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NEW APPROXIMATIONS FOR THE CONE OF COPOSITIVE

MATRICES AND ITS DUAL

JEAN B. LASSERRE

Abstract. We provide convergent hierarchies for the convex cone C of copos-
itive matrices and its dual C∗, the cone of completely positive matrices. In
both cases the corresponding hierarchy consists of nested spectrahedra and
provide outer (resp. inner) approximations for C (resp. for its dual C∗), thus
complementing previous inner (resp. outer) approximations for C (for C∗). In
particular, both inner and outer approximations have a very simple interpre-
tation. Finally, extension to K-copositivity and K-complete positivity for a
closed convex cone K, is straightforward.

1. Introduction

In recent years the convex cone C of copositive matrices and its dual cone C∗

of completely positive matrices have attracted a lot of attention, in part because
several interesting NP-hard problems can be modelled as convex conic optimization
problems over those cones. For a survey of results and discussion on C and its dual,
the interested reader is referred to e.g. Anstreicher and Burer [1], Bomze [2], Bomze
et al. [3], Burer [5], Dür [8] and Hiriart-Urruty and Seeger [11]..

As optimizing over C (or its dual) is in general difficult, a typical approach is to
optimize over simpler and more tractable cones. In particular, nested hierarchies of
tractable convex cones Ck, k ∈ N, that provide inner approximations of C have been
proposed, notably by Parrilo [13], deKlerk and Pasechnik [7], Bomze and deKlerk
[4], as well as Peña et al. [14]. For example, denoting by N (resp. S+) the convex
cone of nonnegative (resp. positive semidefinite) matrices, the first cone in the
hierarchy of [7] is N , and N +S+ in that of [13], whereas the hierarchy of [14] is in
sandwich between that of [7] and [13]. Of course, to each such hierarchy of inner
approximations (Ck), k ∈ N, of C, one may associate the hierarchy (C∗

k), k ∈ N, of
dual cones which provides outer approximations of C∗. However, quoting Dür in
[8]: “We are not aware of comparable approximation schemes that approximate the
completely positive cone (i.e. C∗) from the interior.”

Let us also mention Gaddum’s characterization of copositive matrices described
in Gaddum [9] for which the set membership problem “A ∈ C” (with A known) re-
duces to solving a linear programming (LP) problem (whose size is not polynomially
bounded in the input size of the matrix A). However, Gaddum’s characterization
is not convex in the coefficients of the matrix A, and so cannot be used to provide
a hierarchy of outer approximations of C. On the other hand, de Klerk and Pasech-
nik [6] have used Gaddum’s characterization to help solve quadratic optimization
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problems on the simplex via solving a hierarchy of LP-relaxations of increasing size
and with finite convergence of the process.

Contribution. The contribution of this note is precisely to describe an explicit
hierarchy of tractable convex cones that provide outer approximations of C which
converge monotonically and asymptotically to C. And so, by duality, the corre-
sponding hierarchy of dual cones provides inner approximations of C∗ converging
to C∗, answering Dür’s question and also showing that C and C∗ can be sandwiched
between two converging hierarchies of tractable convex cones. The present outer
approximations are not polyhedral and hence are different from the outer polyhe-
dral approximations On

r of C defined in Yildirim [20]. On
r are based on a certain

discretization ∆(n, r) of the simplex ∆n := {x ∈ R
n
+ : eTx = 1} whose size is

parametrized by r. All matrices associated with quadratic forms nonnegative on
∆(n, r) belong to Or

n for all r, and C = ∩∞
r=1Or

n; Combining with the inner ap-
proximations of de Klerk and Pasechnik [7], the author provides tight bounds on
the gap between upper and lower bounds for quadratic optimization problems; for
more details the interested reader is referred to Yildirim [20].

In fact, our result is a specialization of a more general result of [12] about nonneg-
ativity of polynomials on a closed set K ⊂ R

n, in the specific context of quadratic
forms and K = R

n
+. In such a context, and identifying copositive matrices with

quadratic forms nonnegative on K = R
n
+, this specialization yields inner approxi-

mations for C∗ with a very simple interpretation directly related to the definition of
C∗, which might be of interest for the community interested in C and C∗ but might
be “lost” in the general case treated in [12], whence the present note. Finally, fol-
lowing Burer [5], and K ⊂ R

n being a closed convex cone, one may also consider the
convex cone CK of K-copositive matrices, i.e., real symmetric matrices A such that
xTAx ≥ 0 on K, and its dual cone C∗

K of K-completely positive matrices. Then the
outer approximations previously defined have an immediate and straightforward
analogue (as well as the inner approximations of the dual).

2. Main result

2.1. Notation and definitions. Let R[x] be the ring of polynomials in the vari-
ables x = (x1, . . . , xn). Denote by R[x]d ⊂ R[x] the vector space of polynomials of

degree at most d, which forms a vector space of dimension s(d) =
(
n+d
d

)
, with e.g.,

the usual canonical basis (xα) of monomials. Also, let Nn
d := {α ∈ N

n :
∑

i αi ≤ d}
and denote by Σ[x] ⊂ R[x] (resp. Σ[x]d ⊂ R[x]2d) the space of sums of squares
(s.o.s.) polynomials (resp. s.o.s. polynomials of degree at most 2d). If f ∈ R[x]d,
write f(x) =

∑

α∈Nn
d
fαx

α in the canonical basis and denote by f = (fα) ∈ R
s(d)

its vector of coefficients. Finally, let Sn denote the space of n × n real symmetric
matrices, with inner product 〈A,B〉 = traceAB, and where the notation A � 0
(resp. A ≻ 0) stands for A is positive semidefinite.

Given K ⊆ R
n, denote by clK (resp. convK) the closure (resp. the convex

hull) of K. Recall that given a convex cone K ⊆ R
n, the convex cone K∗ = {y ∈

R
n : 〈y,x〉 ≥ 0 ∀x ∈ K} is called the dual cone of K, and satisfies (K∗)∗ = clK .

Moreover, given two convex cones K1,K2 ⊆ R
n,

K∗
1 ∩ K∗

2 = (K1 +K2)
∗ = (K1 ∪K2)

∗

(K1 ∩K2)
∗ = cl (K∗

1 +K∗
2) = cl (conv (K∗

1 ∪K∗
2) ).

See for instance Rockafellar [15, Theorem 3.8; Corollary 16.4.2].
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Moment matrix. With a sequence y = (yα), α ∈ N
n, let Ly : R[x] → R be the

linear functional

h (=
∑

α

hα xα) 7→ Ly(h) =
∑

α

hα yα, h ∈ R[x].

With d ∈ N, let Md(y) be the symmetric matrix with rows and columns indexed
in N

n
d , and defined by:

(2.1) Md(y)(α, β) := Ly(x
α+β) = yα+β , (α, β) ∈ N

n
d × N

n
d .

The matrix Md(y) is called the moment matrix associated with y, and it is
straightforward to check that

[
Ly(g

2) ≥ 0 ∀g ∈ R[x]
]

⇔ Md(y) � 0, d = 0, 1, . . . .

Localizing matrix. Similarly, with y = (yα), α ∈ N
n, and f ∈ R[x] written

x 7→ f(x) =
∑

γ∈Nn

fγ x
γ ,

let Md(f y) be the symmetric matrix with rows and columns indexed in N
n
d , and

defined by:

(2.2) Md(f y)(α, β) := Ly

(
f(x)xα+β

)
=
∑

γ

fγ yα+β+γ , (α, β) ∈ N
n
d × N

n
d .

The matrix Md(f y) is called the localizing matrix associated with y and f ∈ R[x].
Observe that

(2.3) 〈g,Md(f y)g〉 = Ly(g
2 f), ∀g ∈ R[x]d,

and so if y has a representing finite Borel measure µ, i.e., if

yα =

∫

Rn

xα dµ, ∀α ∈ N
n,

then (2.3) reads

(2.4) 〈g,Md(f y)g〉 = Ly(g
2 f) =

∫

Rn

g(x)2f(x) dµ(x), ∀g ∈ R[x]d.

Actually, the localizing matrix Md(f y) is nothing less than the moment matrix
associated with the sequence z = f y = (zα), α ∈ N

n, with zα =
∑

γ fγyα+γ .
In particular, if f is nonnegative on the support suppµ of µ then the localizing
matrix Md(f y) is just the moment matrix associated with the finite Borel measure
dµf = fdµ, absolutely continuous with respect to µ (denoted µf ≪ µ), and with
density f . For instance, with d = 1 one may write

M1(f y) =

∫

Rn





1 | xT

− −
x | xxT



 f(x) dµ(x) =

∫

Rn





1 | xT

− −
x | xxT



 dµf (x),

or, equivalently,

(2.5) M1(f y) = mass(µf)×





1 | Eµ̃f
(x)T

− −
Eµ̃f

(x) | Eµ̃f
(xxT )



 ,

where Eµ̃f
(·) denotes the expectation operator associated with the normalization

µ̃f of µf (as a probability measure), and Eµ̃f
(xxT ) denotes the matrix of noncentral

second-order moments of µ̃f (and the covariance matrix of µ̃f if Eµ̃f
(x) = 0).
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2.2. Main result. In [12, Theorem 3.2] the author has shown in a general context
that a polynomial f ∈ R[x] is nonnegative on a closed set K ⊆ R

n if and only if

(2.6)

∫

K

g2 f dµ ≥ 0, ∀g ∈ R[x],

where µ is a given finite Borel measure with support suppµ being exactly K; if K
is compact then µ is arbitrary whereas if K is not compact then µ has to satisfy a
certain growth condition on its moments. If y = (yα), α ∈ N

n, is the sequence of
moments of µ then (2.6) is in turn equivalent to

Md(f y) � 0, ∀d = 0, 1, . . . ,

where Md(f y) is the localizing matrix associated with f and y, defined in (2.2).
In this section we particularize this result to the case of copositive matrices viewed
as homogeneous forms of degree 2, nonnegative on the closed set K = R

n
+.

So withA = (aij) ∈ Sn, let denote by fA ∈ R[x]2 the quadratic form x 7→ xTAx,
and let µ be the joint probability measure associated with n i.i.d. exponential
variates (with mean 1), with support suppµ = R

n
+, and with moments y = (yα),

α ∈ N
n, given by:

(2.7) yα =

∫

Rn
+

xα dµ(x) =

∫

Rn
+

xα exp(−
n∑

i=1

xi) dx =

n∏

i=1

αi!, ∀α ∈ N
n.

Recall that a matrix A ∈ Sn is copositive if fA(x) ≥ 0 for all x ∈ R
n
+, and denote

by C ⊂ Sn the cone of copositive matrices, i.e.,

(2.8) C := {A ∈ Sn : fA(x) ≥ 0 ∀x ∈ R
n
+ }.

Its dual cone is the closed convex cone of completely positive, i.e., matrices of Sn that
can be written as the sum of finitely many rank-one matrices xxT , with x ∈ R

n
+,

i.e.,

(2.9) C∗ = conv { xxT : x ∈ R
n
+ }.

Next, introduce the following sets Cd ⊂ Sn, d = 0, 1, . . ., defined by:

(2.10) Cd := {A ∈ Sn : Md(fA y) � 0 }, d = 0, 1, . . .

where Md(fA y) is the localizing matrix defined in (2.2), associated with the qua-
dratic form fA and the sequence y in (2.7).

Observe that in view of the definition (2.2) of the localizing matrix, the entries of
the matrix Md(fA y) are homogeneous and linear in A. Therefore, the condition
Md(fA y) � 0 is a homogeneous Linear Matrix Inequality (LMI) and defines a
closed convex cone (in fact a spectrahedron) of Sn (or equivalently, of Rn(n+1)/2).
Each Cd ⊂ Sn is a convex cone defined solely in terms of the entries (aij) of A ∈ Sn,
and the hierarchy of spectrahedra (Cd), d ∈ N, provides a nested sequence of outer
approximations of C.

Theorem 2.1. Let y be as in (2.7) and let Cd ⊂ Sn, d = 0, 1, . . ., be the hierarchy

of convex cones defined in (2.10). Then C0 ⊃ C1 · · · ⊃ Cd · · · ⊃ C and C =

∞⋂

d=0

Cd.
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The proof is a direct consequence of [12, Theorem 3.3] with K = R
n
+ and f = fA.

Since fA is homogeneous, alternatively one may use the probability measure ν
uniformly supported on the n-dimensional simplex ∆ = {x ∈ R

n
+ :
∑

i xi ≤ 1} and
invoke [12, Theorem 3.2]. The moments ỹ = (ỹα) of ν are also quite simple to
obtain and read:

(2.11) ỹα =

∫

∆

xα dx =
α1! · · ·αn!

(n+
∑

i αi)!
, ∀α ∈ N

n.

(See e.g. Grundmann [10].)
Observe that the set membership problem “A ∈ Cd”, i.e., testing whether a given

matrix A ∈ Sn belongs to Cd, is an eigenvalue problem as one has to check whether
the smallest eigenvalue of Md(fA y) is nonnegative. Therefore, instead of using
standard packages for Linear Matrix Inequalities, one may use powerful specialized
softwares for computing eigenvalues of real symmetric matrices.

We next describe an inner approximation of the convex cone C∗ via the hierarchy
of convex cones (C∗

d), d ∈ N, where each C∗
d is the dual cone of Cd in Theorem 2.1.

Recall that Σ[x]d is the space of polynomials that are sums of squares of poly-
nomials of degree at most d. A matrix A ∈ Sn is also identified with a vector
a ∈ R

n(n+1)/2, and conversely, with any vector a ∈ R
n(n+1)/2 is associated a matrix

A ∈ Sn. For instance, with n = 2,

(2.12) A =

[
a b
b c

]

↔ a =





a
2b
c



 .

So we will not distinguish between a convex cone in R
n(n+1)/2 and the corresponding

cone in Sn.

Theorem 2.2. Let Cd ⊂ Sn be the convex cone defined in (2.10). Then

(2.13) C∗
d = cl

{

(〈X,Md(xixj y) 〉 )1≤i≤j≤n : X ∈ Ss(d)
+

}

.

Equivalently:

C∗
d = cl







∫

Rn
+

xxT σ(x) dµ(x)
︸ ︷︷ ︸

dµσ(x)

: σ ∈ Σ[x]d







= cl
{
mass(µσ)Eµ̃σ

(xxT ) : σ ∈ Σ[x]d
}
,(2.14)

with µ̃σ and Eµ̃σ
(xxT ) as in (2.5).

Proof. Let

∆d :=
{

(〈X,Md(xixj y) 〉 )1≤i≤j≤n : X ∈ Ss(d)
+

}

,
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so that

∆∗
d =






a ∈ R

n(n+1)/2 :
∑

1≤i≤j≤n

aij 〈X,Md(xixj y〉 ≥ 0 ∀X ∈ Ss(d)
+






,

=






a ∈ R

n(n+1)/2 :

〈

X,Md



(
∑

1≤i≤j≤n

aijxixj)y





〉

≥ 0 ∀X ∈ Ss(d)
+






,

= {A ∈ Sn : 〈X,Md(fA y)〉 ≥ 0 ∀X ∈ Ss(d)
+ } [with A, a as in (2.12)]

= {A ∈ Sn : Md(fA y) � 0 } = Cd.
And so we obtain the desired result C∗

d = (∆∗
d)

∗ = cl (∆d). Next, writing the
singular decomposition of X as

∑s
k=0 qk q

T
k for some s ∈ N and some vectors

(qk) ⊂ R
s(d), one obtains that for every 1 ≤ i ≤ j ≤ n,

〈X,Md(xixj y) 〉 =

s∑

k=0

〈qkq
T
k ,Md(xixj y) 〉 =

s∑

k=0

〈qk,Md(xixj y)qk 〉

=

s∑

k=0

∫

Rn
+

xixj qk(x)
2 dµ(x) [by (2.4)]

=

∫

Rn
+

xixj σ(x) dµ(x)
︸ ︷︷ ︸

dµσ(x)

,

where σ(x) =
∑s

k=0 qk(x)
2 ∈ Σ[x]d, and µσ(B) =

∫

B
σ dµ for all Borel sets B. �

So Theorem 2.2 states that C∗
d is the closure of the convex cone generated by

second-order moments of measures dµσ = σdµ, absolutely continuous with respect
to µ (hence with support on R

n
+) and with density being a s.o.s. polynomial σ of

degree at most 2d. Of course we immediately have:

Corollary 2.3. Let C∗
d , d ∈ N, be as in (2.14). Then C∗

d ⊂ C∗
d+1 for all d ∈ N, and

C∗ = cl
∞⋃

d=0

C∗
d .

Proof. As C∗
d ⊂ C∗

d+1 for all d ∈ N, the result follows from

C∗ =

(
∞⋂

d=0

Cd
)∗

= cl

(

conv
∞⋃

d=0

C∗
d

)

= cl
∞⋃

d=0

C∗
d .

�

In other words, C∗
d approximates C∗ = conv {xxT : x ∈ R

n
+} (i.e., the convex hull

of second-order moments of Dirac measures with support in R
n
+) from inside by

second-order moments of measures µσ ≪ µ whose density is a s.o.s. polynomial σ
of degree at most 2d, and better and better approximations are obtained by letting
d increase.

Example 1. For instance, with n = 2, and A =

[
a b
b c

]

, it is known that A

is copositive if and only if a, c ≥ 0 and b +
√
ac ≥ 0; see e.g. [11]. Let µ be
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Figure 1. n = 2: Projection on the (a, b)-plane of C versus C1,
both intersected with the unit ball

the exponential measure on R
2
+ with moments defined in (2.7). With fA(x) :=

ax2
1 + 2bx1x2 + cx2

2 and d = 1, the condition Md(fA y) � 0 which reads

(2.15) 2





a+ b+ c 3a+ 2b+ c a+ 2b+ 3c
3a+ 2b+ c 12a+ 6b+ 2c 3a+ 4b+ 3c
a+ 2b+ 3c 3a+ 4b+ 3c 2a+ 6b+ 12c



 � 0,

defines the convex cone C1 ⊂ R
3. It is a connected component of the basic semi-

algebraic set {(a, b, c) : det (M1(fA y)) ≥ 0}, that is, elements (a, b, c) such that:

(2.16) 3a3+15a2b+29a2c+16ab2+50abc+29ac2+4b3+16b2c+15bc2+3c3 ≥ 0.

Alternatively, by homogeneity, instead of µ we may take the probability measure ν
uniformly supported on the simplex ∆ and with moments ỹ = (ỹα) given in (2.11),
in which case the corresponding matrix M1(fA ỹ) now reads:

(2.17)
1

360





30(a+ b+ c) 6(3a+ 2b+ c) 6(a+ 2b+ 3c)
6(3a+ 2b+ c) 12a+ 6b+ 2c 3a+ 4b+ 3c
6(a+ 2b+ 3c) 3a+ 4b+ 3c 2a+ 6b+ 12c



 � 0.

It turns out that up to a multiplicative factor both matrices (2.15) and (2.17) have
same determinant and so define the same convex cone C1 (the same connected
component of (2.16)). Figure 1 below displays the projection on the (a, b)-plane of
the sets C1 and C intersected with the unit ball.

2.3. An alternative representation of the cone C∗
d . From its definition (2.13)

in Theorem 2.2, the cone C∗
d ⊂ Sn is defined through the matrix variable X ∈ Ss(d)

which lives in a (lifted) space of dimension s(d)(s(d) + 1)/2 and with the linear
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matrix inequality (LMI) constraint X � 0 of size s(d). In contrast, the convex cone
Cd ⊂ Sn defined in (2.10) is defined solely in terms of the entries of the matrix
A ∈ Sn, that is, no projection from a higher dimensional space (or no lifting) is
needed.

We next provide another explicit description on how C∗
d can be generated with

no LMI constraint and with only s(d) variables, but of course this characterization
is not well suited for optimization purposes.

Since every g ∈ Σ[x]d can be written
∑

ℓ g
2
ℓ for finitely many polynomials (gℓ) ⊂

R[x]d, the convex cone Σ[x]d of s.o.s. polynomials can be written

Σ[x]d = conv {g2 : g ∈ R[x]d }.

Next, for g ∈ R[x]d, with vector of coefficients g = (gα) ∈ R
s(d), let g(2) = (g

(2)
α ) ∈

R
s(2d) be the vector of coefficients of g2, that is,

g(x) =
∑

α∈Nn
d

gα xα → g(x)2 =
∑

α∈Nn
2d

g(2)α xα.

Notice that for each α ∈ N
n
2d, g

(2)
α is quadratic in g. For instance, with n = 2 and

d = 1, g(x) = g00 + g10x1 + g01x2 with g = (g00, g10, g01)
T ∈ R

s(1), and so

g(2) = (g200, 2g00g10, 2g00g01, g
2
10, 2g10g01, g

2
02)

T ∈ R
s(2).

Next, for g ∈ R[x]d and every 1 ≤ i ≤ j ≤ n, let Gd = (Gij) ∈ Sn be defined by:

(2.18) Gij :=

∫

Rn

g(x)2 xixj dµ(x) =
∑

α∈Nn
2d

g(2)α (αi + 1)!(αj + 1)!
∏

k 6=i,j

αk!,

for all 1 ≤ i ≤ j ≤ n. We can now describe C∗
d .

Corollary 2.4. Let Gd ∈ Sn be as in (2.18). Then:

(2.19) C∗
d = cl

(

conv {Gd : g ∈ R
s(d) }

)

.

Proof. From Theorem 2.2

C∗
d = cl

{

(〈X,Md(xixj y) 〉 )1≤i≤j≤n : X ∈ Ss(d)
+

}

.

As in the proof of Theorem 2.2, writing X � 0 as
∑s

k=1 gkg
T
k for some vectors

(gk) ⊂ R
s(d) (and associated polynomials (gk) ⊂ R[x]d),

〈X,Md(xixj y) 〉 =

s∑

k=1

∫

Rn
+

xixjgk(x)
2 dµ, =

s∑

k=1

Gk
ij ,

for all 1 ≤ i ≤ j ≤ n, where Gk
ij is as in (2.18) (but now associated with gk instead

of g). Hence

(〈X,Md(xixj y) 〉 )1≤i≤j≤n =

s∑

k=1

Gk
d ∈ conv {Gd : g ∈ R

s(d) }.

Hence C∗ ⊆ cl
(
conv {Gd : g ∈ R

s(d) }
)
.
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Conversely, let h ∈ conv {Gd : g ∈ R
s(d)}, i.e., for some integer s and polynomials

(gk) ⊂ R[x]d, and for all 1 ≤ i ≤ j ≤ n,

hij =
s∑

k=1

λk
︸︷︷︸

>0

Gk
ij =

∫

Rn
+

(
s∑

k=1

λk g
2
k(x)

)

xixj dµ(x)

= 〈X,Md(xixj y)〉

where X =
∑s

k=1 λk gkg
T
k ∈ Ss(d)

+ . Hence cl
(
conv {Gd : g ∈ R

s(d) }
)
⊆ C∗. �

The characterization (2.19) of C∗
d should be compared with the characterization

conv {xxT : x ∈ R
n
+} of C∗.

Example 2. With n = 2 and d = 1, G1 reads:
[

2g2
00 + 12g10(g00 + g01) + 4g01(g00 + g01) + 24g2

10 g2
00 + 4g00(g10 + g01) + 6(g2

10 + g2
01) + 8g10g01

g2
00 + 4g00(g10 + g01) + 6(g2

10 + g2
01) + 8g10g01 2g2

00 + 4g10(g00 + g10) + 12g01(g00 + g10) + 24g2
01

]

2.4. K-copositive and K-completely positive matrices. Let K ⊂ R
n be a

closed convex cone and let CK be the convex cone of K-copositive matrices, i.e.,
matrices A ∈ Sn such that xTAx ≥ 0 on K. Its dual cone C∗

K ⊂ Sn is the cone of
K-completely positive matrices.

Then one may define a hierarchy of convex cones (CK)d and (C∗
K)d, d ∈ N,

formally exactly as in Theorem 2.1 and Theorem 2.2, but now y is the moment
sequence of a finite Borel measure µ with suppµ = K (instead of suppµ = R

n
+ in

(2.7)), i.e., y = (yα), α ∈ N
n, with:

(2.20) yα :=

∫

K

xα dµ, ∀α ∈ N
n (and where suppµ = K).

And so with y as in (2.20) Theorem 2.1 and 2.2, as well as Corollary 2.3, are
still valid. (In (2.14 replace

∫

Rn
+

with
∫

K
). Therefore,

CK =

∞⋂

d=0

(CK)d and C∗
K = cl

∞⋃

d=0

(CK)∗d.

But of course, for practical implementation, one need to know the sequence y =
(yα), α ∈ N

n, which was easy when K = R
n
+. For instance, if K is a polyhedral cone,

by homogeneity of fA, one may equivalently consider a compact base of K (which
is a polytope K′), and take for µ the Lebesgue measure on K′. Then all moments
of µ can be calculated exactly. The same argument works for every convex cone K
for which one may compute all moments of a finite Borel measure µ whose support
is a compact base of K.
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