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Abstract--In this paper a method for generating HDL code
from SIGNAL formal specifications, is described. Applying two
transformations on the initial specification yields functionally
equivalent RTL HDL code. The functional equivalence is for-
mally proven. The methodology allows component re-usability
and enables the validation of their integration at the specification
level. We anticipate that the principles presented in this paper,
will be applied in the framework of a cooperation with Motorola.

I.  I NTRODUCTION

In this paper we describe a new methodology for the gener-
ation ofHardware Description Language (HDL) code from a
high-level formal specification language. The novelty of this
methodology is the use of the formal language semantics to
prove the functional equivalence between the initial and the
resulting HDL representations. To obtain a viable HDL gener-
ation scheme two important issues have to be addressed. Pri-
marily the functional equivalence between specification and
implementation and secondly, re-usability. The first issue is
the classical problem of guaranteeing that the implementation
actually implements the specification. Whenever there is a
passage from one representation, usually a high-level one, to
another lower level one, there can be discrepancies attributed
to the fact of changing representation domains. In addition,
being able to re-use past designs is necessary in order to
shorten the design cycle by re-using previous work or compo-
nent libraries. Finally, the generation process should be able to
accommodate different HDL target languages and should be

guided by a set of user supplied options.
We investigate the benefits of a circuit specification envi-

ronment where the SIGNAL language is the specification
front-end. SIGNAL is a dataflow oriented language [1] based
on thesynchrony hypothesis[2]. Using the language expres-
sions the user is programming in an equational style and thus
each program is a system of equations. The SIGNAL compiler
resolves these systems and checks for non-determinism, circu-
lar control/data dependencies, SIGNAL clock constraints (see
[1][4]) etc. These checks are useful in discovering possible
sources of error, at compile time. In the example shown in
Fig. 1a a small SIGNAL program captures the desired func-
tional requirements. In Fig. 1b we can see itschronogram that
shows how the outputs of the program are produced in
response to the inputs and the relative presence of the program
signals. For example the value of the output G depends on the
value of B if A isfalse or on the value of C if A istrue. In the
chronogram we can also see that D caries a value only at the
logical instants that A istrue.

II.  H DL GENERATION PROCESS

The process consists of applying a series of transformations
to the initial SIGNAL program. In this way we obtain a SIG-
NAL program functionally equivalent to the initial one. This
program can be directly mapped to aRegister Transfer Level
(RTL) HDL representation by applying a third transformation
that performs the translation to HDL. In doing this we use the
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Fig. 1. Functional specification in SIGNAL

process EXAMPLE1=
     { ? event H;
         logical A;
         integer B, D
       ! integer C, G }
     (| E := B when A
      | G := C default B
      | C := D+E
      | synchro { A, H, B }
      |)
     where
          integer E
end
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 inputs and outputs of the program



Fig. 2. HDL code generation by successive application of the S and H transformations
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S

structural information contained in the SIGNAL description as
well as a set of SIGNAL to HDL translation rules, depending
on the targeted HDL.

A. The Transformation Process

The three transformations,Sinterf,Srec,H, are the basic tools
used in the HDL generation process. In Fig. 2 we graphically
depict the process of generating HDL code (xxx_syn.vhd)
from an initial SIGNAL program (xxx.SIG). We formally
prove that by applying these transformations on SIGNAL pro-
grams we end up with functionally equivalent HDL represen-
tations. It is also proven that such a scheme allows the
seamless integration of predefined components. Using the
SIGNAL formal operational semantics we demonstrate that
for a SIGNAL processP in a contextC

where≡SIG is our notion of functional equivalence between
SIGNAL processes. Next we prove that for a SIGNAL process
P that is equal to the parallel composition of processesP1 and
P2 (i.e.P=P1|P2),

.

This is in turn used to prove thatSinterf can be applied recur-

sively (notedSrec) on the process hierarchy till the level of
SIGNAL kernel operators is reached. Consequently

. It is shown that for a processP, itsSrec(P) and

H(Srec(P)) (the HDL representation) are observationally
equivalent

B. Component Re-use

Finally, we can deduce that we can effectively use libraries
of predefined elements. LetLC a library component with
LCSIG its description in SIGNAL andLCHDL its description in
HDL. If LC is used in a SIGNAL programP, we may repre-
sent this fact as  wherePsur is the part ofP

that surroundsLC. If C is the context defined byP, we obtain

In the SIGNAL source codeLC is marked as being a library

element,Srec is not applied on it. Such a process is entirely
substituted byLCHDL, the pre-existing HDL code (found in

P Sinterf P( )≡SIG

P Sinterf P1( ) Sinterf P2( )|( )≡SIG

P Srec P( )≡SIG

Srec P( ) H Srec P( )( )≡OBS

P Psur LCSIG|=

P Srec Psur( ) Sinterf LCSIG( )|≡SIG

the library), during the application ofH that generates the
HDL code forP.

III.  S PECIFICATION- LEVEL OPTIMIZATIONS

Using the SIGNAL clock exclusivity information we have
many possibilities for specification level optimizations. As a
representative example we demonstrate how we can effec-
tively reduce the resources needed and thus minimize hard-
ware. If for instance a SIGNAL program contains an
expression like:

d := ((a+b)when ev)default (b+c)
after clock calculus the clocks of the two + operators are
found mutually exclusive and thus a single + resource is
needed. Fig. 3 (a) shows theS transformation of the example
when clock exclusivity information is not considered.
Resource sharing is shown in(b) which is equivalent to (a).
The table below compares (a) and (b) in terms of number of
gates and occupied area for 32-bit quantities for a Xilinx
XC4000 FPGA implementation [7].

IV.  M ETHODOLOGY OUTLINE

From a methodology perspective the major steps that lead
from the high-level SIGNAL specification of a circuit, to its
implementation in hardware, are:
1. Specification: Design entry, static validation

TABLE I
AREA MINIMIZATION BY RESOURCESHARING

FIFO design no resource sharing resource sharing

number of primitive cells 631 480

area 204.5 160.0

Fig. 3. Resource sharing optimization example.
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2. Synthesizability Analysis: Apply Sinterf, static validation of

Sinterf

3. Dynamic Validation: software simulation

4. HDL Generation: Apply Srec,H
5. Synthesis: set constraints, optimization options etc.
6. Post-synthesis Validation: gate-level simulation, etc.

This methodology aspect is graphically depicted in Fig. 4.
For design entry we use the SIGNAL language either in tex-
tual or graphical form. The static validation is performed by
the SIGNAL compiler. The passage from SIGNAL to HDL is
a multi-stage, sequential, iterative process. Till before step 4
we are always in the SIGNAL domain, meaning that at the end
of any preceding step we may use other SIGNAL tools for
purposes like property verification etc.

V.  EXAMPLE: HW I MPLEMENTATION OF A FIFO

The described HDL generation methodology was applied to
a FIFO specification in SIGNAL. Fig. 5 shows the FIFO sig-
nal specification and Fig. 6 shows the results at the end of step
3. In the table below we compare the synthesis results for two
similar FIFO designs, in terms of number of cells and occu-
pied area. The first is the low area implementation of a syn-
chronous FIFO, found in the SYNOPSYS DesignWare library
[6]. The second is the result of our HDL generation process

for the SIGNAL specification of Fig. 5. We used the SYNOP-
SYS design_analyzerand the Xilinx FPGA compiler for the
Xilinx XC4000 part [7]. The slight differences between the
two designs are quite encouraging as far as the quality of the
HDL generated by our process is concerned. We expect to fur-
ther ameliorate these results by a more extensive application
of specification level optimizations.

VI.  CONCLUSION

In this paper we presented an HDL generation process that
accepts as input a SIGNAL program and produces as output a
functionally equivalent representation in HDL a the RTL level.
To achieve this we use structural information in the SIGNAL
program. The most important aspect, of this HDL generation
process, is that it constitutes aformal link between the specifi-
cation (SIGNAL) domain and the implementation (synthesis)
domain. The whole process is proved using the formal SIG-

TABLE II
AREA COMPARISONAGAINST A PREDEFINEDCOMPONENT

FIFO design DesignWare Low Area SIGNAL

Combinational 204 189.5

Noncombinational 10 63.0

Total area 214 252.5

Number of primitive cells 611 631

Fig. 4. Methodology steps.
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NAL semantics. This fact renders this generation process an
acceptable and viable link between specification and imple-
mentation. Finally a specification level optimization process
was studied with a two-fold intention: first express optimiza-
tions in the specification level proving the functional equiva-
lence of the optimized circuit, and second enhance the
optimization process performed by the underlying synthesis
tools.
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Fig. 6. Srec transformation (fifo_syn.SIG) before HDL generation for the IOPB FIFO

SIGNAL operators
after S transformation

Fig. 5. Specification of the FIFO behavior in SIGNAL

(| CLKL := CLK
 | IDWINDOW := DATAIN window 8
 | CWINDOW := IDWINDOW cell CLKL
 | NI := ((0 when CLKL when RESET) default

(I when (event DATAIN) when POP) default
((I+1) when (event DATAIN)) default
((I-1) when POP)) cell CLK

 | FULL := I>=8
 | EMPTY := I<=0
 | I := NI $ 1
 | TOP := ((9 - (I+1)) when (event DATAIN)) default (9-I)
 | TT := (1 when (TOP<1)) default (8 when (TOP>8)) default TOP
 | VALUEOUT := CWINDOW[TT]
 |)

fifo memory

index control

we focus on this part
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