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NEW APPROXIMATIONS FOR THE CONE OF COPOSITIVE
MATRICES AND ITS DUAL

JEAN B. LASSERRE

ABSTRACT. We provide convergent hierarchies for the cone C of copositive
matrices and its dual, the cone of completely positive matrices. In both cases
the corresponding hierarchy consists of nested spectrahedra and provide outer
(resp. inner) approximations for C (resp. for its dual C*), thus complementing
previous inner (resp. outer) approximations for C (for C*). In particular, both
inner and outer approximations have a very simple interpretation. Finally,
extension to K-copositivity and K-complete positivity for a closed convex cone
K, is straightforward.

1. INTRODUCTION

In recent years the cone C of copositive matrices and its dual cone C* of completely
positive matrices have attracted a lot of attention, in part because several interesting
NP-hard problems can be modelled as convex conic optimization problems over
those cones. For a survey of results and discussion on C and its dual, the interested
reader is referred to e.g. Anstreicher and Burer [, Burer [B], Diir [ and Hiriart-
Urruty and Seeger [f..

As optimizing over C (or its dual) is in general difficult, a typical approach is to
optimize over simpler and more tractable cones. In particular, nested hierarchies of
tractable convex cones Cy, k € N, that provide inner approximations of C have been
proposed, notably by Parrilo [E], deKlerk and Pasechnik [E], Bomze and deKlerk
, as well as Pena et al. ] For example, denoting by N (resp. Sy ) the convex
cone of nonnegative (resp. positive semidefinite) matrices, the first cone in the
hierarchy of [f] is AV, and N 4+ Sy in that of [ff, whereas the hierarchy of [[L]] is
in sandwich between that of [ and [J]. Of course, to each such hierarchy of inner
approximations (Cy), k € N, of C, one may associate the hierarchy (C;), k € N, of
dual cones which provides outer approximations of C*.

However, quoting Diir in [E] “We are not aware of comparable approximation
schemes that approximate the completely positive cone (i.e. C*) from the interior.”

The contribution of this note is precisely to describe an explicit hierarchy of
tractable convex cones that provide outer approximations of C and so, by duality,
the corresponding hierarchy of dual cones provides inner approximations of C*, an-
swering Diir’s question and also showing that C and C* can be sandwiched between
two converging hierarchies of tractable convex cones. This result is a consequence of
a more general result of [E] about nonnegativity on a closed set K C R™. However,
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its specialization to the present context of K = C (or C*) yields inner approxima-
tions for C* with a very simple interpretation directly related to the definition of
C*, which might be of interest for the community interested in C and C* but might
be “lost” in the general case treated in [E], whence the present note. Finally, follow-
ing Burer [ﬂ], and L C R" being a closed convex cone, one may also consider the
convex cone Cx of K-copositive matrices, i.e., real symmetric matrices A such that
xTAx > 0 on K, and its dual cone Cj: of K-completely positive matrices. Then the
outer approximations previously defined have an immediate and straightforward
analogue (as well as the inner approximations of the dual).

2. MAIN RESULT

2.1. Notation and definition. Let R[x] be the ring of polynomials in the variables
x = (21,...,2n). Denote by R[x]s C R[x] the vector space of polynomials of
degree at most d, which forms a vector space of dimension s(d) = ("Zd), with e.g.,
the usual canonical basis (x®) of monomials. Also, denote by X[x] C R[x] (resp.
Y[x]a C R[x]24) the space of sums of squares (s.0.s.) polynomials (resp. s.o.s.
polynomials of degree at most 2d). If f € R[x]q, write f(x) = > cyn faX® in the
canonical basis and denote by f = (f,) € R*(4) its vector of coefficients. Finally,
let 8™ denote the space of n X n real symmetric matrices, with inner product
(A,B) = trace AB, and where the notation A > 0 (resp. A > 0) stands for A is
positive semidefinite.

Given K C R", denote by clK (resp. convK) the closure (resp. the convex
hull) of K. Recall that given a convex cone K C R™, the convex cone K* = {y €
R™ : (y,x) > 0Vx € K} is called the dual cone of K, and satisfies (K*)* = clK .

Moreover, given two convex cones K;, Ko C R,

KinKi: = Ki+Ky)* = (Ki UK2)*
(KiNKz2)* = cd(Ki+K3) = cl(conv(KjUK3)).

See for instance Dattorro [@, p. 163-164].

Moment matrix. With a sequence y = (yo), @ € N”, let Ly : R[x] — R be the
linear functional

h (=Y hax®) = Ly(h) =Y hat, heR[X].

With d € N, let N} := {a € N* : 3. «a; < d}, and let My(y) be the symmetric
matrix with rows and columns indexed N}, and defined by:

(21) Md(y)(aaﬂ) = Ly(xa+ﬁ) = Ya+8; avﬂ S NZ

The matrix My(y) is called the moment matrix associated with y, and it is
straightforward to check that

[Ly(¢®) >0 VgeR[x]] & Mayly) =0, d=0,1,....

Localizing matrix. Similarly, with y = (y.), @ € N*, and f € R[x] written

x—= f(x) = Z fyx7,

YyEN™
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let My(fy) be the symmetric matrix with rows and columns indexed in N7}, and
defined by:

(2'2) Md(f y)(aa 6) = Ly (f(X) XCH_B) = Z f’y Ya+B+s Va,B € Ng'
The matrix My(fy) is called the localizing matrix associated with y and f € R[x].
Observe that

(2.3) (g Ma(fy)g) = Ly(¢° f), Vg €R[xq,

and so if y has a representing finite Borel measure p, i.e., if
Yo = /xadu, Vae N,
then (R.3) reads
24 EMfy)g) = Lyt = [9Pdux). Vg € R

Actually, the localizing matrix Mg4(fy) is nothing less than the moment matrix
associated with the sequence z = fy = (24), @ € N, with z, = 27 FyYatr-
In particular, if f is nonnegative on the support supp p of u then the localizing
matrix Mg(f y) is just the moment matrix associated with the finite Borel measure
duy = fdu, absolutely continuous with respect to p (denoted uy < p), and with
density f. For instance, with d = 1 one may write

1| xT 1| xT
My = [ [ = = o = [ | = = | dw
x | xxT x | xxT
or, equivalently,
1 | B, ()"
(2.5) M, (fy) = mass(p) x - - ;

Euf(x) | MI(fy)

where E,, denotes the expectation operator associated with the normalisation iy
of iy, and M3(fy) denotes the covariance matrix of fis.

2.2. Main result. With A = (a;;) € 8", let denote by fa € R[x] the polyno-
mial associated with the quadratic form x — x” Ax, and let i be the exponential

probability measure supported on R, and with moments y = (ya), a € N" given
by:

(2.6) Yo = / exp < ZxO‘) du(x H ai Yo e N,

Recall that a matrix A € 8™ is copositive if fa(x) > 0 for all x € R}, and denote
by C C 8™ the cone of copositive matrices, i.e.,
(2.7) C:={AcS": fa(x) >0 Vx>0}.

Its dual cone is the closed convex cone of completely positive, i.e., matrices of S™ that
can be written as the sum of finitely many rank-one matrices xx”, with x € R,
ie.,

(2.8) C* = conv{xx" : x e R} }.
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Theorem 2.1 ([}]). Lety be as in (.4) and let Cq C S™ be the closed convex cone

(2.9) Cqo={AeS": My(fay) = 0}, d=0,1,...

Then Co D Cy+++DCq-+DC* and C = () Ca.
d=0

The proof is a direct consequence of [E, Theorem 3.3] with K = R" and f = fa.
Since fa is homogeneous, alternatively one may use the probability measure v
uniformly supported on the n-dimensional simplex K = {x € R} : > x; < 1} and
invoke [§, Theorem 3.2].

Observe that in view of the definition (2.9) of the localizing matrix, the entries
of the matrix My(fa y) are linear in A. Therefore, each convex cone C4 C S™ is a
spectrahedron in R™("+1)/2 defined solely in terms of the entries (a;;) of A € S”,
and the hierarchy of spectrahedra (C4), d € N, provides a nested sequence of outer
approximations of C. Also, testing whether a given matrix A € S™ belongs to
C4 is an eigenvalue problem as one has to check whether the smallest eigenvalue of
M,(fa,y) is nonnegative. Therefore, instead of using standard packages for Linear
Matrix Inequalities, one may use powerful specialized softwares for eigenvalues.

We next describe an inner approximation of the convex cone C* via the hierarchy
of convex cones (C}), d € N, where each Cj is the dual cone of C4 in Theorem @

Recall that X[x]4 is the space of polynomials that are sums of squares of poly-
nomials of degree at most d. A matrix A € S™ is also identified with a vector
a € R™("+t1)/2 in the obvious way, and conversely, with any vector a € R*("+1)/2 jg
associated a matrix A € §". For instance, with n = 2,

a
a b

(2.10) A = { ] < a= 2b
b ¢ .

So we will not distinguish between a convex cone in R*("*+1)/2 and the corresponding
cone in S§".

Theorem 2.2. Let Cq C 8™ be the convex cone defined in (@) Then

(2.11) Cqg=cl {(<Xa Ma(2i2;¥)) )1<icjcn + X € Si(d)} :
Equivalently:
C; = / xx! o(x)du(x) : 0 € X[x]q
R —
dﬂa(x)
(2.12) = d{Mi(oy) : 0 €X[x]a},
with M3 (a'y) as in (2.3).
Proof. Let

Ay = {(<X7Md(zizj3’>>>1§i§j§n : Xesi(d)}v
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so that

AZ = ac ]Rn(n—i-l)/Q : Z Qi <X, Md(:cizj y> Z 0 VX S Si(d) 5

1<i<j<n

= ac R TD/2 . <X,Md ( Z aijT;x;)y >20 VXGSi(d) ,
1<i<j<n
= {AeS": (X,My(fay)>0 VXe8 P} [with A a asin (:10)]
= {AeS": My(fay) =0} = Cq.
And so we obtain the desired result C§ = (A%)* = cl(Ag). Next, writing the

singular decomposition of X as Zi:o qk q{ for some s € N and some vectors
(ar) C R*(@  one obtains that for every 1 <i < j <n,

S S

(X, Ma(ziz;y)) = > (@), Ma(ziz;y)) = Y (ke Ma(ziz; y)ai )
k=0 k=0

> [ s dut) by &)
k=0

= /zixj o(x) du(x),
—_——
dpig (%)

where o(x) = Y7 qx(x)? € S[x]4, and o (B) = [ o dp for all Borel sets B. [

So Theorem @ states that Cj is the closure of the convex cone generated by
second-order moments of measures dyu, = odpu, absolutely continuous with respect
to p (hence with support on R’}) and with density being a s.o.s. polynomial o of
degree at most 2d. Of course we immediately have:

Corollary 2.3. LetC;, d € N, be as in ) Then Cj C Cy,, for alld € N, and

C*=cl [j Cy.
d=0

Proof. As C; C Cjy,, for all d € N, the result follows from

cr = <ﬁ Cd> =cl <conv D C;) = cl D Cy.
d=0 d=0

d=0
O

In other words, C}; approximates C* = conv {xx” : x € R} (i.e., the convex hull
of second-order moments of Dirac measures with support in R’}) from inside by
second-order moments of measures p, < p whose density is a s.0.s. polynomial o
of degree at most 2d, and better and better approximations are obtained by letting
d increase.

a

Example 1. For instance, with n = 2, and A = { b

lc) } , it is known that

A is copositive if and only if a,c¢ > 0 and b+ vac > 0.
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FIGURE 1. n = 2: Projection on the (a,b)-plane of C versus Cy,
both intersected with the unit ball

With fa(x) := az? + 2bz129 + cx3 and d = 1, the condition My(fay) = 0 which
reads

a+b+c 3a+2b+c a+2b+ 3¢

3a+2b+c 12a4+6b+2¢c 3a—+4b+ 3c = 0,

a+2b+3c 3a+4b+3c 2a+6b+12c

defines the convex cone C; C R3. Tt is a connected component of the basic semi-
algebraic set {(a,b, c) : det (M1(fay)) > 0}, that is, elements (a, b, ¢) such that:

3a® + 15a2b + 29a%c + 16ab® + 50abe + 29ac® + 4b% + 16b%¢ + 15bc? + 3¢3 > 0.

Figure 1 below displays the projection on the (a,b)-plane of the sets C; and C
intersected with the unit ball.

2.3. An alternative representation of the cone C;. From its definition (P.11))
in Theorem E, the cone C; C 8™ is defined through the matrix variable X € Ss(d)
which lives in a (lifted) space of dimension s(d)(s(d) + 1)/2 and with the linear
matrix inequality (LMI) constraint X > 0 of size s(d) (whereas Cq4 does not need
any lifting).

We next provide another explicit description on how C; can be generated with
no LMI constraint and with only s(d) variables, but of course this characterization
is not well suited for optimization purposes.

Since every g € X[x]q can be written Y, g2 for finitely many polynomials (g;) C
R[x]4, the convex cone X[x]4 of s.0.s. polynomials can be written

Y[x]g = conv{g® : g € R[x]s }.
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Next, for g € R[x]y4, with vector of coefficients g = (go) € R*®, let g(? = (9&2)) €
R*2%) be the vector of coefficients of g2, that is,
i = T gxt o g = Y e
aEeN? aeNy,
Notice that for each o € N7, gg) is quadratic in g. For instance, with n = 2 and
d =1, g(x) = goo + 910710 + go1wo1 with g = (goo, g10,g01)” € R*M), and so
g® = (g80: 2900910, 2900901, 930> 2910901, 93z)" € R*Z).
Next, for every 1 <i < j <n, let G4 = (G;;) € S™ be defined by:

@)

Ja 1 . .
2.13 Gij = [[ — 1<i<j<n
(2.13) j (ai + Doy + 1! 2L oy i<j<n

a€eNZ,

We can now describe C}.

Corollary 2.4. Let G4 € 8™ be as in (@) Then:
(2.14) ¢ = cl (conv{Gd . g e RS }).

The characterization (R.14) of C should be compared with the characterization
conv {xx” : x € R} of C.

Example 2. Withn =2 and d =1, Gy reads:

[ 12934 + 8g10(goo + go1) + 24900901 + 910 + 6951 24900(g00 + g10 + go1) + 4(g70 + 981) + 12910901
24g00(goo + g10 + go1) + 4(g30 + g51) + 12910901 1298, + 24900910 + 8g01(g00 + g10) + 6930 + 951
2.4. K-copositive and K-completely positive matrices. Let X C R" be a
closed convex cone and let Cx be the convex cone of K-copositive matrices, i.e.,
matrices A € 8™ such that xTAx > 0 on K. Its dual cone Cx C 8™ is the cone of
K-completely positive matrices.

Then one may define a hierarchy of convex cones (Cxq) and (Cx.,), d € N, formally
exactly as in Theorem @ and Theorem E, but now y is the moment sequence of
a finite Borel measure p with suppu = K (instead of supp u = R} in (@)), ie.,
¥ = (Ya), @ € N, with:

(2.15) Yo 1= / x“ dpu, Vo € N (and where supp p = K).
K

And so with y as in () Theorem E and E, as well as Corollary @, are
still valid. (In (.19 replace [5, with [,.). Therefore,
+

oo o0
C}C = ﬂ CICd and CI*C =cl U CI*Cd'

d=0 d=0
But of course, for practical implementation, one need to know the sequence y =
(Ya), which was easy when I = R’}. For instance, if K is a polyhedral cone, by
homogeneity of fa, one may equivalently consider a compact base of K (which is a
polytope K'), and take for u the Lebesgue measure on K'. Then all moments of u
can be calculated exactly. The same argument works for every convex cone K for
which one may compute all moments of a finite Borel measure y whose support is
a compact base of .
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