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Abstract
Fitts’ law is the well-known empirical relation witi states that the time it takes to complete a

simple aimed movement varies linearly with moventhfiitculty, the latter being quantified
with an index of difficulty [D) computed from the ratio of target distafzéo target width

W. The paper asks about the level of measuremealvied in the two most popular versions
of thelD, the original FittdD and the Shannd. Analyzing the way these numerical
guantities map onto the concrete geometry of a Eik, we show that they lack a true
physical zero, meaning that their measurementoares non-ratio equal-interval scale and
that Fitts’ paradigm has been under-constrainddrsfsom the measurement viewpoint

A simple way to force the independent variable ittHaw to run on a ratio scale of
measurement is to calculate fBeas a function of relative target toleranBa = W/D),
whose zero is physically anchored, rather thartiveldarget distanceRTD = D/W), whose
zero is a numerical abstraction. Task difficultyyntiaen be expressed as relative target
intolerance RTI= 1-W/D), a quantity confined in the 0-1 interval with laypical limit at
100%. Likewise it is advantageous to base the neasnt of movement accuracy on
relative movemennaccuracy or errolRME = aa/pa), which has a physical zero, rather than
relative movement amplitud® A = pa/oa), which does not. Relative movement precision
can then be computed B8P = 1-0a/pa, @ quantity which again varies in the 0-1 interval
with a physical limit at 100%.

We illustrate the practicability of our new measuoé task difficulty and movement
precision with the data of Fitts’ (1954) classipfang experiment. The emerging patterns are
simple and coherent, and can be modeled with empsatwhose coefficients are interpretable.
We also highlight two implications we think of speaelevance to HCI research. One is that,
contrary to an old and widely-held belief, the gcréaehavior of the/-intercept of Fitts' law
reported in the literature should not be a conbegause g-intercept is essentially
uninterpretable in the absence of a physicallyefizero on thg axis. The other implication
concerns the reciprocal protocol popular in HCH arich an ISO standard recommends
explicitly. Not only is the measurement of movemimie and task difficulty less rigorous

with the reciprocal than discrete protocol, buifeecent measure of difficulty is needed.

Keywords
Simple aimed movement, Fitts’ law, task difficultgpvement accuracy, precision, error,

scales of measurement, intercept, discrete vgnamal movement.
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1. WEAKNESS OF THE DIFFICULTY CONCEPT IN FITTS' LAW RESEARCH

1.1. Fitts’ Task

Fitts (1954), studying simple aimed movement iregperimental tradition that can be traced
back to Woodworth (1899), was the first to reatizat the difficulty of movement can be
quantitatively measured. In his seminal 1954 p&ji¢s defined what he called tihedex of
difficulty (ID) as

ID = log, (2D/W), 1)

whereD andW stand for target distance and target width, rasgayg. The two relevant
lengthsD andW being measured on one and the same continutine research problem is
inherently one-dimensional. The continuum in questnay be the position of a stylus tip or a
screen cursor along one spatial dimension, the imatgnof a force applied to a strain gauge,
musical pitch (as imagined by Woodworth, 1899),-efia fact any continuous variable that
can be placed under the voluntary control of a hu(fréts, 1954, Footnote 2 ). The elegance
and the generality of Fitts’ simple aimed movenparadigm lay in its extreme simplicity: a
person is asked to reach, in a minimum amountwd,ta certain target interv@hin < X < Xmax

from a certain start positioR.

1.2. The Discrete and the Reciprocal Protocols
To define the two lengths of Equation 1, it is resegy to distinguish the discrete (Fitts &
Peterson, 1964) and the reciprocal protocols (Fii54), represented in the upper and lower

parts of Figure 1.

- D --=-=-=-=--- ->
| | |
T | | X
XO Xmin Xmax
- - —)
W
«-------- D ---——=---- -»>
] ] ] ]
1 1 1 1 X
Xmax Xmin Xmin Xmax
«-> “->
W W

Figure 1. The two simple measures that define a spte aimed-movement (or Fitts) task, using the
discrete (above) vs. the reciprocal protocol (belowIn the latter case the direction of thex axis alternates
from each movement to the next, hence the symmetatlabeling of the tolerance limits.



The reciprocal protocol, which requires particifsato concatenate movements in
alternate directions, is obviously convenient tpesxmenters, who can collect fairly large
samples of movement time measures in relativelyt sessions. However, this protocol has
weaknesses from the measurement point of view. @ieh Fitts himself pointed to on
second thought (Fitts and Peterson, 1964), isttigatneaning of the dependent variable is
somewhat equivocal, movement time reflecting theation of three more or less parallel
processes: evaluation of the start point errorrtde: from the preceding movement,
execution of the current movement, and planningpeiext movement. But the reciprocal
protocol also raises a concern about the validithe measure involved in the independent
variable. The spread of movement endpoints\ttiet supposed to control reflects the
confounded variability of the location of both $taoints and endpoints. This is why in the

rest of this paper we reason by default on thereliscrather than reciprocal protocol.

1.3. Fitts’ Law

Fitts’ (1954) realization that task difficulty ciie measured was a crucial step in the history
of the topic as it allowed the discovery of the @opl regularity known today as Fitts’ law.
Namely, the mean duration of movemaui)(is linearly dependent on the. Using Fitts’

own index (Equation 1), Fitts’ law reads
Mt =a*log, (2D/W) +b (2)

wherea andb are empirically adjustable coefficients>Q).

Equation 2 differs in two respects from the corieral notation of Fitts' version of
Fitts’ law, which isMT = a*log,(2A/W)+b. First, rather thaMT, we writept to make it
explicit that the dependent variable of Fitts’ lsmeanmovement time, the mean of a
random variable. Second, we express the ratio/srather tharA/Wfor the sake of
consistency. The traditional notati®fW mixes up the mean of a random variabl@vhich,
in Fitts’ law studiesgdenotes mean amplitugg) and a systematic experimenter-controlled
variableW. Thus Equation 2 phrases Fitts’ law as the depsndef it upon two systematic
variables that characterize the taBkandW. An equally consistent alternative it to write the
ID of Equation 2 in terms q@fa andoa, themean and standard deviation of movement
amplitude. Equation 2 then will read = a* log, (a/0a) + b. To do so is to phrase Fitts’ law

as a relation between two stochastic quantities.



1.4. Multiplicity of Indices of Difficulty

Fitts' law being one of the few quantitative lawwgpsychology (Kelso, 1992), it comes as no
surprise that sustained efforts have been madetbggrast half-century to adjust the
formulation of thdD so as to improve the accuracy and the robustrigbe taw. In their
widely cited review of the literature Plamondon alini (1997) were able to list over a
dozen respectable variants of Fitts’ law equatior.the present purposes we need not be
concerned with the mathematical details that djsiish the formulas from one another.
Rather, we will retain the basic equivalence classour knowledge all variants of Fitts' law
assume that the critical quantity from whjchcan be predicted is the quotient of the division
of D by W, that is,

ur = f(D/IW), )

where f denotes a simple monotonically increasurgsfion, linear, logarithmic or power.
Two particular instantiations of Equation 3 desespecial attention, being far more
popular than all others in Fitts' law research. @rf@tts’ original Equation 2, the other is the

so-called Shannon version of Fitts' law:
Mt =a* logx(D/W+1) +Db. 4)

Equation 2 is the version of Fitts' law that basisearch psychologists have been using by
default almost uninterruptedly since Fitts (195&quation 4, known as the Shannon version
of thelD because MacKenzie (1989, 1992) derived it frorn8ba’s (1948) Theorem 17, is
that which has been popular for two decades iftimean-computer interaction community
(Guiard & Beaudouin-Lafon, 2004; Soukoreff & Mackeés 2004).

Needless to say, data modeling by means of cuttuagfis just one aspect of Fitts' law
research. The various model equations that have fgeforth in the literature correspond to
different substantive theories aimed at explainiregglaw. However, our angle of attack in the
present paper being essentially methodologicdherfollowing analysis we will not depart

from a theory-agnostic stance.

! In Fitts’ (1954) view, théD measured the amount of information conveyed byrtheement, hence his
recourse to the binary diginit. After the huge impact of Shannon’s (1948) ommication theory, a major
pendulum effect took place in the nineteen sixtéfgcting psychology no less than other discigifleuce,
2003). Fitts' law students, and Fitts was no exoafFitts & Peterson, 1964), dropped the bit asitwvell as the
information theoretic explanation of Fitts' law. W&ver, most psychologists have continued up togmte®
resort to Fitts’ (1954) initial formula, regardlesfsthe fact that the explanation of Fitts' lawttisamost widely
accepted in psychology, the stochastic optimizédreavement theory of Meyer, Smith, Kornblum, Abrams
and Wright (1988), predicts a power law equation.



1.5. Terminology: Difficulty vs. Accuracy vs. Inacaracy

It is generally agreed among Fitts' law studeras tie law expresses a speed-accuracy
tradeoff?> Such an expression, however, is rather informaldf@l, 2007). In Equations 2-4

the dependent measure of Fitts' law is certaintytm® speed of aimed movements, but rather
their duration. Likewise, although the fractionapeessiorD/W which appears on the right-
hand side of the equations has obviously sometoig with movement accuracy, one does
not face an obvious measure of accuracy—like, thaycoefficient of variation of
metrologists, or the probabilities of a hit andasé positive in signal detection theory (Green
& Swets, 1966). It seems fair to recognize thatdivesion of D by W yields not a measure of
difficulty, but rather a certain measure of relattlistance.

Note that the term “difficulty”, introduced more l@ss incidentally by Fitts (1954), is
rather casual too. Strictly speaking, Fitts (198#)wed thafir varies linearly with the
amount of information conveyed by the movement, éimaount being measured as the
logarithm of the inverse of the probability of ttaeget being hit by chance. Fitts thought that
the probability in question is given W/2D, and so he ended up with the formlda(bits) =
—-logx(W/2D), which may be simplified into the formula of Edea 1. Although the way Fitts
(1954) measured information in the context of timeeal-movement paradigm has attracted
criticism (e.g., MacKenzie, 1989, 1992), he mustisalited for the use of a principled and
explicit definition of movement difficulty, squaseéquated with information. Apart from the
ShannorD of MacKenzie (1989, 1992), which also equatesaliffy with information, it is
not clear in what sense the varidDsformulas based on the raidW that have been
proposed to improve Fitt$D (See Plamondon & Alimi, 1997) measure the diffigwar the
accuracy of aimed movements. For example Meydr €1288), who viewed Fitts' law as a
speed-accuracy tradeoff, assumed implicitly thatieacy is captured in the right-hand side of
their equationur = a* (D/W)*?+b, but they offered no explanation.

Below we will be careful about terminology, sticgito some distinctions that have
been often ignored in the literature. One is tlsdimEtion between tagifficulty, defined
geometrically, and movemeatcuracy defined statistically, two variables whose levkl
correlation is too imperfect to justify their confading. The former refers to the target

arrangement, the latter to the relative spreaddpeints in a sample of movements. But we

% In MacKenzie's fairly extensivBibliography of Fitts’ law researghan online Web document that lists 310
references up to June 2002tp://www.yorku.ca/mack/RN-Fitts_bib.htRebruary 9, 2010), one finds 37 paper
titles including “speed” and/or “accuracy”, 17 ofilwh include both terms (e.g., Crossman, 1957; Meyal.,
1988, Plamondon & Alimi, 1997; Welford, Norris, &n&ck, 1969).




will see that it is also useful to further distimgfuintolerance from tolerance and inaccuracy

from accuracy (or, synonymously, imprecision froragision).

2. THE MEASUREMENT PROBLEM

2.1. Numbers and Physical Quantities

Measurement is the process of assigning numeralsjéets or events according to certain
rules (Stevens, 1946). Typically the process ctsmsismapping the continuum of real
numbers onthysicalquantities of the real world. The main focus o tarticle is the
correspondence between tBeof Fitts' law, which is an abstract numerical dgutgnand the
concrete operational quantity tHi3 refers to.

2.2. Levels of Measurement

A quick reminder of the four basic levels of measnent and accordingly the four categories
of variables that are distinguishdny S.S. Stevens’ (1946) classic theory of measengiis
useful.

(1) The lowest level, designatedramminal(or categorical), corresponds to the mere
classification of objects that can be sorted baitranked. For example, in his 1954 study Fitts
used three different tasks; that factor amounteadriominal variable whose modalities were
stylus tapping, disc transfer, and pin transfer.

(2) We then have therdinal level of measurement (e.g., cool, warm, and hbgre
the variable (temperature in this instance) hasl¢ethat obey a transitive-asymmetry rule (if
warm>cool and hot>warm, then hot>cool), so thateh& only one correct order. Notice that
up to this level nothing is being said aboutspacingof the various modalities or levels of
the variable.

(3) The third level of measurement is that usingaqual-intervalscale. One example
Is temperature on the C° scale, where the differdretween 1° and 2° is the same as between
2° and 3°, 11° and 12°, etc. We do have a metutpbr zero is arbitrary (ice melting for the
C° scale).

(4) The highest level of measurement is that inmgharatio scale That most-
severely constrained kind of measurement enjoyth@lproperties of the first three (i.e., its
levels are sorted, ranked, and equally spaced)nkaddition it has the special property of a

non-arbitrary zero The classic example is temperature as measurdteabsolute (Kelvin)

% Applying Stevens’ taxonomy to itself, it is easysee that scale of measurement is a variablesadritiinal
type.



scale, whose zero corresponds to the disappeap&nd®atory motion at the atomic level.
More familiar examples are distance, duration, &eayht, all of which offer, so to speak, a

physical stop at zero.

2.3. What Physical Quantities in the Measurement dflovement Difficulty?

When it comes to the zero of some measure, theecon€ not the numerical continuum,
which of course has a zero, but rather the obmoevents that stand on the real-world side of
the mapping, the side we call physical. It is dassee that the measurement of movement
time, the dependent variable of Fitts' law, hasysyral zero and runs on a ratio scale.
However large the stochastic variability, the dwrabf an aimed movement cannot be
negative. The issue is the measurement of difffctie independent variable of Fitts' law,
which we will examine below in two steps.

In the first place we will have to consider thegitrlayout that experimenters
manipulate, characterized by lengisandD. At issue is what happens in the concrete
geometry of relative tolerand®/D when the Fitts and the Shann@s are made to vary up
and down. A target layout, however, just speciubst participants are requested to do, and
all experienced Fitts' law students know that pgréints do not always produce the
movements requested of them via the target laygspgecially problematic to experimenters
is the fact, first reported by Crossman (1957 cciig Welford, 1968, p. 145), that the spread
of movement endpoints tends to be smaller thametesiith high relative tolerances, and
larger than desired with low relative tolerancdserEfore in a second step we will have to
take into account the distributions of movementpants characterized by the mganand
standard deviatioo, of movement amplitude, asking how the coefficigintariationoa/pia

behaves as tHh®s are made to vary.

3. PHYSICAL REALITY I: TASK DIFFICULTY AND THE GEOM ETRY OF

TARGET LAYOUTS

3.1. Back to the Regular, Non-Inverted Weber Fracon W/D

In its default form Fitts' law is the statementafertain dependency pf upon the
dimensionless ratiD/W. It is interesting to recall that half a centusfdre Fitts, Woodworth
(1899), who failed to discover Fitts' law, did ddtthe special relevance of that ratio.
However, it was théverseratio W/D—the Weber fraction, as he called it—that Woodworth

called attention to. Why, in the present paperwiieprefer Woodworth’s notatiohV/D over



the notatiorD/W, which has been traditional in the literature sifitts (1954), requires an
explanation.

The distinction between the fractional expres§dw and its invers&V//D may be
judged rather idle, mathematically speaking. F@meple no matter in Equation 2 whether the
ID is noted as log2D/W) or —log(W/2D) as these are just two different writings of taene
thing. Experimental psychologists, however, aremathematicians. As empirical scientists
they need to care about the correspondence betheemuantities of their formal models and
the physical variables they handle in the labogatbrom a psychological viewpoint there is
indeed reason to distinguiEh\Wvs. W/D: the former amounts to a measure of relative targe
distance(i.e.,D expressed in units of, or scaled/, the latter amounts to a measure of
relative targetolerance(i.e., W scaled tdD).*

It is important to realize that relative targettdigceD/W and relative target tolerance
W/D do not have the same metrological status. A tdayeut in which the tolerance is
positive and the distance zero (iW3>0 andD = 0, henceD/W = 0) fails to make any sense
in a Fitts' law experiment—in such a case no movemwhatsoever can be reasonably
requested of a participant. In contrast, the lingjttase of an aiming task with a zero-
tolerance target located at some non-zero distamecg/VV = 0 andD>0, hencaVN/D = 0) can
be investigated in practitand makes perfect sense conceptually. This caseadsher than
that studied by Schmidt, Zelaznik, Hawkins, Fraarki Quinn (1979) with their time-
matching paradigm. Thus a physical meaning, zdevdoce, can be attached to the zeroing
out of Woodworth’s Weber fractioW/D, but not to the zeroing out of the quan@iiw
which stands on the right-hand side of conventi6i#d' law equations.

3.2. Zero Difficulty and Task Reality

In the laboratory the difficulty of a Fitts tasknche varied only within certain limits, which
are clearly apparent in Figure 2. This figure shtivespracticable range of variation of
relative toleranc&V/D, assuming a certain constant valu®oflhe lower limit is met on the
left-hand side at the point whevé= 0, hence relative target tolerantD = 0. The upper
limit is W/D = 2, where the target begins to incorporate thg pbint, thus annihilating the

4 A glossary is available in Appendix 1.
® Of course, the conditiow = 0 can be realized only approximately in a labmma(e.g., with a 1-pixel line on a
computer screen), because obviously a zero-widtjetavould be invisible.
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very necessity of movemehtn the middle of the figure is shown the balano@pwherew
=D, and henc&V/D = 1, whose interest will be examined in the nextisn.

Max
Target center mme——
Min

Movement Start s

W/D=0 W/D =1 W/D =2
Zero relative Tolerance equals Target absorbs
tolerance distance start point

Figure 2. Howrelative target tolerance, shown to increase fromefft to right for a given value ofD, is
geometrically bounded, in the case of the discrefwotocol (it is important to bear in mind that task
difficulty increases in the opposite direction, fran right to left). The movement is in the upward diection,
the tolerance interval W being marked with a thickened line.

It is clear from Figure 2 that relative targeetaince in discrete Fitts tasks is confined,
for geometrical reasons, in the rangd\IB®<2. It should be realized that outside of that range
no numerical values delivered by lhcan have physical relevance, for lack of a feasibl
movement task. The numerical ranged@$ being infinite, this is quite an informative résu

Figure 3 shows the numerical values taken by ttie &nd the Shanndbs as relative
tolerance is made to vary. The first important fadhat neithetD accommodates the case of
zero tolerance at the leftmost limit of the figufée calculation of théDs resting on relative
distanceD/W, the inverted Weber fraction traditionally used itid=law research, they both
suffer the problem of a division by zero at theiliof a totally intolerant target—yet a very

meaningful limit, as already remarked with refeeta the Schmidt et al. paradigm.

® One might possibly object that tasks wWitiD>2 are workable since it is common practice to aglegmental
participants to aim to targeenters It is a fact, however, that such a case is newgstigated in Fitts' law
research, and this is unsurprising. The propedfigaiman movement being what they are, participprésented
with a target layout such theit/D>2 and asked to aim to target center could objeite degitimately that only a
small proportion of the tolerance made availableéhém is exploitable (see Section 4.2).

11



Target center ™

Movement start ==

— - Fitts ID
— Shannon ID

NP oRrNMWAOO
. L

Relative tolerance W/D (-)

Figure 3. How the Fitts and the ShannonD s map onto the geometry of target tolerance in a sigrete task.

Turning to the right-hand side of Figure 3, noticat bothiIDs continue to run
downward beyondlV/D = 2, irrespective of the fact that from the momibettarget has
absorbed the start point there is no room lefaf&itts task, and hence for any task-difficulty
considerations. The Shanntih used in Equation 4 never zeroes out, remainingfinidely
positive. For example its value is still 0.01 YYD = 100, where the target is a hundred times
as large as the distance to cover. This fact raissscern about the meaning of jhe
intercept of Equation 4. For lack of a true zeratmmdifficulty axis of a Fitts' law plot, the
widely-held belief that thg-intercept of Fitts' law (the coefficiebtof Equation 4) must be
zero seems ill grounded (more on this in Sectidi. 6.

The FittsID used in Equation 2 zeroes out at exa®¥p = 2, a seemingly sensible
place to do so. One might be tempted to concludettie FittdD of Equation 2, unlike the
ShannorD of Equation 4, offers a physically realistic zdvat this is not the case. The
theoretical point at which the temperature of ayo@dches the absolute zero on the Kelvin
scale corresponds to the point where atoms wibe¢a vibrate, not to the disappearance of
these atoms. The problem we have here is thantiglifficulty, a property of the movement
task, that cancels out&t/D = 2, but rather the very possibility of the task.

Thus it turns out that the two most populas of the literature both fail to have their
numerical zero anchored in the physical world, megathat they both fail to qualify as ratio-
scale measures. In fact, the conclusion may bergkzed to othetDs. So long as difficulty

is defined as an increasing function of relativgea distanc®/W, it seems impossible to

12



figure out, in the face of the basic geometry &itts’ task, what zero difficulty might
precisely mean.

The simple fact that, using a conventiotia| it is impossible to define the zero of
movement difficulty raises a concern about the imetrthe independent variable of Fitts'
law. One compelling reason why it would be desedblhave a ratio-scale level of
measurement on both axes of Fitts' law plots isdhmaore severely constraining metric in the
assessment of Fitts' law would mean tougher tésteeanathematical descriptions of the law,
making it easier to falsify them empirically andetefore, to reduce the number of competing
models (Popper, 1983; Roberts & Pashler, 2000).

3.3. From Tolerance to Intolerance
If the zero of traditional measures of task diffigus elusive, one clearly sees what a zero-
tolerance target is. Thus, still focusing on theecaf the discrete protocol of Figure 2, let us
reason, not in terms of task difficulty (a functiohD/W, to reiterate, a mathematically
transformed measure of relative target distanceatiteral measure of difficulty) but rather
in terms of relative target toleranBa' T = W/D Let us assume that the target is 100% tolerant
whenW = D, which means assigning a maximum to relative tolegawhich now ranges
from 0 (a true physical stop) to 1 or 100%n interesting next step to obtain a potentially
valid measure of tagfifficulty is to translate relative target toleraMyéD into relativetarget
intoleranceRTI = 1-W/D, along the lines suggested in a different scientibntext by Meehl
(1997)® Without having had to sacrifice the convenientd®% range of variation, we now
face an operationally clear definition of task iduity.

That relative target intolerance zeroes oMVAD = 1is an assumption, and so the zero
of relative target intolerance is arbitrary. Howevbeupperlimit of our new variable, total
relative intolerance (IW/D = 1), does constitute a physical stop: siMd® cannot be less

than zero, a task with W/D>1 is impossible.

" It will become clear in Section 4 that the ci¢ée D constitutes a safe arbitrary 100% of relativerariee. To
anticipate, we will see that because the coefftaidwvariationcs/ua cannot approach unity, far from it,
experimenters never attempt to approach such alévgh of relative tolerance.

& Our reasoning in this section capitalizes on alyais by Meehl (1997) aimed at quantifying the réegof
empirical corroboration of numerical predictionsrfr substantive theories.

13



4. PHYSICAL REALITY II: MOVEMENT PRECISION AND THE  STATISTICS OF
MOVEMENT ENDPOINTS

Section 3 considered the difficulty-measurementassom the viewpoint of experimenters
who manipulate concrete target arrangements, lgadithe conclusion that the rangdof
values that have a real-world counterpart is ssirgly limited. Relative target toleranBa T
= WI/D has an upper limit at 2 or 200% simply becauseget layout in which the start point
is included in the tolerance interval does not medase in the laboratory. However, as will
become apparent shortly, only a small part of &émge of task difficulties of Figure 2 can be

actually handled by humans.

4.1. Back to the Regular, Non-Inverted Weber Fracon oa/pa

This section is just a replica of section 3.1, warstiowed that while the quotientDfW does
not have a physically defined zero, the quotierthefinverse fractiokV/D has one,
corresponding to the zero-tolerance case investigay Schmidt et al. (1989). Switching now
from the task geometry to the movement statistiesmust recognize likewise that/pa, but
not ua/oa, has a physical zero. The limiting case whete= 0 andua>0, henceoa/pa = 0,
corresponds quite simply to the physically meanihgf ideal case of a deterministic
variable. In contrast, the limiting case whgge= 0 andoa>0, hencaua/oa = 0, does not

refer to anything real—in general, a non-negataredom variablex whose meany is zero
cannot have a non-zero standard deviabpThis observation, in our opinion, is a decisive

argument for focusing ooia/pa rather than its inverse in the context of Fiteg'galigm.

4.2. Actual Ranges of Relative Movement Errooa/Ha

The Weber fractiomwa/pia, a regular coefficient of variation, characterieglative movement
error. ° In Fitts' law experiments a constant error ratgsisally asked of participants in the
hope thaoa/pa will vary proportionally tow/D, the latter Weber fraction allowing
experimenters to prescribe various amounts ofdalar for movement endpoint variability.
However, the possible range of variatioropfua is actually much narrower than the range of
variation ofW/D displayed in Figure 2, meaning that the desireggrionality ofoa/pa to

W/D cannot hold. Having acknowledged that the geonwdttiie Fitts task makes it

impossible for an experimenter to rai&#D beyond 2, we must now consider the other, yet

° With the discrete protocol, where the locatiorhef start point, placed under experimenter conisdixed,
movement amplitud@ and endpoint errde = A-D have the same standard deviation. This is nottyxaae
with the reciprocal protocol.
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more stringent constraints that arise from thegyeréince limitations of human participants.
These constraints further reduce, to a consideratient, the range of relative tolerances
within which the difficulty measurement issue cantéckled in Fitts’ paradigm.

The first important fact is that error rates almostariably inflate at the highest levels
of difficulty (i.e., in the extreme left-hand sidegion of Figure 2). When experimenters
display relatively intolerant target layouts, thevaments they obtain from participants tend
to be less accurate than desired. An unequivdaoatiation is provided by the error rates
recorded by Fitts and Peterson (1964) in theirsatasxperiment on discrete aimed movement
(Figure 4). When relative target tolerance was fkeas about 10%, Fitts and Peterson’s
participants dramatically over-exploited the amaairiblerance made available to them.

20
O D=7.62cm
15 —m— D =15.24cm
—A - D =30.48cm
Error 10 -
rate o
%
) ¢ |
0 ‘ ! !
0.0 0.1 0.2 0.3 0.4

Relative tolerance W/D  (-)

Figure 4. The error rate data reported by Fitts andPeterson (1964) for their discrete-movement task.

The classic treatment of this problem, data adjastrbased on the calculation of
effective target widtiW, (Crossman, 1956; Welford, 1968; MacKenzie, 1983s to a
more realistic measure of thHe. However, in the final Fitts' law plot the correct will have
inevitably induced a leftward shift of data pointsth the consequence that fagmeasures
desired for the highest levels of ti2 will be missing.

No less severe constraints take place on the hightt side of Figure 2, with easier
tasks. A task characterized as very easy byDhaiterion is in fact liable to be hard if not
squarely unpleasant to participants because dfigieenergetic cost of the required
movements. Fitts task instructions, vital to theagdggm, urge participants to move as fast as
they can, given the tolerance constraint, in eeendition. But when relative tolerance is
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raised up and up, at some point the participarntsnevitably approach their upper limit of
movement speed, hence the failure of relative meverarroroa/|a to faithfully reflect the

increase of relative toleran®é/D (Guiard and Ferrand, 1998).

Kerr and Langolf (1977)

1.8 1
1.6 1
1.4
Average 1 |
speed
/ 1.0 1
HAUT ——D=20.32cm
(m/s) 08+
06 -@- D=30.48cm
0.4 - D=40.64cm
0.2 1 -0— D=50.80cm
0.0 ‘ ‘ ‘ ‘ ‘
0.00 0.05 0.10 0.15 0.20 0.25 0.30

Relative target tolerance W/D  (-)

Figure 5. Average movement speega/pir as a function of relative target toleranceN/D in the discrete-
movement data of Kerr and Langolf (1977).

To illustrate this speed saturation effect we nayeikample take the data of Kerr and
Langolf (1977), collected in a discrete aimed-moganhtask (Figure 5). Each distance
condition being considered separately, so thaetfexts can be attributed exclusively to
relative tolerance, we see a strong and consistardave-down curvature in the dependency
of average speqdh/pr upon relative tolerancd@/D. Extrapolating to the right, it is not too
risky to conjecture that average movement speeddamat have further increased very much
had Kerr and Langolf raised relative target toleeaheyond 25%°

Given that speed limitation, it is not surpristh@t Fitts' law students are generally
cautious not to present their participants withhagh levels of relative target tolerance. Table
1 shows the minimal and maxima#/D values used in a representative sample of puldishe
studies. The median maximum is about 1/3, onlystndy having taken the risk of
investigatingWW/D>1/2. The figures reported in the rightmost colunfithe table express the
actually-investigated ranges—i.eWAD)max— (W/D)mir—as percentages of the geometrically
available range of relative tolerances (which ia2shown in Figure 2). Judging by this

2 One cogent reason to indeed expect average spéeekt off for higher relative tolerances is thtae
energetic cost of movement, which may be estimasetthe kinetic energy at peak speed, varies l&estjuare
of that speed.

16



sample of studies, it is hardly 20% of the geomatly practicable range or relative tolerance

that is actually used by Fitts' law experimenters.

Table 1
Minima and maxima of relative tolerance in a sangflstudies of discrete movement
Relative toleranc®V/D % utilization of the
min max geometrically available range
Fitts & Peterson (1964) 0.010 0.333 16.1%
Kerr & Langford (1977) 0.013 0.250 11.9%
Jagacinski & Monk (1985) — Joystick 0.040 0.376 6.8
Jagacinski & Monk (1985) - Helmet 0.053 0.499 22.3%
MacKenzie et al. (1987) 0.011 0.333 16.1%
Andres & Hartung (1989) 0.043 0.500 22.9%
Mohagheghi & Anson (2001) 0.028 1.489 73.0%
median 0.028 0.376 0.168

4.3. Effective Difficulty: A Wobbly Concept

The widely accepted adjustment for errors technigdech consists of replacing with
effective widthW; in Fitts' law equations (Crossman, 1957; Welfd@68; MacKenzie,
1992), translates nominal, or prescribed difficuittyp effective difficulty. To be complete the
adjustment needs to be done not justbut also orD,** and so, using the conventional
notation, the expression one ends up with for tmeputation of theéD is A/\W.. The symbol

A here referring to the mean of movement amplituwdegt we really have here jig/W,.. But
notice that this is a somewhat wobbly fractionglression whose denominai seems to
hesitate between a retrospective characterizafitmecexperimental display (“effectivaf)*?
and a characterization of the participant’s movaséndpoints spread).

In our opinion it is better tactics to unequivogalistinguish two kinds of physical
realities, the operational geometry of the task thedstatistics of movement endpoints (which
specify what experimenters and what participagddly did, respectively) than to try to
estimate in retrospect what the former or the dateuldhave done. There are two equally
respectable versions of Fitts' law: one, of spaniarest to HCI, relatgsr (along with error
rate) to the target layout and the other, of spétiarest to basic inquiries, relatgs (alone)

to the coefficient of variatiooa/pa. Sinceoa is proportional tdM;, no information loss is

1 This adjustment is moderately important as expeniers usually fingis[D, with similar error rates for
undershoots and overshoots, suggesting that getits aim at target centers (e.g., Fitts & Peters964).

12 Conceptually effective widtkV, has the form of a retrospective reconstructiois the value ofV that should
have been used by the experimenter, given an cdx$éexcessive, or insufficient) spread of movement
endpoints, to obtain a certain constant error st 4% (MacKenzie, 1992).
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entailed by recourse to the consistent expregsifma (in fact its inversea/pa) in place of

the expressioA/W; from which it has been a tradition to calculateetivelDs.

4.4. From Relative Movement Error to Relative Movenent Precision

We argued in Section 3 that the geometry of Rt is better characterized Wy/D than by
D/W as the former, but not the latter, has a phygiead. This led us to consider an alternative
definition of task difficulty, based on relativeget intolerance rather than tolerance, that
enjoys a physical stop. Turning now to the empirdeal statistical sort of physical reality
handled by Fitts’ law students, one may follow slene reasoning path.

The quantityoa/pa, just like any coefficient of variatiooy/p, computed on any
random variable, is an expression of relative errgraccuracy, ommprecision. The specific
random variable of interest here is movement aomiditout with the discrete protocol, as
already noted, amplitud® and endpoint errde = A-D share the same dispersian € og).
Since there is virtually no risk that the upperition/pa = 1 be reached in any sample of
movements, we may safely assume that relative eares in the 0-100% interval. Therefore
relative movement error can be converted into weawill call relative movement precision
RMP =1-0a/ua. Thatmeasure varies in the 0-100% range, just likeixgdarget intolerance
RTI= 1-W/D. Like RTI, RMP has an arbitrary zero, but the measure’s uppét (Imoa/pa =

1) is a physical stop because a coefficient ofatam cannot be less than zéfo.

5. HOW PRACTICABLE ARE THE NEW METRICS? AN ILLUSTR ATION WITH
FITTS (1954) TAPPING DATA

In this section we use Fitts’ (1954) classic stytlgping data as a benchmark for testing the
concrete practicability of the new variables whoskty we advocated in the foregoing
sections. We introduced four tentative predictdniovement time—namely, relative target
toleranceRTT=W/D relative target intolerand®T=1-RTT, relative movement error
RME=0a/pa, andrelative movement precisidRMP=1-RME (see Appendix 1). Because the
most reliable predictors of movement time are tédomd in the actual statistics of the
movement, rather than in the mere specificatiotagfet distance and tolerance (the well-

13 One practical reason why we prefer the tpracisionover the ternaccuracy which we hold as a strict
synonym, is that the latter has the same initi@raplitude. Reserving the notatiérfor amplitude, one may
then write for example that relative movement @mieciRMP = 1-G5/l4 is computed from relative movement
errorRME = aa/pa rather than relative movement amplituRIRIA = pa/oa.
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known effective-width argument of Crossman, 195@lférd, 1968, and MacKenzie, 1992),
below we will ignoreRTTandRTI to focus orRME andRMP.
Our aim being simply to illustrate the concretecticability of our new metrics, we

will continue to deliberately leave aside any sabsve theoretical issues.

5.1. Methods

Fitts (1954) ran his famous stylus-tapping expentt@ice, on two consecutive days. On
Day 1 Fitts’ participants used a light, 1-0z (28gs)lus, and on Day 2 they used a heavier 1-
Ib (4549r) stylus. Although the two sets of numakridata, which Fitts tabulated in his Table 1
(p. 264), were virtually identical, it has beemnradition in the psychological literature to focus
on the data of the light-stylus experiment, anthso first half of Fitts’ tapping data offers
itself as a natural benchmark: below we will exslaly consider the data Fitts obtained on
Day 1, with the light stylus.

Fitts reported estimates of mean movement fimaveraged over 16 participants for
each of his 16 factorial combinationDfandW but he did not actually record the position of
movement endpoints. In his Table 1 he just repdtiegercentages of target misses (1.2% on
average for the light-stylus tapping experiment.ebtimatqi, andoa, both needed in the
current analysis, we proceeded as follows. We abgeid on Fitts’ report (p. 265) that
undershoot and overshoot errors were about eginatiyent in the light-stylus experiment
and simply assumed that=D. To infer endpoint spreads from error rates wel uke
technique described by MacKenzie (1991, Sectioh E&r each combination & andW we
computed effective width, (corresponding to a fixed 4% error-rate constjainter the
hypothesis that the endpoint distribution was Ganssnd themw, asWy/4.133.

Our analyses separate the different levels déscharacterized by or pa, in
keeping with the recommendations of Guiard (2089jitts' law experiment involves two
independent variables, but these are not the leilyendW that it has been traditional to
cross orthogonally in designs, since Fitts (19%4)obtain mutually independent variables
one needs a dimensionless, scale-independentispéotf of task difficulty (e.g., the
quotient of the Weber fractioW/D) and some dimensional measure of task scale e(sig.,
target distanc®).
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5.2. Relative Movement AmplitudeRMA = pa/oa

Let us start with the traditional approach. Apaoii the fact that we separate the data
according to scale level, what is shown in Figurge #he basic relation that Fitts' law
researchers have traditionally endeavored to utatetsthat linkingir andRMA Using
these variables, Fitts’ tapping data is best matlelea power equatiotf:
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Relative movement amplitude RMA= pa/oa ()
Figure 6. Fitts’ movement-time measures as a funcih of RMA.
Hr =a* (Ha/oa) P a>0,b>0 .98942<.999. (5)

It follows from Equation 5 thagir=0 for RMA=0. However, if one cares about the mapping of
the equation onto the physical world, this mathé&maaimplication must be judged irrelevant
because the zero BIMA which corresponds to a no-movement conditioits tai qualify as a
physical zero (see Section 4.1). Another implicabbthe equation is that=a for RMA=1
(i.e.,ua=0a), but this again is of little consequence becdusgust an arbitrary point along

the continuum oRMA

5.3. Relative Movement ErrorRME = 0a/pa
Once the Weber fraction of tixeaxis has recovered its non-inverted form, becoring
coefficient of variation, Fitts’ tapping data issjlias consistent. The best fit is obtained with

4 A logarithmic equatiomir =a * log (Ua/0,) + b, with a>0 and b>0 provides fits that are nearly as good
(.982<2<.998).
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the very same power equation whose expobéras turned negative (Figure 7):

br=a* (Oalita) ° a>0, b<0 98942<.999. (6)
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Figure 7. Fitts’ movement-time measures as a funcih of RME.

Even though the mathematical model is the samen#tdac on thec axis has improved. Now
ourx variable varies in the 0-1 range, with a zero tlwatesponds to a true physical stop
(0a=0 with pa>0) and with an upper limit that constitutes a ptaiy meaningful, if arbitrary
maximum RME=1 atoa=pa).

According to Equation @7 is undefined foRME=0, due to a division by zero. Notice,
however, that foRME=1 we haveaur =a, and this is indeed a physically interpretableiltes
the scaling coefficierd of Equation 6 provides an estimate (representeddoh movement-
scale condition as a dashed line) of the asymptotnimum ofpr that Fitts’ participants
would have been capable of, had they tried to maertheir movement time while totally
ignoring the precision constraint (by Equation BME=1 thenur=a). Given the true zeros
available on both axes, a non-positive value faffocienta would be hard to tolerate. As a
matter of fact, in Fitts’ data the four estimatésaefficienta range quite plausibly in the 50-

100ms interval.

21



5.4. Relative Movement PrecisioRMP = 1 —0ga/Ma
After the complementation to 1 that transfofRME into RMP, Fitts’ data is very accurately
modeled by a second-degree polynomial (Figure 8):

Ur = a*RMP? + b*RMP + ¢ .99242>,9998 (7)
with a>0, b<0, c>0, anda+b+c>0.
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Figure 8. Fitts’ movement time measures as a funah of RMP.

It is important to notice that in Fitts’ data, niéferent in this regard from most data of
the literature, the actualmeasures cluster in the vicinity of the upper iofiRMP, ranging
approximately between .9 and .99. Obviously righthextrapolation over a short extent to
estimategur atRMP=1 is a great deal safer than leftward extrapatatbiwer 90% or more of
theRMPrange, to estimater atRMP=0. *°

The computation of the sum of the three coeffidgaitEquation 7 yields, for each

movement scale level, an estimate ofiheequired for perfect precision (fMP=1 then

1> Mathematically, the coefficiemtof Equation 7 is an estimate jof at RMP=0. However, given the very large
amount of leftward extrapolation that the expladtatof this implication of the mathematical modehaands,
there is no reason to worry about the values obthirom Fitts’ data. Falling in the range 20-1008=e Figure
8), these estimates are seriously implausible.
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pur=at+b+c), the amount of rightward extrapolation being guitoderate. Given the
constraining metrics involved in the relationshifth a physical stop at bofla=0 and
RMP=1, there is no question that this sum must beipesiThe four estimatest+b+c that
obtain from Fitts’ tapping data (represented onvidrical axis of Figure 8, ® MP=1), again
take quite plausible values, in the range 550-900ms

5.5. Discussion
The results of this new visit to Fitts’ (1954) fansatapping data suggest that recourdeNtc
andRMP, rather tharRMA, entails a benefit and, as far as we may judgeost

On the benefit side, it should be emphasizedttiegir vs. RME plot of Figure 7 and
theur vs.RMP plot of Figure 8 deliver two pieces of informatiabout the performance of
Fitts’ participants that nicely complement eacheothVhile the former plot allowed us to
estimate in Fitts’ data thiéoor of (4 for 100% imprecise movementise latter made it
possible to estimate, with remarkably little rigke ceiling of £4 for 100% precise
movementsWe do not see how these estimates, both of wedgem useful, could have been
obtained in an inquiry based on the traditiodRBA-based understanding of movement
accuracy in Fitts' paradigm.

But we wish to suggest that this benefit is olgdiat no cost. The crucial information
contained in a traditional Fitts’ law plot, whehetrelationship is linearized by expressing
as a function of the logarithm of the Weber fractaf the task (or the movement), is its slope
in s/bit, the inverse of that slope, in bit/s, lgeinterpretable as an estimate of bandwidth, or
throughput (Card, English, and Burr, 1978; ZhaQ40 The point being made is that the
possibility to compute that estimate is not losthe new approach we have outlined. For
example, in a log-log plot the expond&ntf Equation 6 will become the slope of a line and,
provided thaRME s rephrased as informatidhthat slope will make it possible to estimate a
throughput.

In sum, whereas one can interpret the slope butegtintercept of the linear
equation of traditional Fitts' law formulas (mone this in Section 6.1), it seems that both
coefficients of Equation 6 are interpretable. This,feel, is good news for researchers who
want to detect all the structure of their experitakdata, whether their purposes be practical

(e.g., comparing the target-reaching performan€esmputer users provided with different

'¢ Calculating the entropy of a distribution whoseamand standard deviation are known is a standantise
in information theory.
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interaction devices or techniques) or basic (imprg¥he rigor of the experimental testing of
competing theoretical explanations of Fitts' law).

6. SOME IMPLICATIONS FOR HCI RESEARCH

To recapitulate our main findings, the traditionsdasurement of task difficulty in Fitts' law
research lacks a physical zero, meaning that exeetation has been generally under-
constrained so far. This observation may perhapgibate to explain why it has been so
hard thus far to empirically falsify the competimgithematical models of Fitts' law. We
suggested that this measurement problem can lek lixeecourse to an alternative definition
of task difficulty based oRTTandRTIrather tharRTD. The measurement of movement
accuracy has also traditionally suffered from #eklof a true zero. We introduced an
alternative definition of accuracy or precisionséd orRME andRMP rather tharRMA, that
appears to fix the problem. We finally showed tisihg the new measures we propose,
consistent and informative patterns are found itsRiell-known tapping data. Below we
discuss two specific implications of the foregothgt seem of special relevance to HCI

research.

6.1. The y-Intercept Debate

A Fitts' law equation like Equations 2 and 4 indadwo empirically determined coefficients.
While the slopex quantifies the magnitude of thie effect onpr over the examined range of
IDs, they-interceptb is supposed to indicate the value of movement &trtbe point where
difficulty is zero. An 1SO09241-9 standard has bpablished, which specifies “Ergonomic
requirements for office work with visual displayrtenals, Part 9: Requirements for non-
keyboard input devices” (ISO, 2000). Soukoreff MatKenzie (2004), advocating this
standard to serve as a methodological guidelin€itts’ law experimentation in HCI and
other applied domains, insisted that even thougk' Fawy-intercept is unlikely to be exactly
zero, probably it should not exceed —200 ms (p).758

Intuition indeed suggests that this intercept sthawbariably remain close to zero, but things
are not this simple.

Since Fitts’ (1954) seminal paper the appearanc®fzeroy-intercepts has never
ceased to be a controversial topic in Fitts’ laweximentation. To explain substantial
positive intercepts, researchers have for examplegd to the time it takes to tap in place
(Zhai, Sue, & Accot, 2002) or to press a mousedoutiacKenzie, 1992), dwell time (Fitts
& Radford, 1966), unavoidable delay in the psychtwneystem (Fitts & Radford, 1966),
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uncontrollable muscle activity in the beginningeoid of a movement (MacKenzie, 1992),
reaction time (Fitts & Peterson, 1964), modelinges such as failure to use the Shannon
formulation of thdD or recourse to a nominal, rather than effectiveasare oW
(MacKenzie, 1989, 1992; Welford, 1960, 1968), randa@riations in subject performance, or
unidentified methodological flaws (Soukoreff & Maekzie, 2004).

Obviously the case is worst when researchers obtaubstantiallyjegativey-
intercept, since a time measure ljkecannot conceivably be less than zero, but that has
happened countless times in the literature (epsE1986; Fitts and Peterson, 1964; Guiard,
1997; Kantowitz & Elvers, 1988; Lazzari, Mottet,\&rcher, 2009, to cite just a few
instances).

It seems that to date no theory has adequatgdiained why thg-intercept of Fitts'
law behaves in fact so erratically and specified lboe should handle values that consistently
differ from zero, as can be ascertained with appatginferential statistical tests (e.g., Sen &
Srivastava, 1990). Prior to tackling the issue muest recall howy-intercepts are calculated

from data sets.

Figure 9. Distinguishing the line segment fitted cer a finite range ofID s to some Fitts' law data vs. the
line of infinite length specified by the line’s eqation. The data points are arbitrary, and so are tle lengths
of the two error bars. Uncertainty about the locaton of the intercept reflects both the fact that cuve
linearity is not warranted in the interval of downward extrapolation (vertical uncertainty) and the
metrological irresolution about the location of thezero-difficulty point (horizontal uncertainty).

A Fitts' law equation is a numerical object thgpexmenters fit to their data by means
of linear regression. While the equation specifi¢ime of infinite length in the graphic plane,
a real data set covers a finite interval onxlagis. As experiments never include the d&se

= 0, they-intercept of Fitts' law always relies on downwasdrapolation.
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Figure 9 helps to understand that the estimatidheth coefficient of Equations 2 and
4 is subject to the combination of two differentiszes of uncertainty. The intercept being
determined by the intersection of the curve withbrtical axis ax = 0, there are two pre-
requisites to its estimation) the extrapolation process should not be too adveas andi{)
one needs to know exactly where the zero okthariable takes place. Unfortunately, neither
pre-requisite is met in the context of Fitts' law.

While any extrapolation from a test range involaassk (Soukoreff & MacKenzie,
2004), the larger the extent of the extrapolatiba,larger the risk. As a matter of fact, it is
known that whenever an experiment ventures intodooaughlD levels the curve begins to
flatten (e.g., Fitts, 1954; MacKenzie, 1992)—nauaprising finding recalling the speed
saturation effect of Section 4.2. If one were poaition to take seriously the location of the
numerical zero on the horizontal axis, one wouldeh@ason to suppose that theoefficient
of Fitts' law tends to under-estimateatID = 0, as suggested by the vertical error bar of
Figure 9. However, one is not in such a position.

In addition to the fact that downward extrapolatioom a test range involves an error,
we have the serious problem that a Fitts' law alstargued in the foregoing, does not offer a
physical zero of movement difficulty. From the marhthe zero that stands on tikescale is
recognized to be a physically arbitrary point, megnhat the independent variable runs on a
non-ratio equal-interval scale (Stevens, 1946), the numleralae taken by at that
particular point must be recognized as arbitray amnterpretable. Thus, contrary to an old
and widely-held belief, there seems to be no grdanthe expectation that, whether Fitts’
law be formulated with the Fitts or the Shannoreidhey-intercept of the law should
remain close to zero. As emphasized by Zhai (2082t} coefficients of Fitts' law are indeed
needed to summarize a set of data. The coeffibi@hEquation 4, which quantifies the level
of performance independently of the effect, certainly cannot be ignored to characeeaz
data set, but our analysis reveals that this aoefft, for lack of a true zero of difficulty in

Fitts' law, does not satisfy the definition of-mtercept.

6.2. Measuring Difficulty in the Case of the Recipocal Protocol

Human-computer interaction, perhaps the field imctvlthe largest amount of Fitts' law
research has been taking place in recent pastrg&iBeaudouin-Lafon, 2004; Soukoreff &
MacKenzie, 2004), generally resorts to the recigrpcotocol, which the ISO standard
recommends explicitly (ISO, 2000; Soukoreff & Macigee, 2004). Thus how the above
analysis applies to the reciprocal case seems whgbking.
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It turns out that the range of ratios of relatigketance that are geometrically
practicable with the reciprocal protocol is muchraaer than with the discrete protocol, as
shown in Figure 10. If two targets separated bgrsstantD are made to expand, they meet
each other at the point whené = D henceW/D = 1. At that point the undershoot interval
vanishes, leaving no room whatsoever for an aimedement task. Thus Figure 10
demonstrates that the range of workd®Iel ratios for which the reciprocal version of Fitts’
task can be investigated in actual practice M/(I31, only one half the range available in

the discrete case of Figure 2.

edge
outel =757 ... Target __.

center

D
. Target l
center

W/D=0 W/D = 1/2 W/D=1
Targets meet

— - Fitts ID
—— Shannon ID

20.0 0.5 1.0 1.5
Relative tolerance W/D (-)

Figure 10. How the Fitts and the ShannotD s map onto the geometry of target tolerance in a o#procal
task. Compare with Figure 3.

At W/D = 1, the upper limit oRTTfor the reciprocal protocol, the Fitts and the8fan
ID deliver an identicalD = 1, as shown in the lower panel of Figure 10c8with the
reciprocal protocol it is impossible to ral&D above 1, it is impossible to reduce the Fitts or
the ShannoiD belowID = 1. With the reciprocal protocol neither the $ibor the Shannon

version of thdD offer a physical zero of movement difficulty. Thili® concern that Figure 2
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raised about the meaning of Fitts' law interceghendiscrete case is still more obvious in the
reciprocal case.

A quite different, but no less troublesome obseéovearises from the comparison of
Figures 2 and 10. The difficulty levi® = 1, which obtains identically in the cag#D = 1
whether using the Fitts or the Shannon index, spords to altogether different task
situations with the discrete vs. the reciprocatgeols. If in the discrete cafle = 1 specifies
a rather easy but workable task, in the reciproaak the sam® = 1 specifies the point at
which the two targets meet each other, meaninggeittenical impossibility of a movement
task. This strongly suggests that different measafeask difficulty should be used for the
two protocols, an important fact which to our knedge has been overlooked so far.

A few past studies have sought to compare the pedice of discrete vs. reciprocal
movements (e.g., Fitts & Peterson, 1964; Guiar@,7)19n retrospect, failure to adapt the
calculation of thdD to the markedly different geometries of the ditend reciprocal tasks
casts doubt on their conclusions. More researcms@ecessary to clarify this point and,
more importantly, to elaborate an index of diffiguihat will accommodate the different

geometries of relative tolerance with the disceetd the reciprocal protocols.

7. CONCLUDING REMARKS

In his seminaciencepaper Stevens (1946, p. 679) noted that in psgdyols opposed to
physics, “Only occasionally is there concern far ibcation of a 'true’ zero point, because the
human attributes measured by psychologists usazibt in a positive degree that is large
compared with the range of its variation.” Sucthes case obviously with the measurement of
task difficulty in Fitts’ law research, as relatitagget tolerance can only be varied from 1% to
50% or so (Table 1), meaning that relative targetierance is confined approximately in the
50-99% range.

Stevens (1946, p. 679) continues with the remaak‘tntelligence, for example, is
usefully assessed on ordinal scales which try psapmate interval scales, and it is not
necessary to define what zero intelligence wouldmdieln this regard Fitts’ law students
seem to be in a better position than studentstelligence. The Woodworth-Fitts paradigm
being based on a highly simplified task geometrig possible and, we believe, useful to
define what zero difficulty and zero precision melnas we have seen, a ‘true’ zero is a
prerequisite foy-intercepts to be interpretable, more generallpuese to more constraining
metrics of task difficulty and movement accuracgudll enhance the quantitative sort of

approach that characterizes Fitts’ law researcsictzand applied.
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10. APPENDIX 1: GLOSSARY OF RELEVANT VARIABLES

Task geometry

Target distance

Target width or tolerance
Relative target distance
Relative target tolerance

Relative target intolerance

Elemental movement measures
Movement time
Movement amplitude

Movement error

Movement statistics

Mean movement time

Mean movement amplitude
SD of amplitude

Relative movement amplitude
Relative movement error

Relative movement precision

D
wW
RTD = D/W
RTT = W/D

RTI=1-RTT =1-W/D

Hr
Ha
Oa
RMA= pa/oa
RME= 0a/Ha

RMP = 1-RME = 1-0a/pa
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Unit
(cm)
(cm)

Q)
(%)
(%)

()
(cm)

(cm)

(s)
(cm)

(cm)

(%)
(%)



