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Categorial minimalist grammars:
from generative syntax to logical forms

MaxiME AMBLARD, ALAIN LECOMTE, CHRISTIAN RETORE
Nancy Université, Université Paris 8, Université de &eaux

1. Convergence at first sight,
and diferences in a second time

From the early days of the minimalist program of Chomsky
(1993), a convergence with categorial grammars was notbig &gp-
stein and Berwick (1995). The striking similarity lies iretimerge
operation, which looks like the application rule of the ABagr-
mars. In both cases, word order is a consequence of the cpasum
tion rules but in categorial grammars being the head of a comg
expression also derives from the categories while in a rafigh
setting it can be defined independently from the resourcswrop-
tion. The most striking dference is the absence of movement in
categorial grammar: how could this notion be captured? dhit,
how could minimality conditions likshortest movbe formulated?

In the other direction the mainfiierence is the atomicity of mini-
malist featuresmergeis not recursive, there cannot be a demand of
a category which itself demand another category.

Hence, after quite an optimistic wish of convergence, tis& ta
seems so tough that one may wonder why we are willing to do so?
There are at least two reasons:

e Of course, the main reason is that categorial grammar easily
yield the logical form (or semantic representation) foliogy
some of Montague’s idea.

e A secondary reason is the formalisation of converging learn
ing algorithms from positive structured examples, which ca
be defined for categorial grammars, but we shall not speak
about it, although one of us did something in this direction
Bonato and Retoré (2001).

Because the categorial tradition is anchored in a formal@md
ical apparatus, the convergence between generative gnaamda
categorial grammars benefited from the development of resou



logic and from the formalisation of the minimalist progragn$ta-
bler (1997) into tree grammars known as minimalist gramraars
a special issue of Language and Computation shows (Retatré a
Stabler (2004b)).

The kind of categorial grammar we are using relies on the out-
comes of linear logic (Girard, 1987), which extends the Lakib
calculus (Lambek, 1958) which itself is a logical complataf the
AB-grammars (Bar-Hillel, 1953)when the fraction rules ai@ved
as modus ponend.ambek calculus is quite a restricted logic: it
is an intuitionistic logic, where every hypothesis is usadeand
exactly once, and where they cannot permute. Our reprdgsnta
uses a mixed system with both commutative and non commatativ
connectives (de Groote, 1996; Retoré, 2004; Amblard artdrBe
2007). Still it is a linear subsystem of intutionistic logend this
enables to derive semantic interpretation from the syiatacialy-
sis.

There are several ways to represent rather faithfully Edwar
Stabler's minimalist grammars in categorial grammars andri-
dow them with an integrated treatment of compositional seios
Some of them take place in the multimodal framework, liker¢Co
nell, 1999; Vermaat, 2004), but here we focus on the one we-int
duced in the framework of linear logic Lecomte and Reto&9@,
2001) that we call categorial minimalist grammars. We deet!
them with others (in particular Anoun (2007)), but in thiggen-
tation, we rather follow the one thoroughly presented in R
thesis of the first author,Amblard (2007).

We first recall some basic notions on minimalist grammars and
on categorial grammars. Next we shortly introduce paytieim-
mutative linear logic, and our representation of minirtadjsam-
mars within this categorial system, the so-called catedjonini-
malist grammars. Next we briefly preseipt DRT (Discourse Rep-
resentation Theory) an extension 8DRT (compositional DRT)
in the framework ofiu calculus: it avoids type raising and derives
different readings from a single semantic representation, et-a s
ting which follows discourse structure. We run a completenegle
which illustrates the various structures and rules thatnaeded
to derive a semantic representation from the categorial wita
transformational syntactic analysis.



Minimalist features

b = {C,v,V,dt, ..} base syntactic categories
b = {=xxeb} demand of a base category,
selectors
b = {x<|xeb} demand of a base category,
with specific placing of the
head, i.e. head movement
selectors
-m = {-k,—-wh,..} movement triggers, li-
censees
+m = {+x]-x€-m} movementtarget, licensors

Figure 1: Features and lexical entries in minimalist gramsma

2. Minimalist grammars

There are actually several variants of minimalist gramnpaus
to Edward Stabler, whose guidelines are similar. We focuthen
initial formulation of Stabler (1997), an important altative being
Stabler (1999) where operations that one may find unpleasant
categorial setting likdhead-movemenare simulated by sequences
of elementary operations.

As usual in a lexicalised grammar, the lexicon maps each lex-
ical item from® = {Peter sleepsloves...} to a formal encoding
of its syntactic behaviour. Here syntactic behaviour isictep by
a sequence of features (category, demand of a categorynmeone
trigger, movement target, see figure 1) followed by the spoad-
ing phonological form. This sequence controls the gensygiro-
cess, which makes use of independent generating funciomg,
depending on the features of the heads.

(1) Minimalist lexical entries
The sequence of features preceding the phonological form
matches the following regular expression, whose ingreslien
are depicted in figure 1:

Lexword) € £ = (b Ub=(*b U b= U +m)*)*b(~m)*



Such grammars operate on binary trees, the leaves of wrech ar
labelled with sequences of features, and the nodes of winiclaa
belled by either <" or " >". The headof a tree is defined recursively
as follows: the head of a tree reduced to a leaf is itself. Trealiof
T, < T, and of T, > T; is the head of;. Given a lea¥ of a treeT,
there always exists a biggest subtiéeof T such that is the head
of T’: T’ is said to be the maximal projection &f

Theinitial rule says that a tree reduced to a leaf labelled by the
lexical entry is itself a derivation tree.

The mergerule, is defined for two tree$; and T,, one hav-
ing a headr; = =xr’¢; (the demand) and the other having a head
Ty = XTyp2, Wherer, 7/, are sequences of features afd¢, are
sequences of phonological features. Let us TalndT} the trees
obtained fronil'; andT, by suppressing from their respective heads
the first features, that are respectivedyand =x. If the demand
comes from a lexical item, then the result of the merge omrat
is T; < T;. Otherwise, the result i} > T;. In any case the head of
the result comes froni; and is7}¢;.

The head-movement with right adjunctia actually a special
merge and not a kind of movement. It is defined for two trées
andT,, one having a hear} = x<17¢1 (the demand) and the other
having a head, = xr,¢>, wherer/, 7, are sequences of features
and¢1, ¢> are sequences of phonological features. Let usTcall
the tree obtained fronfi; by turning its head inta; = 77 ¢1¢ i.e.
the demand« has been suppressed and the phonological features
are the ones of;’s head followed by the one of the headTaf Let
us callT; the tree obtained fronfi; by turning its head inta? i.e.
by suppressing both thethat has been consumed during the merge
and the phonological features of the head that have beendcimtee
T;. If the demand comes from a lexical item, then the result ef th
merge operation i§; < T’2. Otherwise, the result i§; > T;. In
any case the head of the result comes fibnand is7}¢1. As far
as strings are concerned, head-movementis not requit@tngars
with or without head-movement generate the same langudges,
simulation of head-movement requires many standard merge a
moves to be simulated, and yieldstdirent parse trees. For having
shorter derivations and standard parse trees, we prefaethead
movement in this paper. There also exists head movementefith
adjunction, which is defined symmetrically the phonolobiea-
tures moving before the phonological features of the setdatad.



One can also defineffix-hopping which is rather similar except
that the selectee collects the phonological features ohéaal of
the selector.

Themoverule applies to a single treewhose head isxr¢ i.e.
starts with a movementtargek € +m, such thafl has a subtre@;
whose head starts with the corresponding movement trigges
-m. Then the result i§] > T’ whereT’1 is T; without the-x
feature and’° is T minus theT subtree and minus thex feature.
Observe that the head of the result is the same as the initgl o
except that its first featurex has been eraséd.

(2) Language generated by a minimalist grammar
A convergent derivation generating the senteage - ¢, €
®* ends up with a single non phonological feat@en the
head, while the leafs read from left to right yied- - - ¢, €
(O

An important requirement on minimalist grammars, both & th
principles of Chomsky and in Stabler’s formalisation, ie ttondi-
tion known as theshortest moveln Chomsky’s formulation it says
that whenever two subtrees have &r head, the first one, that is
the closes to the target, moves. In Stabler’s view it saysvthan-
ever there are two candidates to movement, i.e. when thersvar
leaves starting with-X, the derivation crashes. Unless otherwise
stated, with stick to Stabler’s definition.

Minimalist grammars have rather interesting formal prtiper
some of which are worth quoting. Indeed, Harkema, Kobele,
Michaelis, Morawietz, Mdnnich, Retoré, Salvati, Stab&udied
minimalist grammars from the viewpoint of formal languabe-t
ory, the main focus being their generative capacity as $etsings
and as sets of trees, the complexity of parsing and learniates
gies. We recall here some of the results:

e The generative capacity of minimalist grammars (with short
est move) is equivalent to that of context free linear rengjit
system. Michaelis (2001a,b)

Litis possible to also consider weak movement, which ledwesx subtree at is
pace, but suppress the semantic information, and makesyatte tree structure
with only the semantic features and moves it as we did. As weai@peak about
semantic features, we skipped this possible rule.



o In the absence of shortest move, it has been showed that the
membership problem is equivalent to the yet unknown de-
cidability of provability of Multiplicative Exponential inear
Logic. Salvati (2007)

e As far as trees are concerned, we know that the minimalist de-
rived trees, that are the ones depicting syntactic strastcan
be obtained from a regular tree grammar with a transduction
applied thereafter. Monniast al. (2000); Kobeleet al.(2007)

Although there are some semantic concerns in minimalishgra
mars as rewriting systems e.g. in Kobele (2006) what is ac#&gi
form and how it could be computed is not as clear as it is indhe |
ical approach to categorial grammars. This is likely to keniost
frustrating limit of minimalist grammars and the main reagor
studying them from a categorial perspective.

For us, the main advantage of minimalist grammars (or in a
broader perspective, generative grammar, transformedtigram-
mars, etc.) is their linguistic richness and soundness;iwis at-
tested by the relation they are able to draw between serdégues-
tions and related declarative sentences for instance faelea lan-
guages (the dierences among features are a way to explain lan-
guage variation).

3. Categorial grammars

A categorial grammar consists in a lexicon which associates
with every lexical item a finite set of categories (propasitl log-
ical formulae). In the case of AB grammars categories artefini
generated by the connectiveéand\ from a set of base categories:
S (sentence)np (or dp for noun phrase or determiner phrase),
(common noun) etc. A sequence of wonds: - - W, is in L(Lex)
wheneveWidt; € Lex(w;) such that,...,t, + Sis derivable in a
logical calculus. For AB grammars the calculus simply csissin
the two famous residuation laws, which are eliminationsdtem
the logical viewpoint, i.e. whep and\ are viewed as non commu-
tative linear implications.

Alternatively, one could also label the formulae in the pgiscas
follows:



(w: word, withA € Lex(w) ) .
axiom

Fw:A

FWi...Wop A Fmg---mp i A\B

e
FWp-oWoMy---mp 2 B

Ft:B/A FrU:A
Ftu: B

This lead to a definition of the generated language as typable
strings:

e

(3) Language generated by an AB grammar
(*) wy -+ -Wp € L(Lex) wheneveFr wy ---W, : S.

The logical calculus we are to use for categorial minimalist
grammars is close to the one above since we shall considelslab
and only elimination rules. But it also resembles the Lamteak
culus since we have more logical rules and one of them, namely
product elimination, requires axioms and varialfles.

One can wonder why moving out the mathematical paradise
provided by usual categorial grammars, AB grammars or L&mbe
grammars, which are very neat and elegant, especially thdek
calculus. The main reason is that the syntactic abilitiesatégorial
grammars are limited. A formal way to say so is that they omly d
scribe context-free languages, which are commonly assuonieel
insuficient to describe natural language syntax, but a more empir-
ical one is their diiculty to describe various syntactic phenomena,
like discontinuous constituent, or to relate declarateetence and
questions® Therefore, one has to extend such systems, either by ex-
tending the logic by modalities and postulates, as MooKth288)

did, thus sticking to the parsing as deduction paradigng bave a

2Can one extends this definition of the generated languagetabek gram-
mars? Lambek calculus extends the above calculus with thedinction rules (or
abstraction), and this requires to have context and vasafihtroduced by the ax-
iom x : A+ x: A). Since variables are abstracted only from leftmost ortnigist
positions, one has to carry over context with words to pribliiixit abstractions,
hence the lightness of the above system without contextsis |

3Although Lambek grammars only describe context free laggsiaif the gram-

mar is not compiled into a context free grammar, parsing mpfsearch is NP
complete.



logical basis providing the deep structure and an extra ar@sm
computing word order.

Despite their syntactic limitations, categorial formaisnever-
theless allow an appealing direct computation of (usuajickl for-
mulae from a syntactic analysis. The deep reason, alreaitedo
by the Ancients is that syntactic categories corresponchoas-
tic types, see e.g. Baratin and Desbordes (1981): a senisca
propositiont, a definitenpis an individuale, a common noum or
an intransitive verimp\ S is a one place predicate, a transitive verb
is a two place predicate etc. Without providing the detalace
we are going to present a similar process for categorialmafist
grammars, let us explain how it works.

In order to compute the semantic formula associated witlma se
tence, we have:

e A lexicon that provides each word with a syntactic category
¢ and a lambda term whose type is the semantic translation
t=c.

e A syntactic analysis that is a proof in the Lambek calculus
of S under the assumptidn, . . ., t,, eacht; being a possible
category for the woral;.

The algorithm which computes the associated logical foamisil
quite simple:

(i) Convert the syntactic categories into semantic typefohs
lows:np*=¢,S*=t,n*=e—>t,(A\B)*=(B/A)=e—>t:
this yields a proof in intuitionistic logic o$* = t under the
assumptiore] = ty,..., ¢, = t;. This proof is a proof that the
lambda term hereby defined corresponds to a formulae (is of
typet), whose free variables are of type

(i) Replacing each variable with the corresponding terntype
t; provided by the lexicon provide a close term of tytpéhat
is a logical formulae.



4. Categorial minimalist grammars
4.1. Labels encoding word order

Let us consider a set of variabl¥s(for expressing hypothesis
and encoding movement) and a (disjoint) set of phonolodicais
@ (words, lexical items) The labels we are to use are slightlyem
complicated than sequences of words. A latigla triple each com-
ponent being a sequence of variables and phonological forms

= (I'sped Meadl Ffcomp = (rslrnlre) € (VU ®)*]3

Intuitively, these three strings are the yields of the thsab-
trees respectively corresponding to the heall (he specifierr(s)
and the complementd). The following notations are convenient to
denote the suppression of one of the componénis: (rs|e|re) €
[(VUD)T?, Ps = (eltnlre) € [(VUD)T?, Pe = (rslrnle) €
[(V U ®)*]3. With these notations., = rsrc € (V U ®)*

Given a label = (rs|r|rc) we denote by the concatenation
of its three components:

r=rsrprc € (VU®)*
4.2. Arestricted fragment of partially commutative logic

To represent minimalist grammars we make use of a very re-
stricted fragment of partially commutative linear logichig later
system introduced by de Groote in de Groote (1996) and e&ténd
in Retoré (2004), is a superimposition of the Lambek caisyin-
tuitionistic non commutative multiplicative linear logiand intu-
itionistic commutative multiplicative linear logic. The@rnectives
are both the ones of the Lambek calcules\(/) and the ones of
(commutative)multiplicative linear logie( —).

We only consider a particular formulation of a restricteaigfr
ment of the calculus to encode minimalist grammars:

¢ We use natural deduction as in Amblard and Retoré (2007).

¢ We only use the commutative conjunctia) @nd the two non
commutative implications/(\).

e We only use elimination rules.



Arz:A®B T[(x:Ay:B)]rt:C
ITA] + (let (x,y) = zint) : C

[®e]

Figure 2: Labels for product elimination rule.

e Contexts will simply be multisets of formulae. Usually, for
such calculi, contexts are partially ordered multisetsaf f
mulae and a rule callegintropyallows to relax such order. In
the restricted calculus we use, we systematically use the fu
strength oeentropyjust after the eliminations gfand\ which
usually introduce order between the assumptions. Hence con
texts are simply multisets of formulae.

The product elimination rule is especially important, hes=a
it enables a coding of movement (or ratte@py theoryof Brody
(1994)) from one hypothesis to the other one. It is a free tdiap
of the product elimination rule to the proof expressions bfam-
sky (1993) (see figure 2).

The formulae we use have a definition that follows rather pre-
cisely the sequences of features that are used in miningzhsh-
mars, i.e. in the sef defined in 1;

(4) Logical formulae in a categorial minimalist lexicon

F = x/b|x/=b]c
X = b\x|bz\x|m\x]c
c = ma®c|b

The rules which control the labelling are presented in figuge
— observe that labels do not control the deductive processarieu
derived from deductive process.

The rules of figure 4.2 will be used as a group of rules which cor
responds to the main operations of minimalist grammars,eham
mergeandmovegiven in (5) and (6).

We also need to distinguishftirent), /-eliminations because
head-movement with right adjunction is as far as logicaks/pre
concerned anergebut is has a dferent éfect on word order. The
two rules corresponding to lexical mergénead-movement with



(S,A) € Lex
tc (e]sle) : A

[LeX

xeV

[axiomé
X:Atrg (e|X|€): A

l"l—Gr*le/B AI—Gr)ziB
([;A) kg (ras|raelracr2) * A

[/e]

Akgfﬁz:B rkgfl:B\A

([A) kg (raras|riplric) - A [\e]

I'rgM:A®B A[X:Ay:Bltgr:C

= ; [®e]
Al +G 2[r1/X,€/y] : C

I'regP:A I'CT
I"'tgP: A

[c]

Figure 3: Labelled PCMLL deductions. As renaming allowss it
assumed that no variable is common to two labels froffedint
premisesVar(r1) N Var(rz) = 0. In the ®, rule, A is usually a
movement feature.



right adjunction/= or the non lexical variant are provided in fig-
ure 7 This is the reason why we use the symhaland /- corre-
sponding to head-movement with right adjunction. CleaHis is

a weakness of the system, because as far as proofs are cahitern
is weird to have dferent connectives with the same rules. We can
answer to the possible protests that:

e As for minimalist grammars, head-movement is not really re-
quired since it can be simulated with regular movement, &enc
mergeandmovewhich are completely directed by the formu-
lae

e Because the system does not contain the introduction rules,
the system is unable to prove B= A_\BnorA/B=A/_B
which would be quite a problem.

(5) The operatiomergein a categorial setting

(semA) € Lex (Lex

Fsem: A
Fg:A/B Aru:B
Ar(g(u):A
Aru:B T'rg:B\A
ATF(@QU): A

(6) The operatiommovein categorial setting

md

mg

'-s:A®@B Alu:Av:B]JrFP:C

Al +rlu:=sv:i=¢]:C [mv

(7) Head-movement with right adjunction in a categorial sejtin

LF(rslrnlre) :A/=B  AFr(ssIsnls): B
AR (PslthsnlreSss) - A

[mghdi

Ar(Ssisnls) B Tr(rslrnlre) i Bo\A

[mghdi
AT+ (Ss&rslrhsnlre) - A




4.3. Grammars

As earlier said, the definition of the generated languagenmes
bles the one of categorial grammar given in 3, although He¥e-i
compasses a broader notion of label.

(8) Language generated by a categorial minimalist grammars
A grammar produces a sentenge . . ¢, € ®* wheneverthere
exists a derivation of 7 : C withr = ¢;1...¢, (remember
thatr is the concatenation of the three component3 of his
definition entails among others that variables must disappe
with product elimination rules encoding movement durirg th
derivation process.

A natural question is whether minimalist grammars and cate-
gorial grammars generate the same strings and derived frbes
answer is yes, and the proof may be found in Amblard (260R),
relies on translations from one king of lexicon to the other:

(9) The translation(_)* from a lexicon a la Stabler into a catego-
rial minimalist lexicon

(- = (o))

=ty = P/ f
(fey) = P/ f
(f)” = f
=ty = f\@Y
(fey)r = f\0)
(+fyy = f\@)Y
¥ = (fo®))
(fy = f
- = (fe®))
(f)° = f

(10) The translatior(.)* from a categorial minimalist lexicon into
a lexicon ala Stabler

4Actually Amblard (2007) does not include the head movemese chut espe-
cially for this construct, the two kind grammars work jusé ttamemutatis mu-
tandi.



(F/ 1) = =fFY

(F/e ) = fe(Fy
(feF)” = (F) —f
(B =

. [ =f(FYsifep
(FA\FY = {+f(F)ﬁ'sifep;
(fo\FY = fe (FF

(fy = f
(feFy = (F) -f
(feF) = (F) —f
(f)” = f

(11) Equivalence of categorial minimalist grammars and minimal
ist grammars
If a minimalist grammar a la Stabler is turned into a catego-
rial minimalist lexicon according to the rules in figure 9eth
the generated sentences are the same and even parse trees are
almost the same (provided the subtree undergoing movement
is correctly placed). Conversely, if one turns a categonial
imalist lexicon (only containing formulae @MG defined in
figure 4) into a minimalist lexicon according to the rules in
10, then one also gets the same generated sentences and parse
trees.

A remaining question is how constraints on derivationsg lik
shortest movecould be formulated in a deductive setting. This is
a weakness of the system: the only way to formulate theseaest
tions is to impose constraints on derivations, and this tssonap-
pealing from a logical viewpoint since rule are usually exhfree,

i.e. apply locally without referring to the history of thedietion
— unless one goes to dependent types, which are complicated a
not yet explored for linear calculi.

5. Syntax and semantics in categorial minimalist
grammars

The purpose of viewing minimalist grammars as a categorial
system is to have an automatic conversion of syntactic cempo
tions into semantic composition. We firstly present the sdgina



types and their relation to syntactic categories, then @naof
A-DRT with  constructs in order to obtain thefldirent scope read-
ings from a single semantic representation, and finally sprtha
algorithm producing semantic analyses.

5.1. From syntactic categories to semantic types

The formulae that we infer as semantic representationsrate fi
order, because we are going to use DRT which better matches th
discourse structure. Therefore we reify predicates, wevasables
to express high order properties: we writa(e, Rey A fast(e) in-
stead off astrun(Rex). Consequently we have the following three
base types

t the standard Montague type, for truth values and propaositio
(that will be used as from theyu-calculus viewpoint).

e the standard Montague type, for entities.

v the type for reifying events and predicates in order to remai
in first order logic.

The standard translatidth of a syntactic categonyinto the cor-
responding semantic typ#(x) has to be slightly extended, because
in addition to the syntactic connectives we have, together with
an extra basic type for reifications.

(12) Converting syntactic categories into semantic types

H(C) = t
Hv) = v—ot
Hf = v-ot
HV) = e->(v-ot)
Hd) = e
Hn) = e—t
H(x®y) = H(y)ifaem
= HKX)ifagm
Hx\y) = H(x) - H(y)
H(y/x) = H(x) - H(y)
Hxs\y) = H(X) — H(y)
Hly /=x) = H(x) = H(y)




This translation can be illustrated on the syntactic caiegave
are to use in the example of section 6.

Hked) = e
HV/d) = (vot)—»e-sv-t
H((k\(d\V)) /= V) = (e—v-t)oe—se—v—t
H(k\t) /=v) = (vot)oe-sv-ot
Hko®d/n) = (e—>t)—e
H(C/t) = (vot)-ot

5.2. Au-calculus

Semantics can be computed in standard Montagovian terms and
types, as did Amblarét al. (2003) or Lecomte and Retoré (2002)
We extend a bit this process, by moving fraatalculus tolu cal-
culus, a1 calculus for depicting classical proofs (while standard
calculus correspond to proofs in intuitionistic propasi@él logic).
The advantage is that quantifiers do not need to be type rarsed
that the dfferent scopes are obtained from a single syntactic seman-
tic analysis, by dferentiu computations, as initiated by de Groote
(2001) and developed for categorial minimalist grammar&rim-
blard (2007) or Lecomte (2008).

They calculus is strongly related to the formulation of claskica
logic in natural deduction usingeductio as absurdurninstead of
concluding-—-A = (A - 1) — 1 from L under the assumption
—Aone concludes. Provided one does not use theule (ex falso
quod libet sequitdy, this can be done with any constant type for
Here, as in de Groote (2001), we shall use Montagtype (truth
values, propositions) for the of the glue language that is thig-
calculus. As opposed to common intuitions, this is reallsntiass!

We will use a restricted calculus, whose typing rules arg ver
easy: basic types are the aforementionedv and, as said above,
will be used asL. Types are defined as usual, with the arrow (intu-
itionistic implication) only.

For each typeZ, we have a denumerable set.b¥ariables of
typeZ.

We haveu variables with typeX — t for some typeX.

There are three kinds of terms, VallésUnamed Terms and
Named Termeg with V c v, which are defined as the smallest sets
closed under the following operations:



e ad-variablex : X is a value and an unnamed term.

e if u: U is an unnamed term anda A variable themx. u :
X — U is a value and an unnamed term

e if vi : X = U andv, : X are unnamed termsy;(v2)) : U is
an unnamed term

e if v: Xis anunnamed term and: X — t au-variables, than
(a(v)) : Xis anamed term

e if v: Xis anamedterm and : X — t is au-variable then
(ua. v) : Xis an unnamed term.

e Any term of typet is a named term (this follows from = t).

The reduction patterns fayu-calculus include the usuglcon-
version as well as reductions concernjmg/ariables and the:-
binder:

(13) Au reductions

B)  ((x1)(u) g U/

() ((ue. T[(a QIP) pe. T[(a(Q P))]

W) (Plua. T[(a Q))) pe. T[(a(P Q)]

(€)  ((ue. T[(e Q) T[Q]  onlyfor Q:t

Let us recall thafiu calculus, with the given reductions, et
confluent This will be useful to obtain the many readings of a given
sentence, as first observed by de Groote (2001).

§ 3

L2

5.3. Au-DRS

Instead of standard Montague semantics, we prefer to peoduc
Discourse Representation Structures (DRS), whose dyisdratter
matches the one of sentences and discourse. Of course,then
wished correspondence with the categorial framework, weaus
compositional presentation of DRT, likeDRT. But, because we
also wish to have reductions for avoiding type raising and solving
scope questions, we use a generalisatiohrDRT that we calliu-
DRT.



Basically, we consider DRS with andu variables (allu vari-
ables will be of typeX — t), using freely botlt andu abstractions,
and we refer to these structuresiasDRS (Discourse Representa-
tion Structure) In addition to thé andu variables and the variables
used for movement which can be considered as.fregriables we
need a set of discourse refreMs of typee (some could be of type
v) denoted byd,, - - -, d.

The lexicon in addition to the syntactic categories map$eac
lexical item to alu-DRS. A Au-DRS is typed term with three dif-
ferent kinds of variable¥, (containing movement variable, which
have nothing special except that they are not bound byiany,
andVp and three corresponding kinds of binders the later one al-
lowing dynamic binding. Variables that areor 2 bound can be
suppressed from the context, while discourse referents should
remain in the context until some simplifications are perfedmas
their binding is sophisticated, see 14.

Types for these terms are defined as usual, from three base typ
B = {e v, t} (entities, events, truth-values) by the arrow:

T=B|IT->T

We have constants, namely predicates of type (v — (v —
---1)) whereu is eithere or v — there is no need to systematically
force that a predicate only involves one event, itself. Agalisan
intransitive verb has type — e — t, a transitive verbe — e —

e — t, a ditransitive verb& — e - e — e — t, and a property
e—t.
We also have logical constants:

e NIttt
e Nttt
e >ttt
e =e—oe—t

There is no constant fal ([d|F] is close todd F) nor for v
([IIdIF] = [IG]] is close to¥Yd (F = G)), since we thus obtain
better scope properties. The variant/oinamedA has a slightly
different behaviour with respect to discourse variables. Tieeaop
tion A concerns DRS as well as formulae, and is a kind of a fusion,
similar to the merge operations explored by Muskens (1996).



| Variable Term Result |
a:(X-=1tHeV, u:X pa.u: X
X:XeV, u:u (@Axu):X->U

d:eeVy . .
d:vevd} u:t [dlu] : t

We also have applications:

| First Term Second Term Application Reslilt
a:(X—-t) u:X (a(u)) : t
u:X-Y v: X (u) : Yy

Given a formulaF : t we use the following shorthands:

e letF : t then [F] = F in the very same context. In particular
F — G can be viewed asi] = [|G].

e let F : t then [dyl[dz[ds|[- - - [dn[IFIII] = [dh---dnlF] the
context being unchanged.

A u-DRS is a typed term of this calculus. When it is of tytpe
withoutu-binder nomu-variable, it is an ordinary DRS, and when,
furthermore, there is neitharbinder nora variables, it is an ordi-
nary DRS (provided formulae involved in implications arewed
as short hands for DRS without discourse variables). Inrorale
formulate the reduction ok which encodes dynamic binding, we
need some standard notions on DRS and subDRSs.

A sub DRS is simply a subterm. A subDRZof a DRSH is
said to be gositive(resp.negativgé subDRS ofH written <* (resp.
<7) whenever:

e G=H

e H =[d|K]andG <* K (resp.G <~ K)).

e H=KALorH=KALandG <* K (resp.G <~ K)

e H=K=LandG <* KorG <~ L (respG <" LorG <~ K)

The reference markers associated to a DRS [ d,|F] are the
discourse refrentd; - - - d,. The accessibility relation is the closure
of (<) U (\) whereF N\ G wheneverF — G. The accessible



referent markers of a DRS are the referent markers of thesaitxte
DRS.

As said abovep operation is close to the DRS merge in the
literature, but here it will be calleflisionbecause we useergeas
a term denoting a syntactic operation. Although it could efned
on the run, the reduction of is easier to define on a normak-
DRS, that is a DRS without abstraction nox abstractions. It can
be reduced when it applies to a DRSand a single formul& with
free discourse variablefslv(F). To view this reduction as a fusion
(merge), firstly turrf into [fdw(F)|F]: then the resemblance should
be clear.

(14) Internalisation
If there exist one largest = [k; - - - k¢|G] positive subDRS of
D whose accessible referent markers inclufitiegF) thenD A
F reduces to D with subDRS K replaced with
K = [ki---kdJG A F]. If there is no such positive subDRS,
or if there is no largest one, no internalisation is possible

5.4. The process of syntactic and semantic derivation

Assume we have a lexicon which maps a word to its syntactic
categoryx (that can be inferred from a minimalist grammar) to-
gether with the corresponding-DRS with the semantic typd(X)
defined in 5. Firstly, we should provide the semantic coupget
of the syntactic rules. Merge does, as usual, correspondae-
plication: the head is the semantic function which is ampt@the
semantics of the argument. Head movement with right adjpmct
is just a merge from the semantic viewpoint — indeed the nesou
consumption is just the same, only word order i§edent from stan-
dard merge.

(15) Semantic counterpart ahergeand of head-movement

In themergeandhdr rules of figures 5 and 7 l&i(s) : H(B)

be the semantic term correspondingsto B i and letH(r) :
H(A) — H(B) be the one corresponding to: A/ B (or
A/=BorB\ AorB_.\A) (all the possible syntactic cate-
gories forr translated into the semantic typgA) — H(B)).
Then the semantic term associated with the resulting catego
Ais H(r)(H(s)) : H(A) — the functional application of the



semantic term associated with the function-category te¢he
mantic term associated with the argument.

The semantic counterpart of timeoverule of figure 6 is more
complex. As may be observed in the syntactic ral@yveconnects
two places of respective categori@andB, in an elimination rule
with main premiseA ® B. These two places corresponds to two
A-variablesu andv that by construction also appear in the seman-
tic term. Items that can undergo movement, typically deieem
phrases missing a case, wh constituents, have a semantic term
sassociated with a particular discourse variat{lg) introduced in
the lexicon within the semantic term of the determidove con-
sists in replacing the first variablewith the semantic terns, and
the secondy with the corresponding discourse varialig). The
internalisation process described above in 14 is preciselge to
connect the formula in whict(s) appears and the DRS that derives
from sand which is meant to bound the discourse refedésjt

(16) The semantic counterpart afiove

In the rule belowd(s) is the distinguished discourse variable
associated with the movable semantic texm

Tk H(s):A®B A[u:H(A), v:H(B)] + H(r)[u, vV]:H(C)
AT + H(N)[u:=H(s), v:i=d(s)]: H(C)

my

To sum up, how do we proceed to compute both the syntactic
and the semantic structure associated to a sentgneep, € ®*?

(17) Computing the parse structure and the logical forms in a cat-
egorial minimalist grammar

(i) Firstly, we construct a proof with the rulesv, mgandhdr
of P:Cwithr =¢1---épn.

(ii) Afterwards or in parallel steps, this providesia-DRS of
typet without freeA variables, nor with free: variables,
that is nearly what we were looking for: we only have to
internalise the formulae concerning some discourse vari-
abled that lie outside the corresponding box which bounds



d. This may seem problematic because it turns some free
variables into bounded ones but as we proceed just after the
derivation, before any renaming takes place, this is harm-

less. Also by construction, there cannot be conflict about

in which box the formula must be moved.

[d, fIP(d, £)] A Q(f) ~ [d, fIP(d, f) A Q(f)]

Hence we end up with 3« DRS D of typet without free
variables of any kind, and we may céllthe semantic rep-
resentation of the sentence][

(iii) Nevertheless P] still contains u variables and abstrac-
tions, which prevents us from interpreting directiy][as
a formulae. Performing andu reductions g, i/, <) yields
ordinary DRS that are usual the semantic representations
of the sentence. The ftirent scope readings result from
the non confluence gf reductions, as in de Groote (2001).

The next section provides detail on all these steps by rgnain
complete example.



6. A complete example of a syntactic and semantic
analysis

Here is a samble lexicon from which we will derive the two
reading of the ambiguous sententd® children ate a pizza

lexical Au-DRS & semantic type syntactic
item category
the AQu6.[I[dI(Q d)] = [(o d)]]
(e—>t)—e ked/n
specific discourse variabld:
a AQ.uy.[pI(Q P) A (¥ P)]
(e—>t)—e (k®d)/n

specific discourse variable:
children| Az (child 2)

e—t n
pizza Az(piz 2)

e—t n
ate AxAyle.eat(e, X, Y)

e—->e—->VvV-ot V/d

modif ARAXz Ay €.
R(y. €) A Pa(e, u)
(e-v-ot)me-oe-v—ot|(k\(d\V)/=V

infl AQay21e.Q(e)

AP(€) A Ag(e, Y2)

(Vvot)oe-svot (k\1t) /= Vv
comp | 2Q.[el(Q(e))]

(vot)ot C/t

In order to complete both the syntactic and the semanticgssc
described in the previous section on this example, we arsddhe
following structure:

declaration of
the syntactic

variables label, triple of phonological forms

syntactic category
semantic type

declaration of the DRS

corresponding
semantic variables



(elale) (el pizzal )

(k®d)/n n
F F
(e—t)—oe e—t
AQ.uy.[p1Q(P) A ¥(P)] Azpiz(2)
(] al pizza) mo
ked
H e
py.
[pIpiz(p)AyY(P)]
(e]the| &) (el children| &)
) ked)/n K
(e—t)—oe e—t
AQue.[1[d]| Q(d)]=[s(d)]] Az.child(2)
(¢] the] children) m
ked
F{ e
6. 1[d] child(d)]
=[1s(d)]]

Figure 4: Constructing the twdp's: Two steps of the derivation
may be performed independently. They both consist in coofstr
ing a determiner phrase by a merge rule and semanticallyettes-d
miner (some or all) applies to the predicate. Notice thasdrmantic
of quantifiers include a-abstraction.



The first step is a lexical merge with a variable that will bedis
later on for movement. On the semantic side merge corregond
the application of the verbal lambda term to the variable.

(eleate) (elule)
vV/d ud d
F F
e—e—-v-ot ue e
AxAyle.eat(e, X, Y) u
(e eatiu) o
ud v
ue FL e—->vVv-ot
= Ayle.
eat(e U,y)

Next step is a head-movement with right adjunction trigdere
by modif. Semantically it is also an application, which introduces
thePa thematic role:

(elele) (eleatu)
(k\(d\V)) /= V wd Y,
F{ (emv-ot)—e—e—vot :e Fe e—ovot
ARAXoAyAe. = AyAe.
R(y, €) A Pa(e, xo) eat(e u.y)
(] eatu) e
ud | @W)

- e—->e—-v-ot
= /le/ly/leeat(es gs y)
APa(e, x2)

Next step introduces in a merge rule a variable for case thiat w
be used for movement. On the semantic side, the variabletyets
patient role.



(e eatiu)

. k\(d\v)

F T i e—-se—-ovot

= Axodyle.eat(e Uy, y)
APa(e Xp)

(elvle)

<
=
=
c
o

< O

mg
(v]eatu)

d\v
vk, u:d e—->Vv-ot
Ve, ue AyAe.
eat(e u,y)
APa(e V)

A move inserts thalp a pizza (computed in figure 6) into the
main derivation. Syntactically, the movement checks tte=cand
the phonological string replaces the variable. Semaiyitiad Au-
DRS replaces the variable and the specific discourse refergnt
replaces.

(e|a| pizza) ((j‘(l/eaﬂ u)
E Z®d vk, u:d - e—>VvV-ot
Ly vie ue Ayle.
Ipi t(eu,
[pIpiz(p)Ay(P)] o a((e _V)y)
(apizzgeat ¢) mv
d\v
e—->v-ot
"1 ayte
eat(e uy.[pIpiz(p)A¥(P)].Y)
APa(e, p)

Next a variable corresponding to the subject (anotigis in-
troduced in a non-lexical merge-rule. Semantically, we fyply a
A-expression to the variable:



(apizzdeat ¢)

(elw]e) d\v
w:.d - d - e—->v-ot
w.e e ayle.
w eat(e, uy.[plpiz(p)Ay(P)].Y)
APa(e, p)
. mg
(wapizzdeat g)
v
w.d - Vot
w.e Ae.
eat(e, uy.[plpiz(p)AY(P)],
w)APa(e, p)

The verb is now ready to receive its inflection. Syntacticéll
is a head movement with right-adjunction that glues the étitha
mark to the right of the verte@tin fl should be understood ass).
Semantically, the-term associated with the inflection is applied to
the term we derived so far.

(e]infl| &) (wapizzdeat g)
(k\t) /e v %
- (vot)—e—-v-t wid v t
AQAy1e. w.e Ae.
Q(e)AP(€) eat(e uy.[plpiz(p)Ay(P)],
nagen(e,y,) W)APa(e, p)
(¢ atelw a pizza) nr
k\t
w.d e-v—t
we AyrA1€e.

eat(e uy.[plpiz(p)Ay(p)]. W)
APa(e, p)AP(€)

L\Ag(e9 YZ)

A variable is introduced to enable the subsequent movenient o
the subject. Semantically, the application assigns thatagée to
the subject.



(] atelw a pizza)
k\t
. i e—->VvV-ot
;’E F (IZ wid Ayzle.
= y - eat(e uy.[plpiz(p)AY(P)]. W)
= APa(e, p)AP(€)
AAg(e,Y2)
(y| ate| w a pizza)
t
V-t
Ae.
eat(e, uy.
[pIpiz(p)Ay(P)],
w)
APa(e, p)AP(e)
AAg(ey)

mg

w.d, y:k
wey.e

The subject that is thép we derived in figure 6, is inserted in
the main derivation by a move. Replacing the variables@tre
subject to the left most position, and on the semantic site}g-
DRS associated with th@preplaces the variablg, while the other
semantic variablg is replaced with the specific discourse referent
d.

(y|ate| w a pizza)
t

(e]the| children) Vot
F (ke® ‘ Wid’ y_:k F ;l:t(e,,uy.
sl 11d| child@)] &Y | [plpiz(pay(p)l,
=[16(d)]] w)
APa(e, p)AP(€)
MNAg(ey)

(the children ate| a pizza) "

t

Vot

Ae.eat(e wy.[plpiz(p) A y(p)],
po.[[[d[child(d)]=[]s(d)]])

APa(e, p)AP(e)AAg(e, d)



Finally, the complementiser turns the whole sentence into a
complement by a merge, and semantically reifies the whole for
mula.

(the children ate| a pizza)

(elee) t
C/t - Vot
(Vot) -t Ae.eat(e uy.[plpiz(p) A y(P)],

1Q.[e[(Q(e))] po.[1[d] child(d)]=[1s(d)]])
APa(e, p)AP(€)AAg(e, d)

(e]| e|the children ate a pizza) o

C

t

[e|eat(e, uy.[plpiz(p) A ¥(P)].
ué.[1[d]child(d)]=[|s(d)]])

APa(e, p)AP(€)AAg(e, d)]

Thus the syntactic derivation yields the following-DRS:
[eleat(e, uy.[pIpiz(p) A ¥(P)]. pé.[I[dIchild(d)]=[I(s d)]])
APa(e, p)AP(€)AAg(e, d)]

Yet we need to internalise the predicates, as explained,inel4
to move inside the scope of quantifiers the formulae invgtirese
variables (notice that this is harmless, because we jusbipeed
the derivation, and the variables do not have the same naroe-by
incidence nor by renaming) and this leads to the followingPRS:

[eleat(e,

wy-[plpiz(p) A y(p)APa(e, p)],
wo.[|[dichild(d)]=[l6(d)AAg(e, d)]])
AP(e)]

For computing this term, we can drop the findl(e) and thee
box, since it is not going to interfere with thereductions. But we
must be slightly cautious and write thg-DRS in thed applicative
style ((eate)p)d) rather than predicate logic, to makeeduction
more visible.

W E (((eat &)(uy-[PI(piz P) A (¥ P)A((Pa €)p)))(ud.Y))

wit

Y =[|[dI(child d)]=[I(s d)A((Ag €)d)]]

We now have to reduce acording to the reduction rules in 53 thi
Au-term and this will lead to the two readings. The first one & th



the children shared a pizza, while the second one says thexréoy
child there is a pizza that he ate.
() w’ reduction witha = y (u-variable)V = (eate)and @ T) =
(v p) replaced byV (e’ T)) = (v ((eat €)p)) yields:
W o (uy".[pI(piz p) A (v ((eat ) p))A((Pa €)p))(ud.Y)
(i) A u reduction witha = y” (u-variables),V = (ué.Y) and
(@ T) = (¥ ((eat €)p)) replaced by
(@’ T)V) = ((v" ((eat €)p))(us.Y)) yields:
W v (uy”.[pl(piz p)A((y” (((eat €)p)(ud.Y)))A((Pa €)p))])

(iii) Next we apply ag-rule ony”, yielding:

W > [pl(piz p) A (((eat €)p)(ud.Y)) A((Pa €)p)]
X

(iv) The underbraced subterm:
X = (((eat €)p)(us.Y)) is actually:

(((eat €)p)(uo.[l[d(child d)]=[|(6 d)A((Ag €)d)]])) and it
can undergo @’-reduction witha = § (u-variable) andv =
((eat €)p) in which (@ T) = (6 d) is replaced with

(@ (VT)) = (¢ "(((eat e p)d)), thus yielding:

X~ (uo”.[I[dI(child d)]=[I(6” (((eat €)p)d))A((Ag €)d)]])

(v) finally a simplification by the--rule yields:
X~ [|[d(child d)]=[|(((eat e)p)d)A((Ag €)d)]]

If we insert the result oK into the result oV and add the final

P(e) we obtain: g[pl(piz p) A [[[dI(child d)]=
[I(((eat €)p)d)A((Ag €)d)]] A((Pa €)p)] A P(e)]

that is3e.P(e) A
Ap (piz(p)APa(e, p) A Yd(child(d) = (eat(e, p,d) A Ag(e, d))))

As Au-reduction is not convergent, other readings may be ob-
tained by applying dierent reductions when possible. For instance,
after step 1 for which there is no choice, yielding

W v (uy”.Z)(uo.[I[dI(child d)]=[I(6 d)A((Ag €)d)]])

with Z = [pl(piz p) A (¥ ((eat €)p))A((Pa €)p)]

instead of theu reduction used in the first derivation, we can

apply au’ rule.



(iiy A yg'-rule witha = 6, andV = (uy’.Z) (@ T) = (6 d) replaced
with (@’ (V T)) = (6’ ((uy’.2)d)) yields:

W o u6” [|[di(child d)]=[I(6" ((uy'- 2)d)A((Ag €)d)]]
(iii) next we can apply a simplificatiog rule for ¢’ yielding:
W s [[[di(child d)]=[] (uy".Z)d) A((Ag €)d)]]
S
e the underbraced subtergn= ((uy’.2)d) that is

S = ((wy"[plpiz p) A (¥ ((eat €)p))A((Pa €)p)])d)
can undergo a-reduction witha = y’, 8 = y” (u-variables)
andV = din which @T) = (¥’ ((eat €)p)) replaced with
(@(TV)) = (v ((eat €)p)d)) yielding:
S~ (uy” [pl(piz p) A ((v” ((eat €)p))d)A((Pa €)p)])

(iv) nextwe can apply t& auy” simplification, yielding:
S~ [pl(piz p) A (((eat g)p)d)A((Pa €)p)]

If we insert the reduct 0% into what we reduce to, we get:
W ~s
[I[di(childd)]
=[l[pi(piz p) A (((eat €)p)d)A((Pae)p)]A((Ag €)d)]]

If we add the §P(e) A --- that has been left out, we obtain:
Jde P(e) A Ydchild(d) = Ag(e d) A dp(piz(p) A eat(e p,d) A
Pa(e, p))

7. Perspectives

The purpose of this paper was to describe a state of our work
on categorial representation of generative grammars hwériables
the automated computation of semantic representatioe Miered
as DRSs. Nevertheless, some intriguing questions remain.

On the syntactic side, what would be a proof theoreticalivars
of shortest move? As such conditions involve the historyrobfs,
that are proof terms, dependant types should provide a whyrto
mulate such condition, but for linear logic they have not lye¢n
much studied. Still on the syntactic side, representatiomioi-
malist grammars with remnant movement (which leaves outl-hea
movement) for which the correspondence is tighter by ourkwor



should be developed on particular phenomena, like VP rodis f
Hungarian: as derivation intends to be quite lengthy, fhgsome
predetermined sequences or rules should be used, if theyaot
theoretically meaningful.

On the semantic side, some aspects deserve further study and
improvement. The internalisation process, although hesmbe-
cause it is performed just after parsing, is not to be reconued.
Indeed, it depends on the name of the variable and modifiesar
binding. Correlated to this issue, rules that depend on #meenof
a bound variable, the one associated with a movable coastjtu
should be avoided.

We nevertheless hope that this movement inside the casgori
community will make colleagues happy, and especially JirmLa
bek.
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