
HAL Id: hal-00545554
https://hal.science/hal-00545554v1

Submitted on 10 Dec 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Method for the Generation of HDL Code at the RTL
level form a High-Level Formal Specification Language

Apostolos Kountouris, Christophe Wolinski

To cite this version:
Apostolos Kountouris, Christophe Wolinski. A Method for the Generation of HDL Code at the RTL
level form a High-Level Formal Specification Language. 40th Midwest Symposium on Circuits and
Systems (MWSCAS ’97), Aug 1997, Sacramento, CA, United States. pp.1095-1098. �hal-00545554�

https://hal.science/hal-00545554v1
https://hal.archives-ouvertes.fr

Abstract--In this paper a method for generating HDL code
from SIGNAL formal specifications, is described. Applying two
transformations on the initial specification yields functionally
equivalent RTL HDL code. The functional equivalence is for-
mally proven. The methodology allows component re-usability
and enables the validation of their integration at the specification
level. We anticipate that the principles presented in this paper,
will be applied in the framework of a cooperation with Motorola.

I. I NTRODUCTION

In this paper we describe a new methodology for the gener-
ation ofHardware Description Language (HDL) code from a
high-level formal specification language. The novelty of this
methodology is the use of the formal language semantics to
prove the functional equivalence between the initial and the
resulting HDL representations. To obtain a viable HDL gener-
ation scheme two important issues have to be addressed. Pri-
marily the functional equivalence between specification and
implementation and secondly, re-usability. The first issue is
the classical problem of guaranteeing that the implementation
actually implements the specification. Whenever there is a
passage from one representation, usually a high-level one, to
another lower level one, there can be discrepancies attributed
to the fact of changing representation domains. In addition,
being able to re-use past designs is necessary in order to
shorten the design cycle by re-using previous work or compo-
nent libraries. Finally, the generation process should be able to
accommodate different HDL target languages and should be

guided by a set of user supplied options.
We investigate the benefits of a circuit specification envi-

ronment where the SIGNAL language is the specification
front-end. SIGNAL is a dataflow oriented language [1] based
on thesynchrony hypothesis[2]. Using the language expres-
sions the user is programming in an equational style and thus
each program is a system of equations. The SIGNAL compiler
resolves these systems and checks for non-determinism, circu-
lar control/data dependencies, SIGNAL clock constraints (see
[1][4]) etc. These checks are useful in discovering possible
sources of error, at compile time. In the example shown in
Fig. 1a a small SIGNAL program captures the desired func-
tional requirements. In Fig. 1b we can see itschronogram that
shows how the outputs of the program are produced in
response to the inputs and the relative presence of the program
signals. For example the value of the output G depends on the
value of B if A isfalse or on the value of C if A istrue. In the
chronogram we can also see that D caries a value only at the
logical instants that A istrue.

II. H DL GENERATION PROCESS

The process consists of applying a series of transformations
to the initial SIGNAL program. In this way we obtain a SIG-
NAL program functionally equivalent to the initial one. This
program can be directly mapped to aRegister Transfer Level
(RTL) HDL representation by applying a third transformation
that performs the translation to HDL. In doing this we use the

A Method for the Generation of HDL Code at the RTL level from a High-Level
Formal Specification Language

Apostolos A. Kountouris, Christophe Wolinski
IRISA

Campus Universitaire de Beaulieu
F-35042 Rennes CEDEX

FRANCE

Fig. 1. Functional specification in SIGNAL

process EXAMPLE1=
 { ? event H;
 logical A;
 integer B, D
 ! integer C, G }
 (| E := B when A
 | G := C default B
 | C := D+E
 | synchro { A, H, B }
 |)
 where
 integer E
end

H

B

A

D

E

C

G

1 1 1 1 1 1 1 1

0 0 1 1 0 1 0 1

b1 b2 b3 b4 b5 b6 b7 b8

b3 b4 b6 b8

d1+b3 d2+b4 d3+b6 d4+b8

 b1 b2 d1+b3 d2+b4 b5 d3+b6 b7 d4+b8

d1 d2 d3 d4

(a) SIGNAL program

(b) temporal and value relationships of the
 inputs and outputs of the program

Fig. 2. HDL code generation by successive application of the S and H transformations

xxx.SIG Sinterf

xxx_sim.SIG

Srec

xxx_syn.SIG

H xxx_syn.vhd

S

structural information contained in the SIGNAL description as
well as a set of SIGNAL to HDL translation rules, depending
on the targeted HDL.

A. The Transformation Process

The three transformations,Sinterf,Srec,H, are the basic tools
used in the HDL generation process. In Fig. 2 we graphically
depict the process of generating HDL code (xxx_syn.vhd)
from an initial SIGNAL program (xxx.SIG). We formally
prove that by applying these transformations on SIGNAL pro-
grams we end up with functionally equivalent HDL represen-
tations. It is also proven that such a scheme allows the
seamless integration of predefined components. Using the
SIGNAL formal operational semantics we demonstrate that
for a SIGNAL processP in a contextC

where≡SIG is our notion of functional equivalence between
SIGNAL processes. Next we prove that for a SIGNAL process
P that is equal to the parallel composition of processesP1 and
P2 (i.e.P=P1|P2),

.

This is in turn used to prove thatSinterf can be applied recur-

sively (notedSrec) on the process hierarchy till the level of
SIGNAL kernel operators is reached. Consequently

. It is shown that for a processP, itsSrec(P) and

H(Srec(P)) (the HDL representation) are observationally
equivalent

B. Component Re-use

Finally, we can deduce that we can effectively use libraries
of predefined elements. LetLC a library component with
LCSIG its description in SIGNAL andLCHDL its description in
HDL. If LC is used in a SIGNAL programP, we may repre-
sent this fact as wherePsur is the part ofP

that surroundsLC. If C is the context defined byP, we obtain

In the SIGNAL source codeLC is marked as being a library

element,Srec is not applied on it. Such a process is entirely
substituted byLCHDL, the pre-existing HDL code (found in

P Sinterf P()≡SIG

P Sinterf P1() Sinterf P2()|()≡SIG

P Srec P()≡SIG

Srec P() H Srec P()()≡OBS

P Psur LCSIG|=

P Srec Psur() Sinterf LCSIG()|≡SIG

the library), during the application ofH that generates the
HDL code forP.

III. S PECIFICATION- LEVEL OPTIMIZATIONS

Using the SIGNAL clock exclusivity information we have
many possibilities for specification level optimizations. As a
representative example we demonstrate how we can effec-
tively reduce the resources needed and thus minimize hard-
ware. If for instance a SIGNAL program contains an
expression like:

d := ((a+b)when ev)default (b+c)
after clock calculus the clocks of the two + operators are
found mutually exclusive and thus a single + resource is
needed. Fig. 3 (a) shows theS transformation of the example
when clock exclusivity information is not considered.
Resource sharing is shown in(b) which is equivalent to (a).
The table below compares (a) and (b) in terms of number of
gates and occupied area for 32-bit quantities for a Xilinx
XC4000 FPGA implementation [7].

IV. M ETHODOLOGY OUTLINE

From a methodology perspective the major steps that lead
from the high-level SIGNAL specification of a circuit, to its
implementation in hardware, are:
1. Specification: Design entry, static validation

TABLE I
AREA MINIMIZATION BY RESOURCESHARING

FIFO design no resource sharing resource sharing

number of primitive cells 631 480

area 204.5 160.0

Fig. 3. Resource sharing optimization example.

def

+

a
sa
b
sb

d
sd

+

c
sc

def

a

c
sc

+

b
sb

d
sd

a) No resource sharing

b) After resource sharing

when

ev

when
sa
ev

2. Synthesizability Analysis: Apply Sinterf, static validation of

Sinterf

3. Dynamic Validation: software simulation

4. HDL Generation: Apply Srec,H
5. Synthesis: set constraints, optimization options etc.
6. Post-synthesis Validation: gate-level simulation, etc.

This methodology aspect is graphically depicted in Fig. 4.
For design entry we use the SIGNAL language either in tex-
tual or graphical form. The static validation is performed by
the SIGNAL compiler. The passage from SIGNAL to HDL is
a multi-stage, sequential, iterative process. Till before step 4
we are always in the SIGNAL domain, meaning that at the end
of any preceding step we may use other SIGNAL tools for
purposes like property verification etc.

V. EXAMPLE: HW I MPLEMENTATION OF A FIFO

The described HDL generation methodology was applied to
a FIFO specification in SIGNAL. Fig. 5 shows the FIFO sig-
nal specification and Fig. 6 shows the results at the end of step
3. In the table below we compare the synthesis results for two
similar FIFO designs, in terms of number of cells and occu-
pied area. The first is the low area implementation of a syn-
chronous FIFO, found in the SYNOPSYS DesignWare library
[6]. The second is the result of our HDL generation process

for the SIGNAL specification of Fig. 5. We used the SYNOP-
SYS design_analyzerand the Xilinx FPGA compiler for the
Xilinx XC4000 part [7]. The slight differences between the
two designs are quite encouraging as far as the quality of the
HDL generated by our process is concerned. We expect to fur-
ther ameliorate these results by a more extensive application
of specification level optimizations.

VI. CONCLUSION

In this paper we presented an HDL generation process that
accepts as input a SIGNAL program and produces as output a
functionally equivalent representation in HDL a the RTL level.
To achieve this we use structural information in the SIGNAL
program. The most important aspect, of this HDL generation
process, is that it constitutes aformal link between the specifi-
cation (SIGNAL) domain and the implementation (synthesis)
domain. The whole process is proved using the formal SIG-

TABLE II
AREA COMPARISONAGAINST A PREDEFINEDCOMPONENT

FIFO design DesignWare Low Area SIGNAL

Combinational 204 189.5

Noncombinational 10 63.0

Total area 214 252.5

Number of primitive cells 611 631

Fig. 4. Methodology steps.

Specification

Design entry Static validation

Synthesizability Analysis
Apply Sinterf Static validation of Sinterf

Dynamic Validation
C code generation Software simulation

HDL Generation

Apply Srec, H
RTL simulation

Synthesis
.....
.....

Post-synthesis Validation
gate-level simulation etc.

OK?

yes

no

OK?

yes

no

OK?

yes

no

OK?

yes

no

OK?

yes

no

SIGNAL Specification tools

SIGNAL HDL Generation tools

Third-party HW tools

LI
B

R
A

R
Y

SIGNAL

Synthesis

Formal Link

(optional)

[3] “Special section: R/T Programming”,Proceedings of the IEEE, vol. 79,
no.9, Sep. 1991.

[4] Loic Besnard,Compilation de SIGNAL: horloges, dependances, envi-
ronment, PhD thesis, University of Rennes I.

[5] James T. O’Connor, “Synchronous vs. Asynchronous Design Method-
ology for Digital Circuits Requiring Multiple Clock Signals from a
Single Clock Source”,Synopsys on-line documentation, methodology
note.

[6] “DesignWare Components Databook”,Synopsys on-line documenta-
tion.

[7] “XACT: Xilinx Synopsys Interface FPGA User Guide”, Xilinx, Dec.
1994.

NAL semantics. This fact renders this generation process an
acceptable and viable link between specification and imple-
mentation. Finally a specification level optimization process
was studied with a two-fold intention: first express optimiza-
tions in the specification level proving the functional equiva-
lence of the optimized circuit, and second enhance the
optimization process performed by the underlying synthesis
tools.

REFERENCES

[1] Paul Le Guernic, Michel Le Borgne, Thierry Gautier, Claude Le Maire,
“Programming Real Time Applications with SIGNAL”,Proceedings of
the IEEE, vol. 79, no.9, pp. 1321-1336, Sep. 1991.

[2] Albert Benveniste, Gerard Berry, “The Synchronous Approach to
Reactive and Real-Time Systems”,Proceedings of the IEEE, vol. 79,
no.9, pp. 1270-1282, Sep. 1991.

Fig. 6. Srec transformation (fifo_syn.SIG) before HDL generation for the IOPB FIFO

SIGNAL operators
after S transformation

Fig. 5. Specification of the FIFO behavior in SIGNAL

(| CLKL := CLK
 | IDWINDOW := DATAIN window 8
 | CWINDOW := IDWINDOW cell CLKL
 | NI := ((0 when CLKL when RESET) default

(I when (event DATAIN) when POP) default
((I+1) when (event DATAIN)) default
((I-1) when POP)) cell CLK

 | FULL := I>=8
 | EMPTY := I<=0
 | I := NI $ 1
 | TOP := ((9 - (I+1)) when (event DATAIN)) default (9-I)
 | TT := (1 when (TOP<1)) default (8 when (TOP>8)) default TOP
 | VALUEOUT := CWINDOW[TT]
 |)

fifo memory

index control

we focus on this part

Author Information

Apostolos Kountouris
IRISA
Campus de Beaulieu
F-35042 RENNES CEDEX - FRANCE
E-mail: kountour@irisa.fr
Phone:+33 2 99 84 72 44
Fax: +33 2 99 84 71 71
Telex:UNIRISA 950 473F

A Method for the Generation of HDL Code at the RTL level from a
High-Level Formal Specification Language

Apostolos A. Kountouris, Christophe Wolinski

Technical Track: 6. VLSI and CAD (VLSI circuits, design tools, CAD software)
Format: Lecture

Abstract--Abstract: In this paper a method for generating HDL code from SIGNAL formal specifications, is described. Apply-
ing two transformations on the initial specification yields functionally equivalent RTL HDL code. The functional equivalence
is formally proven. The methodology allows component re-usability and enables the validation of their integration at the spec-
ification level.

