New approximations for the cone of copositive matrices and its dual

Jean-Bernard Lasserre

To cite this version:

Jean-Bernard Lasserre. New approximations for the cone of copositive matrices and its dual. 2010. hal-00545755v1

HAL Id: hal-00545755
 https://hal.science/hal-00545755v1

Preprint submitted on 12 Dec 2010 (v1), last revised 19 Jan 2012 (v2)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

NEW APPROXIMATIONS FOR THE CONE OF COPOSITIVE MATRICES AND ITS DUAL

JEAN B. LASSERRE

Abstract

We provide convergent hierarchies for the cone \mathcal{C} of copositive matrices and its dual, the cone of completely positive matrices. In both cases the corresponding hierarchy consists of nested spectrahedra and provide outer (resp. inner) approximations for \mathcal{C} (resp. for its dual \mathcal{C}^{*}), thus complementing previous inner (resp. outer) approximations for \mathcal{C} (for \mathcal{C}^{*}). In particular, both inner and outer approximations have a very simple interpretation. Finally, extension to \mathcal{K}-copositivity and \mathcal{K}-complete positivity for a closed convex cone \mathcal{K}, is straightforward.

1. Introduction

In recent years the cone \mathcal{C} of copositive matrices and its dual cone \mathcal{C}^{*} of completely positive matrices have attracted a lot of attention, in part because several interesting NP-hard problems can be modelled as convex conic optimization problems over those cones. For a survey of results and discussion on \mathcal{C} and its dual, the interested reader is referred to e.g. Anstreicher and Burer [1], Burer [3], Dür [6] and HiriartUrruty and Seeger (7).

As optimizing over \mathcal{C} (or its dual) is in general difficult, a typical approach is to optimize over simpler and more tractable cones. In particular, nested hierarchies of tractable convex cones $\mathcal{C}_{k}, k \in \mathbb{N}$, that provide inner approximations of \mathcal{C} have been proposed, notably by Parrilo [9], deKlerk and Pasechnik (5], Bomze and deKlerk [2], as well as Peña et al. 10]. For example, denoting by \mathcal{N} (resp. \mathcal{S}_{+}) the convex cone of nonnegative (resp. positive semidefinite) matrices, the first cone in the hierarchy of $[\sqrt{6}]$ is \mathcal{N}, and $\mathcal{N}+\mathcal{S}_{+}$in that of [9], whereas the hierarchy of 10] is in sandwich between that of [5] and [9]. Of course, to each such hierarchy of inner approximations $\left(\mathcal{C}_{k}\right), k \in \mathbb{N}$, of \mathcal{C}, one may associate the hierarchy $\left(\mathcal{C}_{k}^{*}\right), k \in \mathbb{N}$, of dual cones which provides outer approximations of \mathcal{C}^{*}.

However, quoting Dür in [6]: "We are not aware of comparable approximation schemes that approximate the completely positive cone (i.e. \mathcal{C}^{*}) from the interior."

The contribution of this note is precisely to describe an explicit hierarchy of tractable convex cones that provide outer approximations of \mathcal{C} and so, by duality, the corresponding hierarchy of dual cones provides inner approximations of \mathcal{C}^{*}, answering Dür's question and also showing that \mathcal{C} and \mathcal{C}^{*} can be sandwiched between two converging hierarchies of tractable convex cones. This result is a consequence of a more general result of [8] about nonnegativity on a closed set $\mathbf{K} \subset \mathbb{R}^{n}$. However,

[^0]its specialization to the present context of $\mathbf{K}=\mathcal{C}$ (or \mathcal{C}^{*}) yields inner approximations for \mathcal{C}^{*} with a very simple interpretation directly related to the definition of \mathcal{C}^{*}, which might be of interest for the community interested in \mathcal{C} and \mathcal{C}^{*} but might be "lost" in the general case treated in $[8]$, whence the present note. Finally, following Burer [3], and $\mathcal{K} \subset \mathbb{R}^{n}$ being a closed convex cone, one may also consider the convex cone $\mathcal{C}_{\mathcal{K}}$ of \mathcal{K}-copositive matrices, i.e., real symmetric matrices \mathbf{A} such that $\mathbf{x}^{T} \mathbf{A} \mathbf{x} \geq 0$ on \mathcal{K}, and its dual cone $\mathcal{C}_{\mathcal{K}}^{*}$ of \mathcal{K}-completely positive matrices. Then the outer approximations previously defined have an immediate and straightforward analogue (as well as the inner approximations of the dual).

2. Main result

2.1. Notation and definition. Let $\mathbb{R}[\mathbf{x}]$ be the ring of polynomials in the variables $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$. Denote by $\mathbb{R}[\mathbf{x}]_{d} \subset \mathbb{R}[\mathbf{x}]$ the vector space of polynomials of degree at most d, which forms a vector space of dimension $s(d)=\binom{n+d}{d}$, with e.g., the usual canonical basis (\mathbf{x}^{α}) of monomials. Also, denote by $\Sigma[\mathbf{x}] \subset \mathbb{R}[\mathbf{x}]$ (resp. $\Sigma[\mathbf{x}]_{d} \subset \mathbb{R}[\mathbf{x}]_{2 d}$) the space of sums of squares (s.o.s.) polynomials (resp. s.o.s. polynomials of degree at most $2 d)$. If $f \in \mathbb{R}[\mathbf{x}]_{d}$, write $f(\mathbf{x})=\sum_{\alpha \in \mathbb{N}^{n}} f_{\alpha} \mathbf{x}^{\alpha}$ in the canonical basis and denote by $\mathbf{f}=\left(f_{\alpha}\right) \in \mathbb{R}^{s(d)}$ its vector of coefficients. Finally, let \mathcal{S}^{n} denote the space of $n \times n$ real symmetric matrices, with inner product $\langle\mathbf{A}, \mathbf{B}\rangle=\operatorname{trace} \mathbf{A B}$, and where the notation $\mathbf{A} \succeq 0$ (resp. $\mathbf{A} \succ 0$) stands for \mathbf{A} is positive semidefinite.

Given $\mathbf{K} \subseteq \mathbb{R}^{n}$, denote by $\mathrm{cl} \mathbf{K}$ (resp. conv \mathbf{K}) the closure (resp. the convex hull) of \mathbf{K}. Recall that given a convex cone $\mathbf{K} \subseteq \mathbb{R}^{n}$, the convex cone $\mathbf{K}^{*}=\{\mathbf{y} \in$ $\left.\mathbb{R}^{n}:\langle\mathbf{y}, \mathbf{x}\rangle \geq 0 \forall \mathbf{x} \in \mathbf{K}\right\}$ is called the dual cone of \mathbf{K}, and satisfies $\left(\mathbf{K}^{*}\right)^{*}=\operatorname{cl} \mathbf{K}$. Moreover, given two convex cones $\mathbf{K}_{1}, \mathbf{K}_{2} \subseteq \mathbb{R}^{n}$,

$$
\begin{array}{ccc}
\mathbf{K}_{1}^{*} \cap \mathbf{K}_{2}^{*} & = & \left(\mathbf{K}_{1}+\mathbf{K}_{2}\right)^{*}
\end{array}=\frac{\left(\mathbf{K}_{1} \cup \mathbf{K}_{2}\right)^{*}}{} \begin{gathered}
\left.\mathbf{K}_{1} \cap \mathbf{K}_{2}\right)^{*}
\end{gathered}=\operatorname{cl}\left(\mathbf{K}_{1}^{*}+\mathbf{K}_{2}^{*}\right)=c l\left(\operatorname{conv}\left(\mathbf{K}_{1}^{*} \cup \mathbf{K}_{2}^{*}\right)\right) .
$$

See for instance Dattorro [1 p. 163-164].
Moment matrix. With a sequence $\mathbf{y}=\left(y_{\alpha}\right), \alpha \in \mathbb{N}^{n}$, let $L_{\mathbf{y}}: \mathbb{R}[\mathbf{x}] \rightarrow \mathbb{R}$ be the linear functional

$$
h \quad\left(=\sum_{\alpha} h_{\alpha} \mathbf{x}^{\alpha}\right) \quad \mapsto \quad L_{\mathbf{y}}(h)=\sum_{\alpha} h_{\alpha} y_{\alpha}, \quad h \in \mathbb{R}[\mathbf{x}] .
$$

With $d \in \mathbb{N}$, let $\mathbb{N}_{d}^{n}:=\left\{\alpha \in \mathbb{N}^{n}: \sum_{i} \alpha_{i} \leq d\right\}$, and let $\mathbf{M}_{d}(\mathbf{y})$ be the symmetric matrix with rows and columns indexed \mathbb{N}_{d}^{n}, and defined by:

$$
\begin{equation*}
\mathbf{M}_{d}(\mathbf{y})(\alpha, \beta):=L_{\mathbf{y}}\left(\mathbf{x}^{\alpha+\beta}\right)=y_{\alpha+\beta}, \quad \alpha, \beta \in \mathbb{N}_{d}^{n} \tag{2.1}
\end{equation*}
$$

The matrix $\mathbf{M}_{d}(\mathbf{y})$ is called the moment matrix associated with \mathbf{y}, and it is straightforward to check that

$$
\left[L_{\mathbf{y}}\left(g^{2}\right) \geq 0 \quad \forall g \in \mathbb{R}[\mathbf{x}]\right] \quad \Leftrightarrow \quad \mathbf{M}_{d}(\mathbf{y}) \succeq 0, \quad d=0,1, \ldots
$$

Localizing matrix. Similarly, with $\mathbf{y}=\left(y_{\alpha}\right), \alpha \in \mathbb{N}^{n}$, and $f \in \mathbb{R}[\mathbf{x}]$ written

$$
\mathbf{x} \mapsto f(\mathbf{x})=\sum_{\gamma \in \mathbb{N}^{n}} f_{\gamma} \mathbf{x}^{\gamma}
$$

let $\mathbf{M}_{d}(f \mathbf{y})$ be the symmetric matrix with rows and columns indexed in \mathbb{N}_{d}^{n}, and defined by:

$$
\begin{equation*}
\mathbf{M}_{d}(f \mathbf{y})(\alpha, \beta):=L_{\mathbf{y}}\left(f(\mathbf{x}) \mathbf{x}^{\alpha+\beta}\right)=\sum_{\gamma} f_{\gamma} y_{\alpha+\beta+\gamma}, \quad \forall \alpha, \beta \in \mathbb{N}_{d}^{n} \tag{2.2}
\end{equation*}
$$

The matrix $\mathbf{M}_{d}(f \mathbf{y})$ is called the localizing matrix associated with \mathbf{y} and $f \in \mathbb{R}[\mathbf{x}]$.
Observe that

$$
\begin{equation*}
\left\langle\mathbf{g}, \mathbf{M}_{d}(f \mathbf{y}) \mathbf{g}\right\rangle=L_{\mathbf{y}}\left(g^{2} f\right), \quad \forall g \in \mathbb{R}[\mathbf{x}]_{d} \tag{2.3}
\end{equation*}
$$

and so if \mathbf{y} has a representing finite Borel measure μ, i.e., if

$$
y_{\alpha}=\int \mathbf{x}^{\alpha} d \mu, \quad \forall \alpha \in \mathbb{N}^{n}
$$

then (2.3) reads

$$
\begin{equation*}
\left\langle\mathbf{g}, \mathbf{M}_{d}(f \mathbf{y}) \mathbf{g}\right\rangle=L_{\mathbf{y}}\left(g^{2} f\right)=\int g(\mathbf{x})^{2} f(\mathbf{x}) d \mu(\mathbf{x}), \quad \forall g \in \mathbb{R}[\mathbf{x}]_{d} \tag{2.4}
\end{equation*}
$$

Actually, the localizing matrix $\mathbf{M}_{d}(f \mathbf{y})$ is nothing less than the moment matrix associated with the sequence $\mathbf{z}=f \mathbf{y}=\left(z_{\alpha}\right), \alpha \in \mathbb{N}^{n}$, with $z_{\alpha}=\sum_{\gamma} f_{\gamma} y_{\alpha+\gamma}$. In particular, if f is nonnegative on the support $\operatorname{supp} \mu$ of μ then the localizing matrix $\mathbf{M}_{d}(f \mathbf{y})$ is just the moment matrix associated with the finite Borel measure $d \mu_{f}=f d \mu$, absolutely continuous with respect to μ (denoted $\mu_{f} \ll \mu$), and with density f. For instance, with $d=1$ one may write

$$
\mathbf{M}_{1}(f \mathbf{y})=\int\left[\begin{array}{ccc}
1 & \mid & \mathbf{x}^{T} \\
- & - \\
\mathbf{x} & \mid & \mathbf{x x}^{T}
\end{array}\right] f(\mathbf{x}) d \mu(\mathbf{x})=\int\left[\begin{array}{ccc}
1 & \mid & \mathbf{x}^{T} \\
- & - \\
\mathbf{x} & \mid & \mathbf{x x}^{T}
\end{array}\right] d \mu_{f}(\mathbf{x})
$$

or, equivalently,

$$
\mathbf{M}_{1}(f \mathbf{y})=\operatorname{mass}(\mu) \times\left[\begin{array}{ccc}
1 & \mid & \mathrm{E}_{\mu_{f}}(\mathbf{x})^{T} \tag{2.5}\\
- & - \\
\mathrm{E}_{\mu_{f}}(\mathbf{x}) & \mid & \mathbf{M}_{1}^{2}(f \mathbf{y})
\end{array}\right]
$$

where $\mathrm{E}_{\mu_{f}}$ denotes the expectation operator associated with the normalisation $\tilde{\mu}_{f}$ of μ_{f}, and $\mathbf{M}_{1}^{2}(f \mathbf{y})$ denotes the covariance matrix of $\tilde{\mu}_{f}$.
2.2. Main result. With $\mathbf{A}=\left(a_{i j}\right) \in \mathcal{S}^{n}$, let denote by $f_{\mathbf{A}} \in \mathbb{R}[\mathbf{x}]$ the polynomial associated with the quadratic form $\mathbf{x} \mapsto \mathbf{x}^{T} \mathbf{A} \mathbf{x}$, and let μ be the exponential probability measure supported on \mathbb{R}_{+}^{n}, and with moments $\mathbf{y}=\left(y_{\alpha}\right), \alpha \in \mathbb{N}^{n}$ given by:

$$
\begin{equation*}
y_{\alpha}=\int_{\mathbb{R}_{+}^{n}} \exp \left(-\sum_{i=1}^{n} x_{i}^{\alpha_{i}}\right) d \mu(\mathbf{x})=\prod_{i=1}^{n} \frac{1}{\alpha_{i}!}, \quad \forall \alpha \in \mathbb{N}^{n} . \tag{2.6}
\end{equation*}
$$

Recall that a matrix $\mathbf{A} \in \mathcal{S}^{n}$ is copositive if $f_{\mathbf{A}}(\mathbf{x}) \geq 0$ for all $\mathbf{x} \in \mathbb{R}_{+}^{n}$, and denote by $\mathcal{C} \subset \mathcal{S}^{n}$ the cone of copositive matrices, i.e.,

$$
\begin{equation*}
\mathcal{C}:=\left\{\mathbf{A} \in \mathcal{S}^{n}: f_{\mathbf{A}}(\mathbf{x}) \geq 0 \quad \forall \mathbf{x} \geq 0\right\} . \tag{2.7}
\end{equation*}
$$

Its dual cone is the closed convex cone of completely positive, i.e., matrices of \mathcal{S}^{n} that can be written as the sum of finitely many rank-one matrices $\mathbf{x} \mathbf{x}^{T}$, with $\mathbf{x} \in \mathbb{R}_{+}^{n}$, i.e.,

$$
\begin{equation*}
\mathcal{C}^{*}=\operatorname{conv}\left\{\mathbf{x x}^{T}: \mathbf{x} \in \mathbb{R}_{+}^{n}\right\} \tag{2.8}
\end{equation*}
$$

Theorem 2.1 ([8). Let \mathbf{y} be as in (2.6) and let $\mathcal{C}_{d} \subset \mathcal{S}^{n}$ be the closed convex cone

$$
\begin{equation*}
\mathcal{C}_{d}:=\left\{\mathbf{A} \in \mathcal{S}^{n}: \mathbf{M}_{d}\left(f_{\mathbf{A}} \mathbf{y}\right) \succeq 0\right\}, \quad d=0,1, \ldots \tag{2.9}
\end{equation*}
$$

Then $\mathcal{C}_{0} \supset \mathcal{C}_{1} \cdots \supset \mathcal{C}_{d} \cdots \supset \mathcal{C}^{*}$ and $\mathcal{C}=\bigcap_{d=0}^{\infty} \mathcal{C}_{d}$.
The proof is a direct consequence of $\left[8\right.$, Theorem 3.3] with $\mathbf{K}=\mathbb{R}_{+}^{n}$ and $f=f_{\mathbf{A}}$. Since $f_{\mathbf{A}}$ is homogeneous, alternatively one may use the probability measure ν uniformly supported on the n-dimensional simplex $\mathbf{K}=\left\{\mathbf{x} \in \mathbb{R}_{+}^{n}: \sum_{i} x_{i} \leq 1\right\}$ and invoke [8, Theorem 3.2].

Observe that in view of the definition (2.2) of the localizing matrix, the entries of the matrix $\mathbf{M}_{d}\left(f_{\mathbf{A}} \mathbf{y}\right)$ are linear in \mathbf{A}. Therefore, each convex cone $\mathcal{C}_{d} \subset \mathcal{S}^{n}$ is a spectrahedron in $\mathbb{R}^{n(n+1) / 2}$ defined solely in terms of the entries $\left(a_{i j}\right)$ of $\mathbf{A} \in \mathcal{S}^{n}$, and the hierarchy of spectrahedra $\left(\mathcal{C}_{d}\right), d \in \mathbb{N}$, provides a nested sequence of outer approximations of \mathcal{C}. Also, testing whether a given matrix $\mathbf{A} \in \mathcal{S}^{n}$ belongs to \mathcal{C}_{d} is an eigenvalue problem as one has to check whether the smallest eigenvalue of $\mathbf{M}_{d}\left(f_{\mathbf{A}}, \mathbf{y}\right)$ is nonnegative. Therefore, instead of using standard packages for Linear Matrix Inequalities, one may use powerful specialized softwares for eigenvalues.

We next describe an inner approximation of the convex cone \mathcal{C}^{*} via the hierarchy of convex cones $\left(\mathcal{C}_{d}^{*}\right), d \in \mathbb{N}$, where each \mathcal{C}_{d}^{*} is the dual cone of \mathcal{C}_{d} in Theorem 2.1.

Recall that $\Sigma[\mathbf{x}]_{d}$ is the space of polynomials that are sums of squares of polynomials of degree at most d. A matrix $\mathbf{A} \in \mathcal{S}^{n}$ is also identified with a vector $\mathbf{a} \in \mathbb{R}^{n(n+1) / 2}$ in the obvious way, and conversely, with any vector $\mathbf{a} \in \mathbb{R}^{n(n+1) / 2}$ is associated a matrix $\mathbf{A} \in \mathcal{S}^{n}$. For instance, with $n=2$,

$$
\mathbf{A}=\left[\begin{array}{ll}
a & b \tag{2.10}\\
b & c
\end{array}\right] \quad \leftrightarrow \quad \mathbf{a}=\left[\begin{array}{c}
a \\
2 b \\
c
\end{array}\right]
$$

So we will not distinguish between a convex cone in $\mathbb{R}^{n(n+1) / 2}$ and the corresponding cone in \mathcal{S}^{n}.

Theorem 2.2. Let $\mathcal{C}_{d} \subset \mathcal{S}^{n}$ be the convex cone defined in (2.9). Then

$$
\begin{equation*}
\mathcal{C}_{d}^{*}=\operatorname{cl}\left\{\left(\left\langle\mathbf{X}, \mathbf{M}_{d}\left(x_{i} x_{j} \mathbf{y}\right)\right\rangle\right)_{1 \leq i \leq j \leq n}: \mathbf{X} \in \mathcal{S}_{+}^{s(d)}\right\} \tag{2.11}
\end{equation*}
$$

Equivalently:

$$
\begin{align*}
\mathcal{C}_{d}^{*} & =\mathrm{cl}\{\int_{\mathbb{R}_{+}^{n}} \mathbf{x x}^{T} \underbrace{\sigma(\mathbf{x}) d \mu(\mathbf{x})}_{d \mu_{\sigma}(\mathbf{x})}: \sigma \in \Sigma[\mathbf{x}]_{d}\} \\
& =\operatorname{cl}\left\{\mathbf{M}_{1}^{2}(\sigma \mathbf{y}): \sigma \in \Sigma[\mathbf{x}]_{d}\right\} \tag{2.12}
\end{align*}
$$

with $\mathbf{M}_{1}^{2}(\sigma \mathbf{y})$ as in (2.5).
Proof. Let

$$
\Delta_{d}:=\left\{\left(\left\langle\mathbf{X}, \mathbf{M}_{d}\left(x_{i} x_{j} \mathbf{y}\right)\right\rangle\right)_{1 \leq i \leq j \leq n}: \mathbf{X} \in \mathcal{S}_{+}^{s(d)}\right\}
$$

so that

$$
\begin{aligned}
\Delta_{d}^{*} & =\left\{\mathbf{a} \in \mathbb{R}^{n(n+1) / 2}: \sum_{1 \leq i \leq j \leq n} a_{i j}\left\langle\mathbf{X}, \mathbf{M}_{d}\left(x_{i} x_{j} \mathbf{y}\right\rangle \geq 0 \quad \forall \mathbf{X} \in \mathcal{S}_{+}^{s(d)}\right\},\right. \\
& \left.=\left\{\mathbf{a} \in \mathbb{R}^{n(n+1) / 2}:\left\langle\mathbf{X}, \mathbf{M}_{d}\left(\sum_{1 \leq i \leq j \leq n} a_{i j} x_{i} x_{j}\right) \mathbf{y}\right)\right\rangle \geq 0 \quad \forall \mathbf{X} \in \mathcal{S}_{+}^{s(d)}\right\}, \\
& =\left\{\mathbf{A} \in \mathcal{S}^{n}:\left\langle\mathbf{X}, \mathbf{M}_{d}\left(f_{\mathbf{A}} \mathbf{y}\right)\right\rangle \geq 0 \quad \forall \mathbf{X} \in \mathcal{S}_{+}^{s(d)}\right\} \quad[\text { with } \mathbf{A}, \mathbf{a} \text { as in (2.10) }] \\
& =\left\{\mathbf{A} \in \mathcal{S}^{n}: \mathbf{M}_{d}\left(f_{\mathbf{A}} \mathbf{y}\right) \succeq 0\right\}=\mathcal{C}_{d} .
\end{aligned}
$$

And so we obtain the desired result $\mathcal{C}_{d}^{*}=\left(\Delta_{d}^{*}\right)^{*}=\operatorname{cl}\left(\Delta_{d}\right)$. Next, writing the singular decomposition of \mathbf{X} as $\sum_{k=0}^{s} \mathbf{q}_{k} \mathbf{q}_{k}^{T}$ for some $s \in \mathbb{N}$ and some vectors $\left(\mathbf{q}_{k}\right) \subset \mathbb{R}^{s(d)}$, one obtains that for every $1 \leq i \leq j \leq n$,

$$
\begin{aligned}
\left\langle\mathbf{X}, \mathbf{M}_{d}\left(x_{i} x_{j} \mathbf{y}\right)\right\rangle & =\sum_{k=0}^{s}\left\langle\mathbf{q}_{k} \mathbf{q}_{k}^{T}, \mathbf{M}_{d}\left(x_{i} x_{j} \mathbf{y}\right)\right\rangle=\sum_{k=0}^{s}\left\langle\mathbf{q}_{k}, \mathbf{M}_{d}\left(x_{i} x_{j} \mathbf{y}\right) \mathbf{q}_{k}\right\rangle \\
& \left.=\sum_{k=0}^{s} \int x_{i} x_{j} q_{k}(\mathbf{x})^{2} d \mu(\mathbf{x}) \quad[\text { by } 2.4)\right] \\
& =\int x_{i} x_{j} \underbrace{\sigma(\mathbf{x}) d \mu(\mathbf{x})}_{d \mu_{\sigma}(\mathbf{x})},
\end{aligned}
$$

where $\sigma(\mathbf{x})=\sum_{k=0}^{s} q_{k}(\mathbf{x})^{2} \in \Sigma[\mathbf{x}]_{d}$, and $\mu_{\sigma}(B)=\int_{B} \sigma d \mu$ for all Borel sets B.
So Theorem 2.2 states that \mathcal{C}_{d}^{*} is the closure of the convex cone generated by second-order moments of measures $d \mu_{\sigma}=\sigma d \mu$, absolutely continuous with respect to μ (hence with support on \mathbb{R}_{+}^{n}) and with density being a s.o.s. polynomial σ of degree at most $2 d$. Of course we immediately have:

Corollary 2.3. Let $\mathcal{C}_{d}^{*}, d \in \mathbb{N}$, be as in (2.12). Then $\mathcal{C}_{d}^{*} \subset \mathcal{C}_{d+1}^{*}$ for all $d \in \mathbb{N}$, and

$$
\mathcal{C}^{*}=\operatorname{cl} \bigcup_{d=0}^{\infty} \mathcal{C}_{d}^{*}
$$

Proof. As $\mathcal{C}_{d}^{*} \subset \mathcal{C}_{d+1}^{*}$ for all $d \in \mathbb{N}$, the result follows from

$$
\mathcal{C}^{*}=\left(\bigcap_{d=0}^{\infty} \mathcal{C}_{d}\right)^{*}=\operatorname{cl}\left(\operatorname{conv} \bigcup_{d=0}^{\infty} \mathcal{C}_{d}^{*}\right)=\operatorname{cl} \bigcup_{d=0}^{\infty} \mathcal{C}_{d}^{*}
$$

In other words, \mathcal{C}_{d}^{*} approximates $\mathcal{C}^{*}=\operatorname{conv}\left\{\mathbf{x x}^{T}: \mathbf{x} \in \mathbb{R}_{+}^{n}\right\}$ (i.e., the convex hull of second-order moments of Dirac measures with support in \mathbb{R}_{+}^{n}) from inside by second-order moments of measures $\mu_{\sigma} \ll \mu$ whose density is a s.o.s. polynomial σ of degree at most $2 d$, and better and better approximations are obtained by letting d increase.
Example 1. For instance, with $n=2$, and $\mathbf{A}=\left[\begin{array}{ll}a & b \\ b & c\end{array}\right]$, it is known that
A is copositive if and only if $a, c \geq 0$ and $b+\sqrt{a c} \geq 0$.

Figure 1. $n=2$: Projection on the (a, b)-plane of \mathcal{C} versus \mathcal{C}_{1}, both intersected with the unit ball

With $f_{\mathbf{A}}(\mathbf{x}):=a x_{1}^{2}+2 b x_{1} x_{2}+c x_{2}^{2}$ and $d=1$, the condition $\mathbf{M}_{d}\left(f_{\mathbf{A}} \mathbf{y}\right) \succeq 0$ which reads

$$
\left[\begin{array}{ccc}
a+b+c & 3 a+2 b+c & a+2 b+3 c \\
3 a+2 b+c & 12 a+6 b+2 c & 3 a+4 b+3 c \\
a+2 b+3 c & 3 a+4 b+3 c & 2 a+6 b+12 c
\end{array}\right] \succeq 0,
$$

defines the convex cone $\mathcal{C}_{1} \subset \mathbb{R}^{3}$. It is a connected component of the basic semialgebraic set $\left\{(a, b, c): \operatorname{det}\left(\mathbf{M}_{1}\left(f_{\mathbf{A}} \mathbf{y}\right)\right) \geq 0\right\}$, that is, elements (a, b, c) such that:

$$
3 a^{3}+15 a^{2} b+29 a^{2} c+16 a b^{2}+50 a b c+29 a c^{2}+4 b^{3}+16 b^{2} c+15 b c^{2}+3 c^{3} \geq 0
$$

Figure 1 below displays the projection on the (a, b)-plane of the sets \mathcal{C}_{1} and \mathcal{C} intersected with the unit ball.
2.3. An alternative representation of the cone \mathcal{C}_{d}^{*}. From its definition (2.11) in Theorem 2.2, the cone $\mathcal{C}_{d}^{*} \subset \mathcal{S}^{n}$ is defined through the matrix variable $\mathbf{X} \in \mathcal{S}^{s(d)}$ which lives in a (lifted) space of dimension $s(d)(s(d)+1) / 2$ and with the linear matrix inequality (LMI) constraint $\mathbf{X} \succeq 0$ of size $s(d)$ (whereas \mathcal{C}_{d} does not need any lifting).

We next provide another explicit description on how \mathcal{C}_{d}^{*} can be generated with no LMI constraint and with only $s(d)$ variables, but of course this characterization is not well suited for optimization purposes.

Since every $g \in \Sigma[\mathbf{x}]_{d}$ can be written $\sum_{\ell} g_{\ell}^{2}$ for finitely many polynomials $\left(g_{\ell}\right) \subset$ $\mathbb{R}[\mathbf{x}]_{d}$, the convex cone $\Sigma[\mathbf{x}]_{d}$ of s.o.s. polynomials can be written

$$
\Sigma[\mathbf{x}]_{d}=\operatorname{conv}\left\{g^{2}: g \in \mathbb{R}[\mathbf{x}]_{d}\right\}
$$

Next, for $g \in \mathbb{R}[\mathbf{x}]_{d}$, with vector of coefficients $\mathbf{g}=\left(g_{\alpha}\right) \in \mathbb{R}^{s(d)}$, let $\mathbf{g}^{(2)}=\left(g_{\alpha}^{(2)}\right) \in$ $\mathbb{R}^{s(2 d)}$ be the vector of coefficients of g^{2}, that is,

$$
g(\mathbf{x})=\sum_{\alpha \in \mathbb{N}_{d}^{n}} g_{\alpha} \mathbf{x}^{\alpha} \quad \rightarrow \quad g(\mathbf{x})^{2}=\sum_{\alpha \in \mathbb{N}_{2 d}^{n}} g_{\alpha}^{(2)} \mathbf{x}^{\alpha}
$$

Notice that for each $\alpha \in \mathbb{N}_{2 d}^{n}, g_{\alpha}^{(2)}$ is quadratic in \mathbf{g}. For instance, with $n=2$ and $d=1, g(\mathbf{x})=g_{00}+g_{10} x_{10}+g_{01} x_{01}$ with $\mathbf{g}=\left(g_{00}, g_{10}, g_{01}\right)^{T} \in \mathbb{R}^{s(1)}$, and so

$$
\mathbf{g}^{(2)}=\left(g_{00}^{2}, 2 g_{00} g_{10}, 2 g_{00} g_{01}, g_{10}^{2}, 2 g_{10} g_{01}, g_{02}^{2}\right)^{T} \in \mathbb{R}^{s(2)}
$$

Next, for every $1 \leq i \leq j \leq n$, let $\mathbf{G}_{d}=\left(G_{i j}\right) \in \mathcal{S}^{n}$ be defined by:

$$
\begin{equation*}
G_{i j}:=\sum_{\alpha \in \mathbb{N}_{2 d}^{n}} \frac{g_{\alpha}^{(2)}}{\left(\alpha_{i}+1\right)!\left(\alpha_{j}+1\right)!} \prod_{k \neq i, j} \frac{1}{\alpha_{k}!}, \quad 1 \leq i \leq j \leq n \tag{2.13}
\end{equation*}
$$

We can now describe \mathcal{C}_{d}^{*}.
Corollary 2.4. Let $\mathbf{G}_{d} \in \mathcal{S}^{n}$ be as in (2.13). Then:

$$
\begin{equation*}
\mathcal{C}_{d}^{*}=\operatorname{cl}\left(\operatorname{conv}\left\{\mathbf{G}_{d}: \mathbf{g} \in \mathbb{R}^{s(d)}\right\}\right) \tag{2.14}
\end{equation*}
$$

The characterization (2.14) of \mathcal{C}_{d}^{*} should be compared with the characterization $\operatorname{conv}\left\{\mathbf{x x}^{T}: \mathbf{x} \in \mathbb{R}_{+}^{n}\right\}$ of \mathcal{C}.
Example 2. With $n=2$ and $d=1, \mathbf{G}_{1}$ reads:
$\left[\begin{array}{ccc}12 g_{00}^{2}+8 g_{10}\left(g_{00}+g_{01}\right)+24 g_{00} g_{01}+g_{10}^{2}+6 g_{01}^{2} & 24 g_{00}\left(g_{00}+g_{10}+g_{01}\right)+4\left(g_{10}^{2}+g_{01}^{2}\right)+12 g_{10} g_{01} \\ 24 g_{00}\left(g_{00}+g_{10}+g_{01}\right)+4\left(g_{10}^{2}+g_{01}^{2}\right)+12 g_{10} g_{01} & 12 g_{00}^{2}+24 g_{00} g_{10}+8 g_{01}\left(g_{00}+g_{10}\right)+6 g_{10}^{2}+g_{01}^{2}\end{array}\right]$
2.4. \mathcal{K}-copositive and \mathcal{K}-completely positive matrices. Let $\mathcal{K} \subset \mathbb{R}^{n}$ be a closed convex cone and let $\mathcal{C}_{\mathcal{K}}$ be the convex cone of \mathcal{K}-copositive matrices, i.e., matrices $\mathbf{A} \in \mathcal{S}^{n}$ such that $\mathbf{x}^{T} \mathbf{A x} \geq 0$ on \mathcal{K}. Its dual cone $\mathcal{C}_{\mathcal{K}}^{*} \subset \mathcal{S}^{n}$ is the cone of \mathcal{K}-completely positive matrices.

Then one may define a hierarchy of convex cones $\left(\mathcal{C}_{\mathcal{K} d}\right)$ and $\left(\mathcal{C}_{\mathcal{K} d}^{*}\right), d \in \mathbb{N}$, formally exactly as in Theorem 2.1 and Theorem 2.2, but now \mathbf{y} is the moment sequence of a finite Borel measure μ with $\operatorname{supp} \mu=\overline{\mathcal{K}}\left(\right.$ instead of $\operatorname{supp} \mu=\mathbb{R}_{+}^{n}$ in (2.6)), i.e., $\mathbf{y}=\left(y_{\alpha}\right), \alpha \in \mathbb{N}^{n}$, with:

$$
\begin{equation*}
y_{\alpha}:=\int_{\mathcal{K}} \mathbf{x}^{\alpha} d \mu, \quad \forall \alpha \in \mathbb{N}^{n} \quad(\text { and where } \operatorname{supp} \mu=\mathcal{K}) \tag{2.15}
\end{equation*}
$$

And so with \mathbf{y} as in (2.15) Theorem 2.1 and 2.2, as well as Corollary 2.3, are still valid. (In 2.12 replace $\int_{\mathbb{R}_{+}^{n}}$ with $\int_{\mathcal{K}}$). Therefore,

$$
\mathcal{C}_{\mathcal{K}}=\bigcap_{d=0}^{\infty} \mathcal{C}_{\mathcal{K} d} \quad \text { and } \quad \mathcal{C}_{\mathcal{K}}^{*}=\operatorname{cl} \bigcup_{d=0}^{\infty} \mathcal{C}_{\mathcal{K} d}^{*} .
$$

But of course, for practical implementation, one need to know the sequence $\mathbf{y}=$ $\left(y_{\alpha}\right)$, which was easy when $\mathcal{K}=\mathbb{R}_{+}^{n}$. For instance, if \mathcal{K} is a polyhedral cone, by homogeneity of $f_{\mathbf{A}}$, one may equivalently consider a compact base of \mathcal{K} (which is a polytope \mathcal{K}^{\prime}), and take for μ the Lebesgue measure on \mathcal{K}^{\prime}. Then all moments of μ can be calculated exactly. The same argument works for every convex cone \mathcal{K} for which one may compute all moments of a finite Borel measure μ whose support is a compact base of \mathcal{K}.

References

[1] K.M. Anstreicher, S. Burer. Computable representations for convex hulls of low-dimensional quadratic forms, Math. Program. Sér. B 124 (2010), pp. 33-43.
[2] I.M. Bomze, E. de Klerk. Solving standard quadratic optimization problems via linear, semidenite and copositive programming, J. Global Optim. 24 (2002), 163-185.
[3] S. Burer. Copositive programming, in Handbook of Conic and Polynomial Optimization, M. Anjos and J.B. Lasserre, Eds., Springer.
[4] J. Dattorro. Convex Optimization \& Euclidean Distance Geometry, Meboo Publishing USA, Palo Alto, CA, 2005.
[5] E. de Klerk, D.V. Pasechnik. Approximation of the stability number of a graph via copositive programming, SIAM J. Optim. 12 (2002), 875-892.
[6] M. Dür. Copositive Programming: A survey, Optimization-online, 2009.
[7] J.-B. Hiriart-Urruty, A. Seeger. A variational approach to copositive matrices, SIAM Rev. 52 (2010), 593-629.
[8] J.B. Lasserre. A new look at nonnegativity and polynomial optimization, arXiv1009.0125, submitted.
[9] P. Parrilo. Structured semidefinite programs and semialgebraic geometry methods in robustness and optimization, Ph.D. Dissertation, California Institute of Technology, 2000.
[10] J. Peña, J. Vera, L. Zuluaga. Computing the stability number of a graph via linear and semidenite programming, SIAM J. Optim. 18 (2007), 87-105.
[11] K. Schmüdgen. The K-moment problem for compact semi-algebraic sets, Math. Ann. 289 (1991), 203-206.
[12] M. Schweighofer. Global optimization of polynomials using gradient tentacles and sums of squares, SIAM J. Optim. 17 (2006), pp. 920-942.
[13] G. Stengel. A Nullstellensatz and a Positivstellensatz in semialgebraic geometry, Math. Ann. 207, pp. 87-97.
[14] L. Vandenberghe and S. Boyd. Semidefinite programming, SIAM Rev. 38 (1996), pp. 49-95.
LAAS-CNRS and Institute of Mathematics, University of Toulouse, LAAS, 7 avenue du Colonel Roche, 31077 Toulouse Cédex 4,France

E-mail address: lasserre@laas.fr

[^0]: 1991 Mathematics Subject Classification. 15B48 90C22.
 Key words and phrases. copositive matrices; completely positive matrices; semidefinite relaxations.

