
HAL Id: hal-00545571
https://hal.science/hal-00545571

Submitted on 10 Dec 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

High Level Synthesis of Globally Asynchronous Locally
Synchronous Circuits

Christophe Wolinski, Mohammed Belhadj

To cite this version:
Christophe Wolinski, Mohammed Belhadj. High Level Synthesis of Globally Asynchronous Locally
Synchronous Circuits. The Third Annual Atlantic Test Workshop, ATW ’94, Jun 1994, Nîmes, France.
pp.u-1 - u-4, �10.1109/ATW.1994.747847�. �hal-00545571�

https://hal.science/hal-00545571
https://hal.archives-ouvertes.fr

HIGH LEVEL SYNTHESIS OFGLOBALLY ASYNCHRONOUS LOCALLY SYNCHRONOUS CIRCUITSKrzysztof WOLINSKI and Mohammed BELHADJIRISA, Campus de Beaulieu35042 Rennes, FRANCEAbstractThis paper presents an approach for the design of Glob-ally Asynchronous Locally Synchronous (GALS) circuits.The mixed style using asynchronous and synchronous cir-cuits amalgamates the both styles best features. A lan-guage for high level speci�cation of circuits is described.Then, the synthesis method that maps the algorithmiclevel speci�cation in a net of GALS circuits is given. Theasynchronous part is highlighted and avoidance of metasta-bility is described. Finally, the link to existing CAD toolsis given via VHDL.1. IntroductionAdvances in VLSI increese both area and speed of cir-cuits. Easy handling of such circuits depends on the use ofdesign automation tools (e.g. High, Register-Transfer andLogic level synthesis).Synchronous automatic design tools are widespread andwell-known as e�cient methodologies. Correct functional-ities of a synchronous system depend on the accuracy ofthe distribution of clock. Many attention in industry andacademy has been given to the characteristics of the clocksignals [4]. However, as the clock frequency increases, syn-chronous design becomes more di�cult; problems like clockskew, metastabilty increase dramatically. A large part ofICs is devoted to clock generation and bu�ering.A promising alternative is the use of asynchronous de-sign where the absence of clock solves those problems, ando�ers good properties like composability and robustness[3]. But, asynchronous design have also their drawbacks:larger area, rarely mature industrial design tools, etc.A good compromise seems to be the use of synchronousblocks that communicate by asynchronous techniques.For a discussion on advantages and disavantages of syn-chronous, asynchronous and mixed styles, see [5].The work described here emphasizes the aspects ofsynthesis of Globally Asynchronous Locally Synchronous(GALS) circuits from the high level description languageSignal.The originality of this approach is that the synthesisprocedure is build upon the properties of the language.The asynchronous part is built with delay-insensitive ele-ments [8]. This leads to robustness and composability of

generated circuits.The following section describes the input language Sig-nal, and its intermediate form. Then the synthesismethod is described. A particular focus will be made inthe asychronous part design. Then, a prototype using theSynopsys [1] VHDL synthesis environment is described.2. The input languageSignal is an equational language for the design of re-active applications [6]. It is a formally de�ned languagewith a small set of operators.Signal programs describe relationships between sig-nals (a signal is a stream of typed values). Every signalpossesses a clock1 which determines if the signal is presentor absent (?). The Signal kernel is the minimum set ofoperators with which we can construct any Signal pro-gram:� The usual arithmetic and logic functions� The $ (delay) operator gives access to the last valuesof a signal.� The under-sampling operator allows conditional ex-traction of values from a given signal:Y := X when C,Y is equal to X when the boolean signal C is TRUE.X : x1 x2 ? x3 ? x4 x5 x6 ...C : F T F F T T ? T ...Y : ? x2 ? ? ? x4 ? x6 ...� The default operator allows the deterministic mergeof signals: Z := X default Y, Z merges X and Y withpriority to X when both signals are present.X : x1 x2 ? x3 ? ...Y : y1 ? y2 ? y3 ...Z : x1 x2 y2 x3 y3 ...Other operators have been de�ned using this kernel thatpermit the reduction of programming e�ort. For exampleY := X cell B is the memory operator that can be codedusing Signal kernel operators[6].A Dynamic graph (noted DG) is associated with a Sig-nal program. It describes the dependency of data and the1clock is only a logical signal true when a signal is presentand absent otherwise

relationship between clocks. The DG of Signal programsare generated during the compilation process.
G0

G1 G2

h0

h1 h2 h3

h11 h12
..

..

..Fig. 1: Signal internal graph representationIn Fig.1 h0 is the fastest clock of the sub-system (inSignal there is no general global clock, the fastest clockis computed for every system). The clocks h1,h2 and h3are sub-samplings of h0. This means that if h0 is absentthen h1,h2 and h3 are absent. This permits the reductionof computation frequency. A conditional data dependencygraph is associated with every clock (e.g. G0 with h0).This graph represents all signals computed as frequentlyas the associated clock.Let look at the following example to give an insight:C:=(X1+X2 when (A>B)) default(X3*X4 when(A<=B))If we suppose that the clock of A and B is h (Fig. 2), Avalue (a) is read when the clock h is true (idem. for B).The operation x1 + x2 is done only if h1 is true (i.e. ifA>B). Moreover, if h is absent we do not need to computeh1 and h2 and their corresponding graphs. ba[a > b] [:(a > b)]hx2x1x1 + x2 x4x3 ch2h1 x3 � x4Fig. 2: An example of dynamic GraphFor a formal de�nition of dynamic garphs, see [6].3. Synthesis methodThis section presents how we transform the DG into anet of GALS circuits. By applying some transformationswe produce a new graph (a net of processes that we candescribe in Signal). Ultimately a process on the net willcorrespond to an elementary processor (a GALS circuit).A. TransformationsThe synthesis process consists of two transformations:

� Construct a net composed of elements that imple-ment the Signal operators deterministic merge, sub-sampling, etc (we note the implemented operators as:c or, c cell, c when, etc), fork2 operators, and com-munication channels, using direct substitution fromDG. This is a direct implementation.� Partitioning the DG into subgraph containing at mosttwo di�erent clocks. Each subgraph will ultimatelycorrespond to an elemantary processor.Formally the two transformations corresponds to a clo-sure of the graph. The resulting graph is a net of ele-mentary processors and fork operators connected withchannels synchronized by events (an event is the rising orfalling edge of a signal).Intuitively, every Signal operator op can be describedas two operations, op v and op h corresponding to com-putation of value and clock of the output signal respec-tively. c = a op b � (cv = a op v bch = a op h b (1)where a � fav; ahg, av is the value of a and ah repre-sent its clock (true when a is presnt false otherwise). Notehere that we have substitute the absence by the value false.To do so, we need a reference clock: the fastest clock of thenet.Clock here refers simply to a sequence of edge triggeredasynchronous \events" and not to a physical synchronousclock.Signals in Signal language are replaced by event-synchronized channels (hand-shake). A signal C, is de�nedas follows : fcv,chv,ch,chackg where cv is the value of thesignal C in terms of the Signal language, chv is the valueof the clock of signal C (i.e. if chv is true than C is presentfor the current instant of reference clock ch, otherwise itis absent), ch represents the reference clock or the fastestclock (for this part of the net). It is represented physicallyby an event. chack is an acknowledgment that correspondsto the end of possible computation for the current tick ofch.So, the opertors are replaced as described in (1), addinga local conditioning mechanism for the op v and op hcomputation, and adding a mechanism for the output ref-erence clock computation. The signals are replaced bychannels. Finally, the substituted graph is partitioned.B. Resulting NetAfter the two transformations we obtain a net of pro-cesses (Fig. 3), where data and clock transfer use hand-shake.The synthesized subgraph (a process or physically aprocessor) is composed of an asynchronous control partand a synchronous part for the computation of op v and2fork broadcasts its input signal to a number of outputs

op h. The asynchronous part ensures that the computa-tions are done when necessary . The decision is made dy-namically (and locally), by considering the values of clockof input channels with respect to the reference clock andthe position of the element in the net.For (Fig. 2) example, the asynchronous part of pro-cessors P1 and P2 (Fig. 3) enable computation in syn-chronous parts if ahv; ah; av arrive, and ahv is true. More-over, (a > b) from P1 and (a � b) must be true. If thecomputation is not necessary and the result of the oper-ation is needed for another computation, we send in theoutput channel the clock value (hv) false (the value of chan-nel is not important). Note, that the number of requestand acknowledge signals are reduced (e.g signals from thesame synchronous part of a processor use one request).
A, B, x1,x2,x3,x4

x1 + x2A > B A <= B x3 * x4

C

h

h1 h2

h3

b {bv, bhv, bh, bacq}
h1={ bhv, bh }
bv= { x1 + x2 if A > B else ~ }
bhv= A > B
bh=ah

.......

...............

c {cv, chv, ch, cacq }
h2 = {chv,ch}
cv = {x3 * x4 if A <= B else ~ }
chv = A <= B
ch = ah

Fork
a {av, ahv, ah, aacq }
h={ahv, ah}

a
a

P0

P1 P2

P3Fig. 3: A transformed GraphC. Elementary processorAn elementary processor (Fig.4) is composed of: inputchannels and output channels and perhaps, a parallel inter-face using \hand-shake" that permit the implementationof synchronous procedure call, by sending parameters andreceiving results.An elementary processor is composed of two parts: asynchronous part and an asynchronous one. The asyn-chronous part (implemented with delay-insensitive ele-ments: select, c-muller, merge, etc [8]) determines whenthe processor is supposed to compute its results. Thisdecision is taken dynamically. The synchronous part exe-cutes the computation corresponding to the reduced partof the net.The synchronous part can be optimized using classicalmethods (FSM reduction, hardware sharing, etc).4. Asynchronous partThe asynchronous part (see Fig. 4) of an elementaryprocessor enables the execution of operators op v andop h corresponding to the computation (associated withthis processor), evaluates the reference clock (signals CH,CHV), and generates acknowledgments (Aacq, Bacq).

modeAsynchronousPart selectselectC-mullerAHVBHV AACQBACQAH BH select SHVendstrat SynchrnousPartData channels Input
Data channels OutputsCH CHVCACQFig. 4: Elementary processorThe decision of enabling the computation takes into ac-count Ahv, Bhv and position of the processor in the net(if the processor outputs are not used as input in otherprocessors optimization on computation frequency is pos-sible).The value SHV (Fig. 4) is given by the synchronouspart. It corresponds to the current value of the clock. Thesynchronous part is awoken when an event occur in the sig-nal start. There is an end of the computation (an eventoccurs on end) either when SHV is false or all computa-tions corresponding to the synchronous part are �nished.A. Hand-shaking problemsOur implementation uses a two phases protocol [8]. Thegenerated architecture must guarantee that a data arrivesbefore its corresponding request signal. Data used by syn-chronous part are prepared by preceding processors in thenet (e.g. Fig. 5).The events AH and BH are generated by asynchronousparts of processors A and B, after their respective syn-chronous processors ended their computations. Then, thedata must be stable before the asynchronous part of theprocessor C generates the computation event.Without the time corresponding to connections routingdelays, the request events (e.g AH, BH) have a delay:�T = 2Tosc + 3Tselect + Txor + Tc�mullerregarding the end of computation of data (Tosc: delayof 1 cycle of physical clock oscillator, Tselect: delay of aselect operator ...).The decision taken by the asynchronous part uses thehand-shake signals AH, BH and the logical signals AHVand BHV. The processor C operates correctly if AHV andBHV are stable before the arrival of the events AH and BH(request). Any asynchronous part ensures the correct be-havior (of the hand-shake) because it generates the requestsignal H (e.g AH,BH,CH) after the signal HV is stable.If the routing conditions are not arbitrary, the hand-shaking operates correctly.

A B
data

AHV
AH

BHV
BH

C

CHV
CHFig. 5: A part of a netB. Metastability problemsThe generated architecture being composed of asyn-chronous and synchronous parts, the question of metasta-bility may arize. The asynchronous part uses delay-insensitive operators but the synchronous part uses normal
ip-
op. Previous works [5][7] use special
ip-
op calledQ-modules to handle the interface between synchronousmodules and hand-shake circuits. In the following we de-scribe how the metastability can be avoided in our case.There are two possible cases for the generation of CHVand CH signals:� No computation is needed: the delay for the compu-tation of CHV (2) is smaller than the delay needed toproduce the event CH (3).�TAHtoCHV = Tor + Tand(2)�TAHtoCH = Tc�muller + 2Tselect + Txor(3)� Computation is necessary: when the computationends the SHV event is stable and CH is producedafterwards (4), at the time of the request of the syn-chronous part of elementary process signal end (5).�TSHV toCHV = Tand(4)�TendtoCH = Tosc + Tselect + Txor (5)The synchronization between asynchronous and syn-chronous parts is done by a synchronous automaton thatsamples the signal start. To avoid metastability (or moreaccurately to minimize it) the sampling is done in thefalling edge of the internal physical clock, while the au-tomaton is activated on the rising edge.5. Experimental resultsWe have synthesized an architecture from a Signal pro-gram describing a control process (see [9] for a completeexample). The result was described in structural VHDLand was validated under the VHDL simulation environ-ment.Synchronous parts were automatically synthesized bySynopsys [1], while asynchronous parts were generated sep-arately. An implementation in the Synopsys and XilinxFPGA [2] environments has been achieved (Fig. 6).

6. Conclusion and further worksWe propose a general method for the synthesis of GALScircuits from Signal speci�cation. The synthesis proce-dure transforms the intermediate form into another graphrepresenting the implementation in terms of circuits behav-ior. The synthesis uses the notion of local clock in Signalwhich reduces the frequency of computation.The main advantages are: absence of global clock(no skew problem), dynamic optimization, and access toVHDL synthesis tools and Signal environment (o�eringpossibility for formal proof, simulation, etc). The draw-back of this approach is the size of the resulting circuit, weare currently working on the optimization of the synthesisresults.The complete automatic translation from Signal toXilinx FPGA is under development, and in near futurea cell generator for the asynchronous part (in CMOS tech-nology) will be developed. Moreover, a study is conductedseparately for generating distributed code for parallel ma-chines using the same partitioning of Signal programs, topermit Hardware/Software codesign.
Fig. 6: Xilinx implementation of an elementary processorReferences[1] Synopsys VHDL Compiler Reference Manual.[2] The XC4000 Data Book, Programmable Gate array. XIL-INX, Inc. 1990.[3] Special issue on Asynchronous systems. Integration, theVLSI journal, 15, 1993.[4] E. Freidman. Clock distribution design in VLSI circuits- anoverview. In IEEE International Symposium on Circuitsand Systems,, May 1993.[5] G. Goplalakrishnanand L. Josephson. Towards amalgamat-ing the synchronous and asynchronous styles. In TAU'93,ACM Workshop on Timing Issues in the speci�cation andsynthesis of digital systems, 1993.[6] P. Le Guernic, Th. Gautier, M. Le Borgne, and C. Le Maire.Programming real-time applications with Signal. Proceed-ings of the IEEE, 79(9):1321{1336, sep 1991.[7] F. Rosenberger, Ch. Molnar, Th. Chaney and T. Fang.Q-modules: internally clocked delay insensitive modules.IEEE Trans. on Comp., 37(9):1005{1018, Sep 1988.[8] I. E. Sutherland. Micropipelines. Communication of ACM,32(6):720{738, jun 1989.[9] K. WOLINSKI and M. BELHADJ. Vers la synth�ese au-tomatique de programmes SIGNAL. Technical Report 746,IRISA, 1993.(In French)

