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In a companion paper, we presented a weighted negative update of the covariance matrix in the CMA-ES-weighted active CMA-ES or, in short, aCMA-ES. In this paper, we benchmark the IPOP-aCMA-ES on the BBOB-2010 noisy testbed in search space dimension between 2 and 40 and compare its performance with the IPOP-CMA-ES.

The aCMA suffers from a moderate performance loss, of less than a factor of two, on the sphere function with two different noise models. On the other hand, the aCMA enjoys a (significant) performance gain, up to a factor of four, on 13 unimodal functions in various dimensions, in particular the larger ones. Compared to the best performance observed during BBOB-2009, the IPOP-aCMA-ES sets a new record on overall ten functions. The global picture is in favor of aCMA which might establish a new standard also for noisy problems.

INTRODUCTION

The Covariance Matrix Adaptation Evolution Strategy (CMA-ES) [START_REF] Hansen | Completely derandomized self-adaptation in evolution strategies[END_REF][START_REF] Hansen | Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES)[END_REF][START_REF] Hansen | Evaluating the CMA evolution strategy on multimodal test functions[END_REF] is a stochastic search procedure that samples new candidate solutions from a multivariate normal distribution thereof mean and covariance matrix are adapted after each iteration. The (µ/µ w , λ)-CMA-ES samples λ new candidate solutions and selects the µ best among them. They contribute in a weighted manner to the update of the distribution parameters. The algorithm is non-elitist by nature, but a practical implementation will preserve the best-ever evaluated solution. Elitist variants of the CMA-ES [11] are often slightly faster but more susceptible of getting stuck in a suboptimal local optimum and far less attractive for noisy problems.

The IPOP-CMA-ES [START_REF] Auger | A restart CMA evolution strategy with increasing population size[END_REF] implements a restart procedure. Before each restart, the population size λ is doubled. In most cases, doubling λ increases the length of a single run, but it often improves the quality of the best found solution in particular in a noisy environment. The BIPOP-CMA-ES, proposed recently [START_REF] Hansen | Benchmarking a BI-population CMA-ES on the BBOB-2009 function testbed[END_REF], maintains two budgets. Under the first budget, an IPOP-CMA-ES is executed. Under the second budget, a multi-start (µ/µ w , λ)-CMA-ES with various small population sizes is entertained. The BIPOP-CMA-ES has performed exceptionally well on the BBOB-2009 noisy testbed [START_REF] Hansen | Benchmarking a BI-population CMA-ES on the BBOB-2009 noisy testbed[END_REF] 1 , mainly thanks to the IPOP component.

A Further Improvement. The so-called active CMA-ES proposed in [12] introduces a negative update of the covariance matrix in the (µ/µ I , λ)-CMA-ES. In order to evaluate its performance, the authors investigate essentially unimodal functions. They observe a significant speed-up in particular on the discus function, because the negative update can in particular speed-up the adaptation of small variances in a small number of directions. The speed-up reaches almost a factor of three in dimension 20 (compared to the (µ/µ I , λ)-CMA-ES) and it increases with increasing dimension. This means that the update leads to an improved scaling with the search space dimension. The speed-up is less pronounced with a larger population size λ.

In the companion paper [START_REF] Hansen | Benchmarking a weighted negative covariance matrix update on the BBOB[END_REF], the negative update of the covariance matrix has been implemented in a weighted fashion for the (µ/µ w , λ)-CMA-ES, denoted as (µ/µ w , λ)-aCMA-ES, in short aCMA in the following. On the noiseless BBOB-2010 testbed the aCMA dominated CMA, in that it was never significantly worse, but showed the expected improvement on ill-conditioned functions with a speed-up by a factor of up to three.

Objective of This Paper. In this paper we explore the IPOP-aCMA-ES [START_REF] Hansen | Benchmarking a weighted negative covariance matrix update on the BBOB[END_REF] on noisy functions. Our main objectives are twofold. 1) search for possible flaws in the performance on a comprehensive noisy testbed. 2) quantify the performance advantage (as we expect an advantage) from aCMA compared to CMA. The algorithm is comprehensively described in [START_REF] Hansen | Benchmarking a weighted negative covariance matrix update on the BBOB[END_REF].

METHODS

The experimental procedure is applied according to [START_REF] Hansen | Real-parameter black-box optimization benchmarking[END_REF] on the 30 noisy benchmark functions given in [START_REF] Finck | Real-parameter black-box optimization benchmarking 2010: Presentation of the noisy functions[END_REF][START_REF] Hansen | Real-parameter black-box optimization benchmarking 2009: Noisy functions definitions[END_REF] for IPOP-aCMA-ES and IPOP-CMA-ES as presented in [START_REF] Hansen | Benchmarking a weighted negative covariance matrix update on the BBOB[END_REF]. The IPOP-CMA-ES IPOP-aCMA-ES From top to bottom: for all functions, for moderate noisy functions, for unimodal and multi-modal functions. Line: geometric mean. Box-Whisker error bar: 25-75%-ile with median (box), 10-90%-ile (caps), and minimum and maximum ERT loss ratio (points). The vertical line gives the maximal number of function evaluations in this function subset. crafting-effort [START_REF] Hansen | Real-parameter black-box optimization benchmarking[END_REF] of both algorithms is CrE = 0. Measured CPU times are given in [START_REF] Hansen | Benchmarking a weighted negative covariance matrix update on the BBOB[END_REF].

Source code to reproduce the experiment is provided at2 .

RESULTS

Runtime results comparing aCMA with CMA and with the respective best algorithm from BBOB-2009 are presented in Figures 1234and in Table 1. The expected running time (ERT), used in the figures and table, depends on a given target function value, ft = fopt +∆f , and is computed over all relevant trials as the number of function evaluations executed during each trial while the best function value did not reach ft, summed over all trials and divided by the number of trials that actually reached ft [START_REF] Hansen | Real-parameter black-box optimization benchmarking[END_REF]13]. Statistical significance is tested with the rank-sum test for a given target ∆ft (10 -8 in Figure 4) up to the smallest number of function evaluations, b u min , found in any unsuccessful trial under consideration. The datum used from each trial is either the best achieved ∆f -value, or if ft was reached within the budget b u min , the number of needed function evaluations to reach ∆ft (inverted and multiplied by -1),

In the following, when a performance difference is highlighted on an individual function, the difference is statistically significant.

Figure 1. The figure shows the ERT ratio compared to the respective best algorithm from BBOB-2009 for all functions and for three function subgroups. Both algorithms show overall a very similar characteristic. Typical for the restart CMA-ES, the results become more competitive with an increasing budget of FEvals and therefore increasing difficulty of the function. For the final results, the median of IPOP-CMA-ES levels out with the set of best algorithms from BBOB-2009. IPOP-aCMA-ES is in 75% at most marginally slower than the best algorithm from BBOB-2009! The geometric mean loss, on the other hand, remains above one for both algorithms. This is, in fact, due to f126, where both algorithms fail to reach a target value that the best algorithm hit with the first evaluation in dimension 20 (see Table 1)! In all subgroups, both algorithms outperform the respective best algorithm from BBOB-2009 at least in some cases. Both algorithms show the best performance on the unimodal functions with "severe" noise (third row). On these function, also the (geometric) average ERT of aCMA drops below the average of the respective best algorithms from 2009 for larger budgets. On the multi-modal functions (last row), the ERT ratio shows a wide dispersion, again in particular due to f126. We conjecture an advantage of aCMA on functions 104-106 (larger dimension), 113, 115-119, 121, often only in larger dimension.

In contrary, the CMA appears to be faster on functions 107 and 108. We investigate the relevance of these observations in Figure 4. The question of a significant performance difference can be pursued in Fig. 4 which plots the ERT ratio aCMA/CMA versus the target function value and annotates final statistical significance. In the beginning, up to a function value of 1, we see large fluctuations that level out when better function values are reached. Then, the figure confirms advantages of aCMA on functions 104-106, 112, 113, 115-121, and 124 as statistically significant with a speedup of up to a factor of four on functions 115 and 119. Also the advantage of CMA on the sphere functions 107 and 108 is statistically significant.

Table 1. The table finally presents the ERT numbers for dimension 5 and 20 divided by the ERT of the respective best algorithm of BBOB-2009. We can see now that aCMA is significantly better than CMA on six functions in dimension 5 and on nine functions in dimension 20 (all from the above mentioned functions), where the final speed-up is more than a factor of 1.5 in all cases. Also the advantage of CMA on functions 107 and 108 shows up as significant in dimension 20.

Compared to the respectively best algorithm from BBOB-2009, the aCMA sets a new record in three and eight cases in dimension 5 and 20, respectively. In two more cases in dimension 5, the record is only significant for target value 10 -5 . In some of these cases, also CMA improves significantly over the best algorithm from BBOB-2009, indicating that the IPOP component is the presumable main reason for the advantage. Function f126 was solved in dimension 5 for the first time with IPOP-aCMA-ES even though this could not be established as a statistically significant performance improvement.

Function 107. We pursued the question, why aCMA takes longer on function 107. The explanation meats our expectation: IPOP-aCMA-ES needs on average more restarts than IPOP-CMA-ES. In dimension 40, the final population size, which suffices to approach the optimum up to a target precision of 10 -8 , is usually λ = 240 in IPOP-aCMA-ES, while it is λ = 120 in IPOP-CMA-ES. Presumably, the population size 120 is just below the necessary population size for aCMA-ES, while it just suffices for CMA-ES.

We imply from our observation that aCMA-ES might generally need a slightly larger population size on noisy problems.

SUMMARY AND CONCLUSION

The IPOP-aCMA-ES is a restarted (µ/µ w , λ)-CMA-ES with additional weighted negative update of the covariance matrix, as presented in the companion paper [START_REF] Hansen | Benchmarking a weighted negative covariance matrix update on the BBOB[END_REF] and based on the key idea from [12]. In this paper we have evaluated IPOP-aCMA-ES on the BBOB-2010 noisy function testbed and compared with IPOP-CMA-ES. On the downside, we could observe a moderate performance decline on the sphere function. No (other) serious performance decline was de-tected. On the positive side, we found a significant speed-up of up to a factor of four with aCMA on 13 out of 30 functions in various dimensions, and in particular for the larger ones. The data leave not much doubt that the weighted negative covariance matrix update in aCMA is also an improvement for noisy functions, at least up to dimension 20.

Compared to the best performance seen in BBOB-2009, IPOP-aCMA-ES could set a new record on overall ten functions (considering dimension 5 and 20). Most statistically significant improvements were observe on unimodal functions with all three noise models. For the most severe noise model the improvement was less pronounced.

Overall, the additional weighted negative covariance matrix update in the IPOP-aCMA-ES has shown to be (a) reliable and (b) a relevant improvement over the original version also on noisy functions. noiseless testbed. In J. Branke, editor, GECCO (Companion). ACM, 2010.
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Figure 1 :

 1 Figure 1: ERT ratio to the respective best algorithm from BBOB-2009 in dimension 20 versus a given budget FEvals. The target value ft for ERT is the smallest (best) recorded function value such that ERT(ft) ≤ FEvals for the presented algorithm. Shown is FEvals divided by the respective best ERT(ft) from BBOB-2009 for functions f101-f130 in 5-D and 20-D.From top to bottom: for all functions, for moderate noisy functions, for unimodal and multi-modal functions. Line: geometric mean. Box-Whisker error bar: 25-75%-ile with median (box), 10-90%-ile (caps), and minimum and maximum ERT loss ratio (points). The vertical line gives the maximal number of function evaluations in this function subset.

Figure 2 .

 2 Figure 2. The figure shows empirical cumulative distributions (a) of the runtime in number of function evaluations and (b) of the runtime ratio between the two algorithms aCMA/CMA. Both algorithms perform very similar while aCMA appears to be slightly faster in all subfigures. The advantage is most pronounced on the unimodal (severe noisy) functions in dimension 20, where the ERT ratio shows in 50% of the cases a speed-up by about a factor of two (shift to the left of the lower part).

Figure 3 .

 3 Figure 3. The scatter plots in Fig. 3 visualize the ratio of expected runtime aCMA/CMA for each measurement on each function and each dimension. Most of the points are
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 2 Figure 2: Empirical cumulative distributions (ECDF) of run lengths and speed-up ratios in 5-D (left) and 20-D (right). Left sub-columns: ECDF of the number of necessary function evaluations divided by dimension D (FEvals/D) to reached a target value fopt + ∆f with ∆f = 10 k , where k ∈ {1, -1, -4, -8} is given by the first value in the legend, for IPOP-aCMA (solid) and IPOP-CMA (dashed). Light beige lines show the ECDF of FEvals for target value ∆f = 10 -8 of all algorithms benchmarked during BBOB-2009. Right sub-columns: ECDF of FEval ratios of IPOP-aCMA divided by IPOP-CMA, all trial pairs for each function. Pairs where both trials failed are disregarded, pairs where one trial failed are visible in the limits being > 0 or < 1. The legends indicate the number of functions that were solved in at least one trial (IPOP-aCMA first).
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 3 Figure 3: Expected running time (ERT in log10 of number of function evaluations) of IPOP-aCMA versus IPOP-CMA for 46 target values ∆f ∈ [10 -8 , 10] in each dimension for functions f101-f130. Markers on the upper or right egde indicate that the target value was never reached by IPOP-aCMA or IPOP-CMA respectively. Markers represent dimension: 2:+, 3:▽, 5:⋆, 10:•, 20:2, 40:3. Lines indicate the maximum number of function evaluations

Figure 4 :

 4 Figure 4: Ratio of the expected running times (ERT) of IPOP-aCMA divided by IPOP-CMA versus log 10 (∆f ) for f101-f130 in 2, 3, 5, 10, 20, 40-D. Ratios < 10 0 indicate an advantage of IPOP-aCMA, smaller values are always better. The line gets dashed when for any algorithm the ERT exceeds thrice the median of the trial-wise overall number of f -evaluations for the same algorithm on this function. Symbols indicate the best achieved ∆f -value of one algorithm (ERT gets undefined to the right). The dashed line continues as the fraction of successful trials of the other algorithm, where 0 means 0% and the y-axis limits mean 100%, values below zero for IPOP-aCMA. The line ends when no algorithm reaches ∆f anymore. The number of successful trials is given, only if it was in {1 . . . 9} for IPOP-aCMA (1st number) and non-zero for IPOP-CMA (2nd number). Results are statistically significant with p = 0.05 for one star and p = 10 -#⋆ otherwise, with Bonferroni correction within each figure.

Table 1 :

 1 ERT in number of function evaluations divided by the best ERT measured during BBOB-2009 (given

		1	1	1	4.43e6	7.27e6	7.43e6 15/15
	0: CMA 1	267	9.58e5	0.81	0.84	0.85	15/15
	1: aCMA 1	193	2.82e5	1.0	1.1	1.1	15/15
	f 128	1.40e5	1.34e7	1.72e7	1.72e7	1.72e7	1.72e7	9/15
	0: CMA 12	1.0	1.4	1.4	1.4	1.4	6/15
	1: aCMA 0.51	0.72	1.0	1.0	1.0	1.0	7/15
	f 129	7.81e6	4.13e7	4.15e7	4.18e7	4.21e7	4.24e7	5/15
	0: CMA 0.29	0.30	0.77	0.77	0.77	0.77	4/15
	1: aCMA 0.16	0.27	0.46	0.46	0.46	0.46	6/15
	f 130	4904	93149	2.52e5	2.54e5	2.55e5	2.57e5	7/15
	0: CMA 4.9	76	37	37	37	37	9/15
	1: aCMA 1.5	66	54	54	54	53	6/15

in the respective first row) for different ∆f values for functions f101-f130. #succ is the number of trials that reached the final target fopt + 10 -8 . Values in italics indicate number of function evaluations. Bold entries are statistically significantly better compared to the other algorithm, with p = 0.05 or p = 10 -k where k > 1 is the number following the ⋆ symbol, likewise the arrow indicates significance to the BBOB-2009 entry, all with Bonferroni correction of 60.

See http://coco.gforge.inria.fr/doku.php?id= bbob-2010-results

http://coco.gforge.inria.fr/doku.php?id= bbob-2010-results
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