L0

0 A0

∂

∂ x
U0

0 − L0
0 B0

∂

∂ y
U0

0 = 0. (32)

Equations (26) are also differentiated in terms of τ , using the chain-rule. For
instance, the boundary condition L0

0U
0
0 = 0 results in

d

d τ
(L0

0U
0
0) =

(

d

d τ
L0

0

)

U0
0 + L0

0

(

x
′ ∂

∂ x
U0

0 + y
′ ∂

∂ y
U0

0

)

= 0. (33)

From (32) and (33), a matrix L1
0 is built such that L1

0 U
1
0 = 0. This matrix

depends on τ and on the physical parameters on Ω0. Applying a similar
procedure to the three equations in (26) gives a set of first-order interface
conditions. By iterating this process k times, we obtain the k-th order inter-
face conditions

Ck
1 U

k
1 = Ck

0 U
k
0, LkmUk

m = 0, m = 0, 1. (34)

When k ≥ 2, building the matrices Ck
m and Lkm is a tedious task, which can

be greatly simplified by using computer algebra tools. Note lastly that Ck
m

and Lkm involve the spatial derivatives dα x
d τα

and dα y
d τα

(α = 1, ..., k + 1), which
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provides insights about the local geometry of Γ at P .

Step 2: high-order Beltrami equations. In (29), the viscoelastic
medium consists of an elastic medium with unrelaxed parameters, where
compatibility conditions are satisfied between some spatial derivatives of the
strain components [25]. When expressed in terms of σ, these conditions lead
to the Beltrami equation

∂2

∂ x ∂ y
σ12 = α2

∂2

∂ x2
σ11 + α1

∂2

∂ x2
σ22 + α1

∂2

∂ y2
σ11 + α2

∂2

∂ y2
σ22, (35)

where

α1 =
πu

4 (πu − µu)
=

c2p∞
4
(

c2p∞ − c2s∞
) ,

α2 = −
πu − 2µu
4 (πu − µu)

=
2 c2s∞ − c2p∞

4
(

c2p∞ − c2s∞
) .

(36)

The equation (35) is satisfied anywhere in Ω0. Under suitable smoothness
requirements, it can be differentiated as many times as necessary, with re-
spect to x and y. Since the equations thus obtained are also valid along Γ,
they can be used to obtain a minimum number of independent components
Vk
m

Uk
m = Gk

mVk
m, m = 0, 1. (37)

The algorithm for building the matrices Gk
m presented in [23] can be easily

adapted to (35)-(36). If Ω1 is not a viscoelastic medium, then (37) is still
valid if appropriate Beltrami-like equations are used: see [22] for the fluid-
elastic case.

Step 3: high-order boundary values. The high-order boundary con-
ditions in (34) and the high-order Beltrami equations (37) give the underde-
termined linear systems

LkmGk
mVk

m = 0, m = 0, 1. (38)

We obtain
Vk
m = Kk

mWk
m, m = 0, 1, (39)

where Kk
m are the matrices built from the kernel of LkmGk

m. The solution
Wk

m is the minimum set of independent components of the trace of U and
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its spatial derivatives up to the k-th order, on the side Ωm. Injecting (39)
into the high-order jump conditions (34) gives

Sk1 W
k
1 = Sk0 W

k
0 , (40)

where Skm = Ck
mGk

mKk
m. The underdetermined system (40) is solved

Wk
1 =

(

(

Sk1
)−1

|RSk
1

)

(

Wk
0

Λk

)

, (41)

where (Sk1)
−1 is the least-squares pseudo-inverse of Sk1, RSk

1
is the matrix

containing the kernel of Sk1, and Λk is a set of Lagrange multipliers. To build
(Sk1)

−1 and RSk
1
, a singular value decomposition of Sk1 is performed.

Step 4: construction of modified values. Let P be the orthogonal
projection of (xI , yJ) on Γ (figure 3). The coefficients of 2-D Taylor expan-
sions around P are put in the matrix Πk

i,j:

Πk
i,j =

(

I5, ...,
1

β ! (α− β) !
(xi − xP )

α−β(yj − yP )
β I5, ...,

(yj − yP )
k

k !
I5

)

,

(42)
where I5 is the 5 × 5 identity matrix, α = 0, ..., k and β = 0, ..., α. The
modified value at (xI , yJ) is

U∗

I,J = Πk
I,J U

k
0. (43)

The trace Uk
0 in (43) still remains to be determined in terms of the interface

conditions and the numerical values at surrounding nodes. For this purpose,
let us take the disc D centered at P with radius q. At the grid nodes of
D∩Ω0, k-th order Taylor expansion of the solution at P , and the conditions
(37) and (39), give

U(xi, yj, tn) = Πk
i,jU

k
0 +O(∆ xk+1),

= Πk
i,jG

k
0 K

k
0 W

k
0 +O(∆ xk+1),

= Πk
i,jG

k
0 K

k
0 (1 | 0)





Wk
0

Λk



+O(∆ xk+1).

(44)
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At the grid nodes of D ∩ Ω1, k-th order Taylor expansion of the solution at
P , and the interface conditions (37), (39) and (41), give

U(xi, yj, tn) = Πk
i,jU

k
1 +O(∆ xk+1),

= Πk
i,jG

k
1 K

k
1 W

k
1 +O(∆ xk+1),

= Πk
i,jG

k
1 K

k
1

(

(

Sk1
)−1

|RSk
1

)





Wk
0

Λk



 +O(∆ xk+1).

(45)
The equations (44) and (45) are written using an adequate matrix M

(

U(., tn)
)

D
= M





Wk
0

Λk



+







O(∆ xk+1)
...

O(∆ xk+1)






. (46)

The radius q is chosen so that (46) is overdetermined. The exact values
are then replaced by numerical ones and the Taylor rests are removed. The
least-squares inverse of the matrix M is denoted by M−1. Since the Lagrange

multipliers Λk are not involved in (43), M−1 is restricted to M
−1
, so that

Wk
0 = M

−1 (

U
n)

D
. (47)

The modified value follows from (37), (39), (43) and (47):

U∗

I,J = Πk
I,J G

k
0 K

k
0 M

−1 (

U
n)

D
. (48)

A similar algorithm is applied at each irregular point along Γ. Since the
matrices in (48) do not depend on t, they are computed in a preprocessing
step and stored. At each time step, only the matrix-vector products in (48)
are performed at each irregular point before being injected into the scheme.
The matrices involved here are small, amounting typically to 5× 100. After
optimizing the computer codes, the additional cost due to the use of the
immersed interface method becomes negligible, i.e. it accounts for less than
1% of the total computational time. Lastly, k still remains to be defined.
Theoretically, k = r is necessary to ensure local r-th order accuracy of the
scheme. However, k = r−1 suffices to keep the global error to the r-th order
[15].
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5. Numerical experiments

5.1. Configuration

Here we focus on viscoelastic / fluid configurations. The physical param-
eters in the viscoelastic medium Ω0 are:

ρ = 1200 kg/m3, cp0 = 2800 m/s, cs0 = 1400 m/s, Qp
ref = 20, Qs

ref = 15,

with N = 3 relaxation mechanisms, and in the fluid medium Ω1 they are:

ρ = 1000 kg/m3, c = 1500 m/s.

The source is an homogeneous plane wave, the time evolution of which is
given by a combination of truncated sinusoids

h(t) =



















4
∑

m=1

am sin(βm ωc t) if 0 < t <
1

fc
,

0 otherwise,

(49)

where βm = 2m−1, ωc = 2π fc; the coefficients am are: a1 = 1, a2 = −21/32,
a3 = 63/768, a4 = −1/512. The signal thus obtained is C6 and has a central
frequency fc = 30 Hz. After optimizing κℓ between f0 = fc/10 and f1 = 10 fc
(7), then equation (11) is used to obtain the high-frequency limits cp∞ = 3161
m/s and cs∞ = 1645 m/s.

The discretization mesh is ∆ x = ∆ y = 1 m. The time step follows from
cp∞ ∆ t/∆ x = 0.85. On the plates, σ11 is shown with a green-red palette in
the case of P waves and a yellow-magenta palette in that of S waves. The
distinction between these waves is based on numerical estimates of div v and
curl v. Lastly, the position of a slice is denoted on the plates by horizontal
segments.

5.2. Plane interface

The first test is conducted on a plane interface between the fluid and the
viscoelastic medium. The angle between the straight line and the horizon-
tal axis is equal to 70 degrees. A homogeneous acoustic plane wave (IP),
having a wave vector inclined at an angle of 10 degrees, propagates in the
fluid and interacts with the interface. The reflected acoustic wave (RP) and
the viscoelastic transmitted compressional (TP) and shear (TS) waves are
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Figure 4: Plane interface between a fluid (on the left) and a viscoelastic medium (on the
right). Initial instant (a-c) and after 700 time steps (b-d). IP: incident homogeneous acous-
tic wave; RP: reflected inhomogeneous acoustic wave; TP, TS: transmitted inhomogeneous
compressional and shear viscoelastic waves.
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inhomogeneous: their wave vector forms a non-null angle with the direction
where they are attenuated. See [20, 10, 11, 5, 6, 30] for further details on
this topic. Figure 4 shows the incident field (a-c) and after 700 integration
time steps (b-d), which corresponds to roughly 6 propagation wavelengths.
Excellent agreement is observed between the numerical and exact values.

5.3. Circular interface

The immersed interface method depends on the curvature of the interface
and its successive derivatives [22, 23]. To test the method with a non-null
curvature, we now examine a circular interface with a radius of 60 m. The
fluid and the viscoelastic medium are outside and inside the circle, respec-
tively. The incident field is a plane acoustic wave with a horizontal wave
vector. Figure 5 shows the field at the initial instant (a-b), after 220 time
steps (c-d) and after 440 time steps (e-f). Classical conversions and scatter-
ing phenomena are observed. Excellent agreement is found to exist with the
analytical solutions. The latter are computed using Fourier techniques and
decomposing the plane waves on the basis of Bessel functions.

5.4. Multiple scattering in random medium

In the previous tests, the validity of the numerical scheme and the im-
mersed interface method was confirmed in the case of academic configura-
tions. We now take a complex medium composed of 60 viscoelastic cylin-
ders randomly embedded in water. The computations are performed on
2000× 3000 grid nodes. Figure 6 shows the initial field (a) and the scattered
fields after 2200 time steps (b), when the incident wave has propagated over
a distance corresponding to 12 wavelengths.

6. Perspectives

The propagation of mechanical waves in dissipative solids was addressed
numerically in the time domain. To avoid having to deal with convolu-
tion products, memory variables were introduced. Evolution equations were
splitted into two parts: the propagative part was solved numerically using a
fourth-order scheme for hyperbolic systems; and the diffusive part was solved
exactly. The jump conditions were discretized by means of an immersed in-
terface method, which introduced a subcell resolution on a Cartesian grid.
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Figure 5: Circular interface between a fluid (outside) and a viscoelastic medium (inside).
Initial field (a-b), after 220 time steps (c-d) and 440 time steps (e-f).
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(a) (b)

Figure 6: Initial (a) and scattered field after 2200 time steps (b).

The numerical methods presented here make it possible to simulate phys-
ically relevant numerical experiments, for instance multiple scattering in ran-
dom media as performed in section 5.4. By applying signal processing tools
on the simulated data, it is possible to determine the properties of the effec-
tive medium which is equivalent to the disordered medium investigated [9].
This numerical approach can be used advantageously instead of the methods
usually adopted by physicists so far: real experiments are expensive, and
analytical methods can be used only with very small concentrations of scat-
terers. The latter limitation is particularly penalizing in the case of concrete,
where the concentration of aggregates lies typically around 40%.
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