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Introduction

General framework of the study

The concept for long term storage of high-level radioactive waste in France under study is based on an underground repository. The waste shall be confined in a glass matrix and then placed into cylindrical steel canisters. These containers shall be placed into micro-tunnels in the highly impermeable Callovo-Oxfordian claystone layer at a depth of several hundred meters. At the request of the French nuclear waste management agency ANDRA, investigations are conducted to optimize and finalize this repository concept with the aim to ensure its long-term safety and its reversibility. In particular, the repository concept requires a minimum containment time of 1000 years. The long-term safety assessment of the geological repository has to take into account the degradation of the carbon steel used for the waste overpacks and the cell disposal liners, which are in contact with the claystone formation. This degradation is mainly caused by generalized corrosion processes which form a passive layer on the metal surface consisting of a dense oxide inner layer and a porous hydroxide outer layer in contact with the groundwater in the pore space of the claystones. The processes take place under anaerobic conditions, since the groundwater is anoxic. The neighboring geochemical environment (pH, concentrations) and groundwater flow trends induce changes of the corrosion conditions, which, in turn, influence the geochemical and thermo-hydro-mechanics of the claystones. The temperature also affects the corrosion conditions. Indeed, the waste canisters are a source of heat. At the beginning of the repository development, the temperature is estimated to be about 90 • C. Later, it is supposed to reach its steadystate value near 40 • C.

As a tool to investigate the corrosion processes at the surface of the carbon steel canisters, the Diffusion Poisson Coupled Model (DPCM) for corrosion has been developed by Bataillon et al. [START_REF] Bataillon | Corrosion modelling of iron based alloy in nuclear waste repository[END_REF]. The model focuses on the development of the dense oxide layer in the region of contact between the claystones and the metal. The porous hydroxide layer is not taken into account. The system claystones -oxide layer -metal is described by a coupled system of electromigration -diffusion equations for the transport of the charge carriers in the oxide layer, and a Poisson equation for the electric potential. The interaction between the oxide layer and the adjacent structures are described in terms of Robin boundary conditions for the electrochemical reactions and the potential drops. The system includes moving boundary equations based on the Pilling-Bedworth ratio. The system evolution can be investigated in both potentiostatic and galvanostatic situations. As the oxide layer is very thin compared to the waste overpack size, it is sufficient to consider the model in one space dimension. The model allows to assess the evolution of the carbon steel corrosion rate, the chemical species release and the characteristic time of these processes. These data shall be used to estimate the lifetime of the carbon steel overpack and the pressure rise resulting from hydrogen release. Carbon steel is expected to exhibit a corrosion rate between 1 µm • year -1 and 10 µm • year -1 . Due to the formation of the oxide layer, we expect a reduction of the corrosion rate.

Presentation of the corrosion model

We recall here the DPCM model introduced in [START_REF] Bataillon | Corrosion modelling of iron based alloy in nuclear waste repository[END_REF]. The domain under study is the oxide layer whose interfaces are moving. The moving domain is denoted by (X 0 (t), X 1 (t)). In the oxide layer, three charge carriers are taken into account: electrons, cations (Fe 3+ ) and oxygen vacancies (VÖ). The densities of these charge carriers are respectively denoted by N, P and C. The corresponding current densities are denoted by J N , J P and J C . These current densities contain a drift part and a diffusion part, so that the equations for N, P and C are linear convection-diffusion equations. They are coupled with a Poisson equation for the electrical potential Ψ. Charge carriers are created and consumed at both interfaces: x = X 0 (t) is the outer interface (oxide/solution) and x = X 1 (t) is the inner interface (oxide/metal). The kinetics of the electrochemical reactions at interfaces leads to Robin boundary conditions on N, P and C. The boundary conditions for the Poisson equation take into account that the metal and the solution can be charged because they are respectively electronic and ionic conductors. Such an accumulation of charges induces a field given by the Gauss law. These accumulations of charges depend on the voltage drop at the interface by the usual Helmholtz law which links the charge to the voltage drop through a capacitance. The parameters ∆Ψ pzc 1 and ∆Ψ pzc 0 are the voltage drop corresponding to no accumulation of charges respectively in the metal and in the solution. The DPCM model takes into account the growth of the oxide host lattice at x = X 1 (t) and its dissolution at x = X 0 (t) leading to moving boundary equations. In order to properly reflect the mass balance an the moving interfaces, in the boundary conditions, we need to take into account the interface velocities. This is a consequence e.g. of the pillbox lemma [START_REF] Gurtin | Thermomechanics of evolving phase boundaries in the plane[END_REF][START_REF] Muntean | A moving-boundary problem for concrete carbonation: Global existence and uniqueness of weak solutions[END_REF]. The dimensionless model writes:

• Equation and boundary conditions for the density of cations P:

∂ t P + ∂ x J P = 0, J P = -∂ x P -3P∂ x Ψ in (X 0 (t), X 1 (t)), ∀t ≥ 0, ( 1a 
)
J P + PX ′ 0 (t) = m 0 P (P m -P)e -3b 0 P Ψ -k 0 P Pe 3a 0 P Ψ on x = X 0 (t), ∀t ≥ 0, (1b) 
J P + PX ′ 1 (t) = m 1 P Pe -3b 1 P (V-Ψ) -k 1 P (P m -P)e 3a 1 P (V-Ψ) on x = X 1 (t), ∀t ≥ 0. ( 1c 
)
• Equation and boundary conditions for the density of electrons N:

D 1 D 2 ∂ t N + ∂ x J N = 0, J N = -∂ x N + N∂ x Ψ in (X 0 (t), X 1 (t)), ∀t ≥ 0, (2a) 
J N + NX ′ 0 (t) = m 0 N e b 0 N Ψ -k 0 N Ne -a 0 N Ψ + n 0 N e a 0 r Ψ -p 0 N Ne -b 0 r Ψ on x = X 0 (t), ∀t ≥ 0, (2b) 
J N + NX ′ 1 (t) = m 1 N N -k 1 N N metal log(1 + e -(V-Ψ) ) on x = X 1 (t), ∀t ≥ 0. ( 2c 
)
• Equation and boundary conditions for the density of oxygen vacancies C:

D 1 D 3 ∂ t C + ∂ x J C = 0, J C = -∂ x C -2C∂ x Ψ in (X 0 (t), X 1 (t)), ∀t ≥ 0, (3a) 
J C + CX ′ 0 (t) = m 0 C 1 - C 4 e -2b 0 C Ψ -k 0 C C 4 e 2a 0 C Ψ on x = X 0 (t), ∀t ≥ 0, (3b) 
J C + CX ′ 1 (t) = m 1 C C 4 e -3b 1 C (V-Ψ) -k 1 C 1 - C 4 e 3a 1 C (V-Ψ) on x = X 1 (t), ∀t ≥ 0. ( 3c 
)
• Equation on the electrical potential Ψ:

-λ 2 ∂ 2 xx Ψ = 3P -N + 2C + ρ hl in (X 0 (t), X 1 (t)), ∀t ≥ 0, (4a) 
Ψ -α 0 ∂ x Ψ = ∆Ψ pzc 0 on x = X 0 (t), ∀t ≥ 0, (4b) 
Ψ + α 1 ∂ x Ψ = V -∆Ψ pzc 1 on x = X 1 (t), ∀t ≥ 0. ( 4c 
)
• Moving boundary equations

dX 0 dt = v 0 d (t) + dX 1 dt (1 - Ω ox mΩ Fe ), ∀t ≥ 0, ( 5a 
)
dX 1 dt = - D 3 4D 1 Ω Fe Ω ox J C (X 1 ) + CX ′ 1 (t) , ∀t ≥ 0, (5b) 
with v 0 d (t) = k 0 d e -5a 0 d Ψ(X 0 (t)) , ∀t ≥ 0. ( 5c 
)
The system is supplemented with initial conditions:

N(x, 0) = N 0 (x), P(x, 0) = P 0 (x), C(x, 0) = C 0 (x), in (0, 1), (6a)

X 0 (0) = 0 and X 1 (0) = 1. ( 6b 
)
We shortly explain the parameters of the model:

• D 1 , D 2 and D 3 are respectively the mobility or diffusion coefficients of cations, electrons and oxygen vacancies. D 1 and D 3 have the same order of magnitude, but D 1 ≪ D 2 due to the difference of size between cations and electrons and the resulting difference of mobilities.

• (m i P , k i P ) i=0,1 , (m i N , k i N ) i=0,1 , (m i C , k i C ) i=0,1 , (n 0 N , p 0 N )
, k 0 d are interface kinetic functions. We assume that these functions are constant and strictly positive.

• (a 0 u , b 0 u ) for u = P, N, C, r, d and (a 1 u , b 1 u ) for u = P, C are positive transfer coefficients.

• P m is the maximum occupancy for octahedral cations in the host lattice.

• N metal is the electron density of state in the metal (Friedel model).

• ρ hl is the net charge density of the ionic species in the host lattice. We assume that ρ hl is homogeneous.

• Ω ox is the molar volume of the oxide.

• Ω Fe is the molar volume of the metal.

• m is the number of moles of iron per mole of oxide (m = 3 for magnetite).

• ∆Ψ pzc 0 , ∆Ψ pzc 1 are respectively the outer and the inner voltages of zero charge. • λ 2 , α 0 , α 1 are positive dimensionless parameters.

In the system (1)-( 5), V can either be considered as an applied potential ("potentiostatic case") or be given by another equation ensuring the electron charge balance at the inner interface ("galvanostatic case"):

-3 J P + PX ′ 1 (t) + D 3 4D 1 (J C + CX ′ 1 (t)) + D 2 D 1 (J N + NX ′ 1 (t)) = J on x = X 1 (t), ∀t ≥ 0. (7) 
If J = 0, we speak of free corrosion, in this case, V is called "free corrosion potential".

Remark 1.1. The equations for the carrier densities with their boundary conditions (1), ( 2), (3) have the same form. They can all be written :

ε u ∂ t u + ∂ x J u = 0, J u = -∂ x u -z u u∂ x Ψ in (X 0 (t), X 1 (t)), ∀t ≥ 0, (8a) 
-J u -uX ′ 0 (t) = r 0 u (u(X 0 (t)), Ψ(X 0 (t))) on x = X 0 (t), ∀t ≥ 0, (8b) 
J u + uX ′ 1 (t) = r 1 u (u(X 1 (t)), Ψ(X 1 (t)), V) on x = X 1 (t), ∀t ≥ 0. ( 8c 
)
For u = P, N, C, the charge numbers of the carriers are respectively z u = 3, -1, 2 and we respectively have

ε u = 1, D 1 D 2 , D 1 D 3
. We also note that both functions r 0 u and r 1 u are linear and monotonically increasing with respect to their first argument. More precisely, the functions r 0 u and r 1 u have the following form:

r 0 u (s, x) = β 0 u (x)s -γ 0 u (x), (9a) 
r 1 u (s, x, V) = β 1 u (V -x)s -γ 1 u (V -x), ( 9b 
)
where β 0 u , β 1 u , γ 0 u , γ 1 u are smooth positive functions.

Main results

The aim of this paper is to propose an efficient numerical method in order to solve the full DPCM model ( 1)- [START_REF] Prohl | Convergent discretizations for the Nernst-Planck-Poisson system[END_REF].

In Section 2 we focus on the discretization of the system of convection-diffusion equations coupled with the Poisson equation ( 1)-( 4). Therefore, we study a simplified two-species model on a fixed domain discretized by the finite volume method and study two different choices for the time discretization. The stability analysis of both schemes will show that a fully implicit time discretization must be chosen. Then, in Section 3, we consider the full system in the potentiostatic case with the moving boundary equations. We introduce a change of variables in order to rewrite the system on a fixed domain and adapt the scheme designed in Section 2. We will study two different possibilities for the time discretization of the interface equations. We will also consider the galvanostatic case by taking into account equation [START_REF] Prohl | Convergent discretizations for the Nernst-Planck-Poisson system[END_REF].

In Section 4, we will give some details on the practical implementation of the numerical methods proposed in Section 3. Some improvements, like adaptive time stepping, will also be proposed. The performance of the designed numerical methods will be studied in Section 5. Finally, Section 6 is devoted to the presentation of some numerical experiments in a real-life context.

Study of a simplified model, choice for the time discretization

In this Section, we focus on a two-species model in order to fix the choice of the time discretization for our scheme.

We just consider the case with electrons and cations Fe 3+ . Without oxygen vacancies, there will be no evolution of the oxide layer: the domain will be considered as fixed. Furthermore, we consider here the potentiostatic case : V is an applied potential.

Presentation of the simplified model and discretization

The simplified system is obtained from (1), ( 2), (4) by setting C = 0 and X 0 (t) = 0, X 1 (t) = 1 for all t. It consists of two drift-diffusion equations for the charge densities, coupled with a Poisson equation for the electrostatic potential. The boundary conditions are Robin boundary conditions. For the sake of simplicity, we also assume that the boundary conditions on P and N have exactly the same form. It means that the functions β 0 u , γ 0 u , β 1 u and γ 1 u defined in [START_REF] Szklarska-Smialowska | Electrochemical and ellipsometric investigations of passive films formed on iron in borate solutions[END_REF] have the following form for both u = P or u = N:

β 0 u (x) = m 0 u e -z u b 0 u x + k 0 u e z u a 0 u x , γ 0 u (x) = m 0 u u m e -z u b 0 u x , (10a) 
β 1 u (x) = m 1 u e -z u b 1 u x + k 1 u e z u a 1 u x , γ 1 u (x) = k 1 u u m e z u a 1 u x , (10b) 
with the following hypotheses on the transfer coefficients:

a 0 u , b 0 u , a 1 u , b 1 u ∈ [0, 1] for u = N, P, (11) 
and on the interface kinetic constants:

m 0 u , k 0 u , m 1 u , k 1 u > 0. ( 12 
)
Moreover, we assume that

3P m -N m + ρ hl = 0. ( 13 
)
Remark 2.1. In the applications, we have ρ hl = -5, P m = 2 and N m = 1, so that hypothesis (13) is satisfied. Then it is expected that the solution to the corrosion model verifies 0 ≤ P ≤ P m and 0 ≤ N ≤ N m . Therefore, it is crucial to design schemes that satisfy these stability properties.

In order to write a finite volume scheme for this system, we first introduce notations concerning the mesh and the time step. We consider a mesh for the domain [0, 1], which is not necessarily uniform, i.e a family of given points (x i ) 0≤i≤I+1 satisfying

x 0 = 0 < x 1 < x 2 < . . . < x I < x I+1 = 1.
Then, for 1 ≤ i ≤ I -1, we define x i+ 1 2 =

x i + x i+1 2 and we set x 1 2 = x 0 = 0, x I+ 1 2 = x I+1 = 1. The cells of the mesh are the intervals (x i- 1 2 , x i+ 1 2 ) for 1 ≤ i ≤ I. Let us set

h i = x i+ 1 2 -x i-1 2 , for 1 ≤ i ≤ I, h i+ 1 2 = x i+1 -x i , for 0 ≤ i ≤ I and h = max{h i , 1 ≤ i ≤ I}
is the size of the mesh. The time step is denoted by ∆t. The numerical scheme will be Euler implicit in time and finite volume in space. The choice of Euler implicit discretization in time is sensible for convection-diffusion equations in order to avoid a restrictive condition linking time step and mesh size. However, for the discretization of equations (1a), (2a), different choices can be made for the time approximation of the electrical field ∂ x Ψ. In the sequel, we propose two possibilities leading to two different schemes.

A decoupled scheme

The scheme writes:

-λ 2 (dΨ n i+ 1 2 -dΨ n i-1 2 ) = h i (3P n i -N n i + ρ hl ), 1 ≤ i ≤ I, ( 14a 
)
ε u h i u n+1 i -u n i ∆t + F n+1 u,i+ 1 2 -F n+1 u,i-1 2 = 0, 1 ≤ i ≤ I, for u = P, N, (14b) 
with the numerical fluxes

dΨ n i+ 1 2 = Ψ n i+1 -Ψ n i h i+ 1 2 , 0 ≤ i ≤ I, ( 15a 
)
F n+1 u,i+ 1 2 = B(z u h i+ 1 2 dΨ n i+ 1 2 )u n+1 i -B(-z u h i+ 1 2 dΨ n i+ 1 2 )u n+1 i+1 h i+ 1 2 , 0 ≤ i ≤ I, for u = P, N, (15b) 
where the function B is the Bernoulli function, leading to Scharfetter-Gummel fluxes:

B(x) = x e x -1 for x 0, B(0) = 1. ( 16 
)
The scheme must be supplemented with the discretization of the boundary conditions and of the initial conditions. For the discretization of the boundary conditions (4b), (4c), (8b), (8c), we write:

Ψ n 0 -α 0 dΨ n 1 2 = ∆Ψ pzc 0 , (17a) 
Ψ n I+1 + α 1 dΨ n I+ 1 2 = V -∆Ψ pzc 1 , (17b) 
-F n+1 u, 1 2 = r 0 u (u n+1 0 , Ψ n 0 ) = β 0 u (Ψ n 0 )u n+1 0 -γ 0 u (Ψ n 0 ), for u = P, N, (17c) 
F n+1 u,I+ 1 2 = r 1 u (u n+1 I+1 , Ψ n I+1 , V) = β 1 u (V -Ψ n I+1 )u n+1 I+1 -γ 1 u (V -Ψ n I+1 ), for u = P, N (17d) 
and for the initial condition

u 0 i = 1 h i x i+ 1 2 x i-1 2 u 0 (x)dx, for u = P, N. ( 18 
)
The scheme ( 14)-( 18) will be denoted by (S dec ) in all the sequel. It is decoupled in the following sense:

• Starting from (P n , N n ) = (P n i , N n i ) 0≤i≤I+1 , Ψ n = (Ψ n i ) 0≤i≤I+1
is defined as the solution of the linear system (14a), (15a), (17a), (17b).

• Then, knowing Ψ n , (P n+1 , N n+1 ) is defined as the solution of the linear system (14b), (15b), ( 16), (17c), (17d).

In Section 2.2, we will prove the invertibility of the involved linear systems and study the stability of (S dec ).

Remark 2.2. If we want to replace the Scharfetter-Gummel fluxes by classical upwind fluxes, we just need to change the B function and choose:

B(x) = 1 + x -, where x -= max(-x, 0).

In fact, the Bernoulli function could be replaced by any function satisfying the three following properties: B(0) = 1, B(x) ≥ 0 for all x ∈ R and B(x) -B(-x) = -x for all x ∈ R (see for instance [START_REF] Chainais-Hillairet | Finite-volume schemes for noncoercive elliptic problems with neumann boundary conditions[END_REF]). But, with the Bernoulli function, the scheme may be second order in space [START_REF] Il'in | A difference scheme for a differential equation with a small parameter multiplying the second derivative[END_REF][START_REF] Lazarov | Finite volume methods for convection-diffusion problems[END_REF].

A fully implicit scheme

The only difference in the fully implicit scheme is in the definition of the numerical fluxes and of the boundary conditions for P and N. Indeed, we replace (15b) by

F n+1 u,i+ 1 2 = B(z u h i+ 1 2 dΨ n+1 i+ 1 2 )u n+1 i -B(-z u h i+ 1 2 dΨ n+1 i+ 1 2 )u n+1 i+1 h i+ 1 2 , 0 ≤ i ≤ I, for u = P, N (19) 
and ( 17c)-(17d) by

-F n+1 u, 1 2 = r 0 u (u n+1 0 , Ψ n+1 0 ), for u = P, N, (20a) 
F n+1 u,I+ 1 2 = r 1 u (u n+1 I+1 , Ψ n+1 I+1 , V), for u = P, N. ( 20b 
)
The new scheme will be denoted in all the sequel by (S f i ). At each time step, the vector of unknowns

(P n+1 , N n+1 , Ψ n+1 ) = (P n+1 i , N n+1 i , Ψ n+1 i ) 0≤i≤I+1
is defined as the solution of a nonlinear system of equations. In Section 2.3, we will prove the existence of a solution to this nonlinear system and investigate the stability of (S f i ).

Stability analysis of a decoupled scheme

Proposition 2.3. Under the hypotheses (10)-( 12), the scheme (S dec ) admits a unique solution (P n , N n , Ψ n ) n≥0 . Moreover, if P 0 , N 0 ∈ L ∞ (0, 1) satisfy P 0 , N 0 ≥ 0 almost everywhere on (0, 1), then P n i , N n i ≥ 0 for all 0 ≤ i ≤ I + 1 and n ≥ 0.

Proof. Let us first note that (P 0 , N 0 ) is well defined by [START_REF] Hummel | Electronic properties of materials[END_REF] and satisfies the nonnegativity condition. Assume now that for any n ≥ 0, (P n , N n ) is given and satisfies the nonnegativity assumption. Then Ψ n is defined as the solution of the linear system (14a), (15a), (17a), (17b). The matrix of this linear system is a tridiagonal matrix. As α 0 and α 1 are strictly positive, this matrix is semistrictly diagonally dominant and thus invertible. Knowing Ψ n , P n+1 and N n+1 are also defined as solutions of some linear systems. For u = P, N the linear system defined by (14b), (15b), (17c), (17d) rewrites:

M n u u n+1 = S n u . (21) 
The matrix M n u ∈ M I+2 (R) is a tridiagonal matrix, whose nonzero terms are defined by:

(M n u ) ii = ε u h i ∆t + B(z u h i+ 1 2 dΨ n i+ 1 2
)

h i+ 1 2 + B(-z u h i-1 2 dΨ n i-1 2 ) h i-1 2 , ∀1 ≤ i ≤ I, (M n u ) ii+1 = - B(-z u h i+ 1 2 dΨ n i+ 1 2 ) h i+ 1 2 , (M n u ) ii-1 = - B(z u h i-1 2 dΨ n i-1 2 ) h i-1 2 , ∀1 ≤ i ≤ I, (M n u ) 00 = B(z u h 1 2 dΨ n 1 2
)

h 1 2 + β 0 u (Ψ n 0 ), (M n u ) 01 = - B(-z u h 1 2 dΨ n 1 2
)

h 1 2 , (M n u ) I+1I+1 = B(-z u h I+ 1 2 dΨ n I+ 1 2 ) h I+ 1 2 + β 1 u (V -Ψ n I+1 ), (M n u ) I+1I = - B(z u h I+ 1 2 dΨ n I+ 1 2 ) h I+ 1 2 .
As ε u > 0 and the functions β 0 u , β 1 u and B are nonnegative, the matrix M n u has positive diagonal terms and nonpositive offdiagonal terms. Moreover, it is strictly diagonally dominant with respect to its columns. Therefore, M n u is an M-matrix: it is invertible and (M n u ) -1 ≥ 0. It yields the existence of a unique solution to [START_REF] Climent | Proof by UV-visible modulated reflectance spectroscopy of the breakdown by carbonation of the passivating layer on iron in alkaline solution[END_REF]. The right hand side of the linear system (21), S n u , is defined by:

(S n u ) i = ε u h i ∆t u n i , ∀1 ≤ i ≤ I, (S n u ) 0 = γ 0 u (Ψ n 0 ), (S n u ) I+1 = γ 1 u (V -Ψ n I+1 ).
As u n i ≥ 0 for 1 ≤ i ≤ I and γ 0 u , γ 1 u are nonnegative functions, S n u is a positive-valued vector and as (M n u ) -1 ≥ 0, we get that u n+1 i ≥ 0 for all 0 ≤ i ≤ I + 1. It concludes the proof of Proposition 2.3 by induction. Proposition 2.4. Assume (10)-( 13) and that P 0 , N 0 ∈ L ∞ (0, 1) satisfy 0 ≤ P 0 ≤ P m and 0 ≤ N 0 ≤ N m almost everywhere on (0, 1). Then, if ∆Ψ pzc 0 and ∆Ψ pzc 1 fulfill:

- 1 3a 0 P (1 + log(α 0 a 0 P k 0 P )) ≤ ∆Ψ pzc 0 ≤ 1 a 0 N (1 + log(α 0 a 0 N k 0 N )), (22a) 
- 1 b 1 N (1 + log(α 1 b 1 N m 1 N )) ≤ ∆Ψ pzc 1 ≤ 1 3b 1 P (1 + log(α 1 b 1 P m 1 P )), ( 22b 
)
and if the following inequality on the time step holds:

∆t ≤ min( λ 2 9P m , D 1 D 2 λ 2 N m ), ( 23 
)
then the solution to the scheme (S dec ) satisfies

0 ≤ P n i ≤ P m and 0 ≤ N n i ≤ N m ∀0 ≤ i ≤ I + 1, ∀n ≥ 0. ( 24 
)
Proof. First, we note that the hypotheses on the initial conditions ensure that (24) is satisfied for n = 0. We now assume that (24) is verified for n ≥ 0 and prove that it also holds for n + 1. The nonnegativity has already been proven. Let us first compute the product M n u u m , where u m is the constant vector of R I+2 , whose components are all equal to the same value u m . As the Bernoulli function defined by [START_REF] Sikora | The passivity of iron in the presence of ethylenediaminetetraacetic acid. I. General electrochemical behavior[END_REF] satisfies B(x) -B(-x) = -x for all x ∈ R, we have

(M n u u m ) i = u m ε u h i ∆t -z u (dΨ n i+ 1 2 -dΨ n i-1 2 ) , ∀1 ≤ i ≤ I, (M n u u m ) 0 = u m -z u dΨ n 1 2 + β 0 u (Ψ n 0 ) , (M n u u m ) I+1 = u m z u dΨ n I+ 1 2 + β 1 u (V -Ψ n I+1 ) .
Using (14a), (17a), (17b), it rewrites

(M n u u m ) i = u m ε u h i ∆t + z u h i λ 2 (3P n i -N n i + ρ hl ) , ∀1 ≤ i ≤ I, (M n u u m ) 0 = u m - z u α 0 (Ψ n 0 -∆Ψ pzc 0 ) + β 0 u (Ψ n 0 ) , (M n u u m ) I+1 = u m z u α 1 (V -∆Ψ pzc 1 -Ψ n I+1 ) + β 1 u (V -Ψ n I+1 ) .
Using [START_REF] Moruzzi | Calculated electronic properties of metals[END_REF], it yields

(M n u (u n+1 -u m )) i = ε u h i ∆t (u n i -u m ) - z u h i λ 2 u m (3(P n i -P m ) -(N n i -N m )) ∀1 ≤ i ≤ I, (M n u (u n+1 -u m )) 0 = γ 0 u (Ψ n 0 ) -u m - z u α 0 (Ψ n 0 -∆Ψ pzc 0 ) + β 0 u (Ψ n 0 ) , (M n u (u n+1 -u m )) I+1 = γ 1 u (V -Ψ n I+1 ) -u m z u α 1 (V -∆Ψ pzc 1 -Ψ n I+1 ) + β 1 u (V -Ψ n I+1 ) .
We now apply these results to u = P and N, with respectively u m = P m , u m = P m , and u m = N m , u m = N m . For the inner terms, we get:

(M n P (P n+1 -P m )) i = h i ∆t P n i -P m 1 - 9∆t λ 2 P m + 3P m h i λ 2 (N n i -N m ), ∀1 ≤ i ≤ I, (M n N (N n+1 -N m )) i = h i ∆t (N n i -N m ) D 1 D 2 - ∆t λ 2 N m + 3N m h i λ 2 (P n i -P m ), ∀1 ≤ i ≤ I.
Therefore, if ∆t verifies (23), we have (

M n P (P n+1 -P m )) i ≤ 0 and (M n N (N n+1 -N m )) i ≤ 0 for all 1 ≤ i ≤ I. It remains to prove that (M n u (u n+1 -u m )) 0 ≤ 0, (M n u (u n+1 -u m )) I+1 ≤ 0 for u = P, N. But, (M n u (u n+1 -u m )) 0 = ξ 0 u (Ψ n 0 ) and (M n u (u n+1 -u m )) I+1 = ξ 1 u (V -Ψ n I+1 ), with ξ 0 u (x) = γ 0 u (x) -u m β 0 u (x) + u m z u α 0 x -u m z u α 0 ∆Ψ pzc 0 , ξ 1 u (x) = γ 1 u (x) -u m β 1 u (x) -u m z u α 1 x + u m z u α 1 ∆Ψ pzc 1 .
Using the definitions (10), we get

ξ 0 u (x) = -u m k 0 u e z u a 0 u x + u m z u α 0 x -u m z u α 0 ∆Ψ pzc 0 , ξ 1 u (x) = -u m m 1 u e -z u b 1 u x -u m z u α 1 x + u m z u α 1 ∆Ψ pzc 1 .
The study of the variations of ξ 0 u and ξ 1 u for u = N, P shows that these functions are always increasing on an interval (-∞, x] and then decreasing on [ x, +∞). Therefore they reach a maximum value and the hypotheses (22) ensure that the maximum value is always nonpositive. Then ξ 0 P , ξ 1 P , ξ 0 N , ξ 1 N are nonpositive functions on R. Finally, we get that (M n P (P n+1 -P m )) i ≤ 0 and (M n N (N n+1 -N m )) i ≤ 0 for all 0 ≤ i ≤ I + 1. As M n P and M n N are M-matrices, it concludes the proof of Proposition 2.4.

In the applications, we have λ 2 ≈ 10 -6 and D 1 D 2 ≈ 10 -14 , so that the hypothesis on ∆t, (23), imposes ∆t ≈ 10 -20 . It makes the decoupled scheme unusable in practice and motivates the study of the fully implicit scheme.

Stability analysis of a fully implicit scheme

The scheme (S f i ) is defined as a set of nonlinear equations at each time step. We need to prove the existence of a solution to the nonlinear system of equations and to study the stability of the scheme. Proposition 2.5. Assume (10)-( 13) and that P 0 , N 0 ∈ L ∞ (0, 1) satisfy 0 ≤ P 0 ≤ P m and 0 ≤ N 0 ≤ N m almost everywhere on (0, 1). Then, there exists a solution to the fully implicit scheme (S f i ): ((P n , N n ) n≥0 , (Ψ n ) n≥1 ). Furthermore, if ∆Ψ pzc 0 and ∆Ψ pzc 1 verify (22), the solution to the scheme (S f i ) satisfies the stability property (24). Proof. In order to prove Proposition 2.5, we adapt some ideas developed by A. Prohl and M. Schmuck in [START_REF] Prohl | Convergent discretizations for the Nernst-Planck-Poisson system[END_REF]. First, we note that (P 0 , N 0 ) is well defined by [START_REF] Hummel | Electronic properties of materials[END_REF] and satisfies (24). Assume now that for any n ≥ 0, (P n , N n , Ψ n ) is given and satisfies (24). Then, we will prove that there exists a solution (P n+1 , N n+1 , Ψ n+1 ) to (S f i ) and that

0 ≤ P n+1 i ≤ P m and 0 ≤ N n+1 i ≤ N m ∀0 ≤ i ≤ I + 1.
Therefore, let us consider the mapping

T µ n : R I+2 × R I+2 → R I+2 × R I+2 (P, N) → ( P, N)
defined, for µ > 0, by

-λ 2 (dΨ i+ 1 2 -dΨ i-1 2 ) = h i (3P i -N i + ρ hl ), 1 ≤ i ≤ I, Ψ 0 -α 0 dΨ 1 2 = ∆Ψ pzc 0 , Ψ I+1 + α 1 dΨ I+ 1 2 = V -∆Ψ pzc 1 , ε u h i ∆t (1 + µ ε u λ 2 ) u i - µ ε u λ 2 u i -u n i + F u,i+ 1 2 -F u,i-1 2 = 0, 1 ≤ i ≤ I, for u = P, N, F u,i+ 1 2 = B(z u h i+ 1 2 dΨ i+ 1 2 ) u i -B(-z u h i+ 1 2 dΨ i+ 1 2 ) u i+1 h i+ 1 2 , 0 ≤ i ≤ I, for u = P, N, -F u, 1 2 = r 0 u ( u 0 , Ψ 0 ) = β 0 u (Ψ 0 ) u n+1 0 -γ 0 u (Ψ 0 ), for u = P, N, F u,I+ 1 2 = r 1 u ( u I+1 , Ψ I+1 , V) = β 1 u (V -Ψ I+1 ) u I+1 -γ 1 u (V -Ψ I+1 ), for u = P, N.
This mapping T µ n is defined by two successive steps: • the first step defines an intermediate vector Ψ as the solution of a linear system of equations,

• the second step defines P and N as solutions of linear systems of equations, very close to the systems involved in the decoupled scheme (there is an additional term on the diagonal of the matrices and the right-hand-sides are slightly modified).

Therefore, it is a continuous mapping from R I+2 × R I+2 to itself. Applying the proof of stability of Proposition 2.4, we obtain that T µ n preserves the set:

K = {(P, N) ∈ R I+2 × R I+2 ; 0 ≤ P i ≤ P m , 0 ≤ N i ≤ N m , ∀0 ≤ i ≤ I + 1}
as long as ( 22) is satisfied and ∆t verifies :

∆t ≤ µ min 1 9P m , 1 N m .
Then, thanks to Brouwer's theorem, we conclude that T µ n has a fixed point in K. Moreover, this fixed point, with the corresponding Ψ, is a solution to the scheme (S f i ). It shows the existence of a solution to the scheme and the stability properties (24). As this result holds for any µ, the scheme is unconditionnally stable.

Numerical schemes for the complete corrosion model

Change of variables

The corrosion model involves moving boundaries through [START_REF] Il'in | A difference scheme for a differential equation with a small parameter multiplying the second derivative[END_REF]. The system of equations is defined on the space-time domain 0≤t≤T [X 0 (t), X 1 (t)] × {t}. The size of the domain at time t is L(t) = X 1 (t) -X 0 (t). An Eulerian description is chosen in order to handle the motion of the boundaries; the physical spatial domain is substituted by a computational one. Therefore, we introduce the following change of variables:

(x, t) → (ξ(x, t) = x -X 0 (t) X 1 (t) -X 0 (t) , t) 0≤t≤T [X 0 (t), X 1 (t)] × {t} → [0, 1] × [0, T ]
and to every function u (respectively Ψ) defined on 0≤t≤T [X 0 (t), X 1 (t)] × {t} we associate a function ū (respectively Ψ) defined on [0, 1] × [0, T ] such that u(x, t) = ū(ξ(x, t), t) (respectively Ψ(x, t) = Ψ(ξ(x, t), t)). Then, we have:

∂ t u = ∂ t ū - 1 L(t) (X ′ 0 (t) + ξL ′ (t))∂ ξ ū J u = 1 L(t) (-∂ ξ ū -z u ū∂ ξ Ψ) = 1 L(t) J ū.
But, using the fact that ξ∂ ξ ū = ∂ ξ (ξ ū)ū, we get

∂ t u = 1 L(t) ∂ t L(t)ū -∂ ξ (X ′ 0 (t) + ξL ′ (t))ū .
Finally, forgetting the bars, the convection-diffusion equation with conditions (8) rewrites in the new variables:

ε u L(t)∂ t (L(t)u) + ∂ ξ J u -ε u ∂ ξ L(t)(X ′ 0 (t) + ξL ′ (t))u = 0, J u = -∂ ξ u -z u u∂ ξ Ψ in (0, 1) (25a) -J u -ε u uL(t)X ′ 0 (t) = L(t)r 0 u (u, Ψ) on ξ = 0 (25b) J u + ε u uL(t)X ′ 1 (t) = L(t)r 1 u (u, Ψ, V) on ξ = 1. (25c) 
We note that in the new variables, the convection-diffusion equation (25a) contains an additional convection term coming from the displacement of the interfaces. Therefore, (25) is equivalent to the following formulation:

ε u L(t)∂ t (L(t)u) + ∂ ξ Ĵu = 0, Ĵu = -∂ ξ u -z u ∂ ξ Ψ + ε u L(t)(X ′ 0 (t) + ξL ′ (t)) u in (0, 1), (26a) 
-Ĵu = L(t)r 0 u (u, Ψ) on ξ = 0, (26b) Ĵu = L(t)r 1 u (u, Ψ, V) on ξ = 1. ( 26c 
)
The equation on the electrostatic potential (4) rewrites in the new variables:

- λ 2 L(t) 2 ∂ 2 ξξ Ψ = 3P -N + 2C + ρ hl in (0, 1), (27a) 
Ψ - α 0 L(t) ∂ ξ Ψ = ∆Ψ pzc 0 on x = 0, (27b) 
Ψ + α 1 L(t) ∂ ξ Ψ = V -∆Ψ pzc 1 on x = 1. (27c)
Finally, the full DPCM model ( 1)-( 5) rewritten on the fixed domain is given by (26) applied for u = N, P, C, (27) and the moving boundary equations:

dX 0 dt = v 0 d (t) + dX 1 dt (1 - Ω ox mΩ Fe ), ( 28a 
)
dX 1 dt = - D 3 4D 1 Ω Fe Ω ox ĴC (1)
L(t) = - D 3 4D 1 Ω Fe Ω ox r 1 C (C(1, t), Ψ(1, t), V), ( 28b 
) with v 0 d (t) = k 0 d e -5a 0 d Ψ(0,t) , ∀t ≥ 0. (28c)

Numerical scheme

Let us now adapt the scheme (S f i ) to the new system of equations (26) (for u = N, P, C), (27), with the moving boundary equations (28). The notations for the mesh are the same as in Section 2 but with the points denoted by (ξ i ) 0≤i≤I+1 instead of (x i ) 0≤i≤I+1 . Let ∆t be the time step. The unknowns of the scheme are:

• the densities (N n i , P n i , C n i ) 0≤i≤I+1,n≥0 and the electrostatic potential (Ψ n i ) 0≤i≤I+1,n≥1 , • the position of the interfaces (X n 0 , X n 1 ) n≥0 . The size of the domain (L n ) n≥0 is defined by L n = X n 1 -X n 0 for all n ≥ 0. The discretization of equations (26a), (27a) leads to:

ε u L n+1 h i L n+1 u n+1 i -L n u n i ∆t + G n+1 u,i+ 1 2 -G n+1 u,i-1 2 = 0, 1 ≤ i ≤ I, for u = P, N, C, (29a) 
- λ 2 (L n+1 ) 2 (dΨ n+1 i+ 1 2 -dΨ n+1 i-1 2 ) = h i (3P n+1 i -N n+1 i + 2C n+1 i -ρ hl ), 1 ≤ i ≤ I, ( 29b 
)
where the numerical fluxes for Ψ are still given by (15a) and for u = P, N, C by

G n+1 u,i+ 1 2 = 1 h i+ 1 2 B h i+ 1 2 z u dΨ n+1 i+ 1 2 + ε u v n+1 i+ 1 2 u n+1 i -B -h i+ 1 2 z u dΨ n+1 i+ 1 2 + ε u v n+1 i+ 1 2 u n+1 i+1 , 0 ≤ i ≤ I, ( 30 
)
with the following approximation of the artificial drift velocity:

v n+1 i+ 1 2 = L n+1       X n+1 0 -X n 0 ∆t + ξ i+ 1 2 L n+1 -L n ∆t       . (31) 
For the boundary conditions (27b), (27c), (26b), (26c), we respectively write:

Ψ n+1 0 - α 0 L n+1 dΨ n+1 1 2 = ∆Ψ pzc 0 , (32a) 
Ψ n+1 I+1 + α 1 L n+1 dΨ n+1 I+ 1 2 = V -∆Ψ pzc 1 , (32b) 
-G n+1 u, 1 2 = L n+1 r 0 u (u n+1 0 , Ψ n+1 0 ), (32c) 
G n+1 u,I+ 1 2 = L n+1 r 1 u (u n+1 I+1 , Ψ n+1 I+1 ). ( 32d 
)
For the discretization of the moving interface equations (28), two different choices will be studied: either we use an Euler explicit in time scheme for (28) or we use an Euler implicit in time scheme.

Explicit scheme for the moving interface equations

In this case, the scheme for (28) writes:

X n+1 0 -X n 0 ∆t = k 0 d e -5a 0 d Ψ n 0 + X n+1 1 -X n 1 ∆t (1 - Ω ox mΩ Fe ), (33a) X n+1 1 -X n 1 ∆t = - D 3 4D 1 Ω Fe Ω ox r 1 C (C n I+1 , Ψ n I+1 , V), ( 33b 
)
and we define

L n+1 = X n+1 1 -X n+1 0 .
With this choice of discretization, the computation of (X n+1 0 , X n+1 1 , L n+1 ) is decoupled from the computation of (P n+1 i , N n+1 i , C n+1 i , Ψ n+1 i ) 0≤i≤I+1 at each time step. In the sequel, the scheme ( 29)-(33) will be denoted by (S e tot ).

Implicit scheme for the moving interface equations

In this case, the scheme for (28) writes:

X n+1 0 -X n 0 ∆t = k 0 d e -5a 0 d Ψ n+1 0 + X n+1 1 -X n 1 ∆t (1 - Ω ox mΩ Fe ), (34a) X n+1 1 -X n 1 ∆t = - D 3 4D 1 Ω Fe Ω ox r 1 C (C n+1 I+1 , Ψ n+1 I+1 , V) (34b)
and we define L n+1 = X n+1 1 -X n+1 0 . With this choice of discretization for (28), the computation of (X n+1 0 , X n+1 1 , L n+1 ) at each time step is completely coupled with the computation of (

P n+1 i , N n+1 i , C n+1 i , Ψ n+1 i ) 0≤i≤I+1
. Indeed, the scheme ( 29)-( 32) and ( 34), which will be denoted in the sequel (S i tot ), defines a nonlinear system of equations at each time step, whose unknowns are

((P n+1 i , N n+1 i , C n+1 i , Ψ n+1 i ) 0≤i≤I+1 , X n+1 0 , X n+1 1 , L n+1 ).

Study of the galvanostatic case

Up to now, we have considered V as a given applied potential (the potentiostatic case). For the galvanostatic case, V is defined by the supplementary equation [START_REF] Prohl | Convergent discretizations for the Nernst-Planck-Poisson system[END_REF]. From the numerical point of view, this supplementary equation will be approximated by:

-3 G n+1 P,I+ 1 2 + D 3 4D 1 G n+1 C,I+ 1 2 + D 2 D 1 G n+1 N,I+ 1 2 = 0 ∀n ≥ 0. ( 35 
)
It adds one unknown and one nonlinear equation to the previous system of nonlinear equations (S i tot ). In the sequel, we will denote this new scheme (S i,gc tot ).

Implementation of the designed numerical methods

Explicit handling of the boundary positions

We start with the description of the implementation of the scheme (S e tot ) which involves the explicit handling of the boundary positions. The nonlinear system corresponding to (S e tot ) is written as:

G(X) = 0,
where X ∈ R 4(I+2) is the vector of unknowns, ordered as follows:

X = Ψ n+1 0 , P n+1 0 , N n+1 0 , C n+1 0 , Ψ n+1 1 , P n+1 1 , N n+1 1 , C n+1 1 , • • • , • • • t , ( 36 
)
and G is the function from R 4(I+2) to R 4(I+2) defined by

G(X) =                                                                                                 Ψ n+1 0 - α 0 L n+1 dΨ n+1 1 2 -∆Ψ pzc 0 ∆tG n+1 P, 1 2 + ∆tL n+1 r 0 P (P n+1 0 , Ψ n+1 0 ) ∆tG n+1 N, 1 2 + ∆tL n+1 r 0 N (N n+1 0 , Ψ n+1 0 ) ∆tG n+1 C, 1 2 + ∆tL n+1 r 0 C (C n+1 0 , Ψ n+1 0 ) - λ 2 (L n+1 ) 2 (dΨ n+1 3 2 -dΨ n+1 1 2 ) -h 1 (3P n+1 1 -N n+1 1 + 2C n+1 1 -ρ hl ) ε P L n+1 h 1 L n+1 P n+1 1 -L n P n 1 + ∆t G n+1 P, 3 2 -G n+1 P, 1 2 ε N L n+1 h 1 L n+1 N n+1 1 -L n N n 1 + ∆t G n+1 N, 3 2 -G n+1 N, 1 2 ε C L n+1 h 1 L n+1 C n+1 1 -L n C n 1 + ∆t G n+1 C, 3 2 -G n+1 C, 1 2 
. . .

Ψ n+1 I+1 + α 1 L n+1 dΨ n+1 I+ 1 2 -V -∆Ψ pzc 1 ∆tG n+1 P,I+ 1 2 -∆tL n+1 r 1 P (P n+1 I+1 , Ψ n+1 I+1 ) ∆tG n+1 N,I+ 1 2 -∆tL n+1 r 1 N (N n+1 I+1 , Ψ n+1 I+1 ) ∆tG n+1 C,I+ 1 2 -∆tL n+1 r 1 C (C n+1 I+1 , Ψ n+1 I+1 )                                                                                                 . ( 37 
)
Newton's method is used in order to solve the nonlinear system. This strategy in particular can take advantage of the fact that the solution for t n can be taken as initial value. The Jacobian matrix, denoted by A, has a band structure, which in a standard manner allows LU factorization. Therefore each linear system in Newton's iteration can be solved in O(I) floating point operations.

Implicit handling of the boundary positions

We describe the algorithm used to solve the nonlinear system (S i tot ) in section 3.2. A similar algorithm has been implemented for the scheme (S i,gc tot ) of section 3.3. The nonlinear system (S i tot ) is written as:

F(Y) = 0,
where Y ∈ R 4(I+2)+2 is the vector of unknowns, ordered as follows:

      X X n+1 0 , X n+1 1 t       , (38) 
and F is the function from R 4(I+2)+2 to R 4(I+2)+2 defined by:

F(Y) =                    G(X) (X n+1 0 -X n 0 ) -∆tk 0 d e -5a 0 d Ψ n+1 0 + (X n+1 1 -X n 1 )(1 - Ω ox mΩ Fe ) (X n+1 1 -X n 1 ) + ∆t D 3 4D 1 Ω Fe Ω ox r 1 C (C n+1 I+1 , Ψ n+1 I+1 , V)                    . (39) 
Again, Newton's method is applied to solve this nonlinear system of equations. The Schur complement technique is applied with the following block decomposition of the Jacobian matrix:

J F (Y) =               A E F D               ∈ M 4(I+2)+2 (40) with A = J G (X) ∈ M 4(I+2) , E ∈ M 4(I+2),2 , F ∈ M 2,4(I+2) and D ∈ M 2 .
Splitting the unknown vector and the right-hand-side as follows:

J F (Y)               w 1 w 2               =               v 1 v 2               (41) 
with w 1 and v 1 in ∈ R 4(I+2) and w 2 and v 2 in ∈ R 2 , we have:

(D -FA -1 E)w 2 = v 2 -FA -1 v 1 , (42) 
w 1 = A -1 v 1 -A -1 Ew 2 . (43) 
Solving ( 42)-( 43) requires three solutions of linear systems associated to the banded matrix A, whose half-bandwidth is bounded by 7 thanks to the ordering of the unknowns described by (36). Thus, the LU factorization of the matrix A can be computed in O(I) floating operations, and since all the other computations required for one Newton iteration are (at most) of the same order, the CPU-time for each of these iterations is in O(I).

Handling of the galvanostatic case

Initially, equation (35) of the galvanostatic scheme (S i,gc tot ) has been handled by a fixed point iteration to detect V. After augmenting system (39) by equation ( 35) and the unknown V, the resulting linear system still can be well handled by the Schur complement approach described in 4.2.

A priori spatial refinement of boundary layers

As the occurrence of boundary layers is a well known feature to be expected for solutions of coupled Nernst-Planck-Poisson equations, an a priori refinement of the spatial mesh in the vicinity of the domain boundaries is performed. The position of the discretization nodes in the domain [0, 1] is calculated from the zeros of the Tchebyshev polynomials of second kind:

ξ i = 1 2 1 -cos π • i I + 1 0 ≤ i ≤ I + 1.

Adaptive time step control and detection of pseudo steady states

In general, at the beginning of a simulation run, changes in the solution are much larger than at later stages. Therefore, an adaptive time step control technique based on the approach of Johnson et al. [START_REF] Johnson | An a posteriori error estimate and adaptive timestep control for a backward euler discretization of a parabolic problem[END_REF] has been implemented. As a result, the time step size will be kept smaller as long as one observes high gradients, generally at the beginning of the simulation. Time step sizes are much larger when the solution is close to equilibrium. As a result, the control of the time step size can guarantee fast simulations preserving good accuracy and avoiding high computational cost. The stability of the fully implicit approach allows to control the size of the time steps without taking into account possible stability constraints. The time integration procedure is described as follows. First, sampling times T 0 , T 1 , . . . , T N subdividing the time interval [T 0 , T N ] are defined. The computation of the solution is enforced at these times, which makes possible comparisons between the adaptive time step size method with different control parameters and the approach using a constant time step without the need to interpolate solutions. In practice, coarser sampling intervals are considered at the end of the simulation when the solution is expected to become smoother. At the beginning, these intervals are arranged in a finer way. Then, the time discretization T J + t J,k within each sampling interval [T J , T J+1 ] is carried out by the following adaptive method:

i. Given an initial solution X 0 , a solution X J,k is computed on each sampling interval [T J , T J+1 ] at each time step T J + t J,k , for T J ≤ T N .

ii. At each time step, Newton's method is used to solve the system F(X) = 0.

iii. The time integration involves a control of the time step size based on the difference between two successive time iterates X J,k+1 -X J,k . For that purpose, a tolerance δ J,k opt is introduced, which ensures the appropriate variation of the time step size:

E J,k = X J,k+1 -X J,k ≤ W X δ J,k opt . (44) 
Here, W X is a vector of weights related to the unknowns X. The weights are adjusted considering the errors between two successive time iterates at the beginning of simulation.

iv. If the error E J,k is not small enough, the time step size is divided by 2 and the next iterate X J,k+1 at time T J + t J,k + ∆t J,k+1 is computed again. If not, the next iterate is accepted and the next time step size is updated:

∆t J,k+2 = min X ∆t J,k+1 W X δ J,k opt X J,k+1 -X J,k .
v. We choose an appropriate minimum time step size ∆t min , which ensures bounded relative error E J,k , J ≤ J 0 , k ≤ k 0 during the first J 0 , k 0 time steps. Then we enable the time step size control by equation ( 44) from the J 0 , k 0 +1 time steps.

The outline of the algorithm for adaptive time step control is given as follows:

(1) Compute the initial data X 0

(2) ∆t 0,1 = ∆t min

(3) For J = 0 to N (3.1) For each time step T J + t J,k ≤ T J+1

(3.1.a) Perform Newton's method to compute the new iterate X J,k+1 , i.e.

∀ν, X J,k+1,ν+1 = X J,k+1,ν -I ∆t J,k+1 + J F (X) ,k+1 , and choose

J,k+1,ν -1 • F(X) ν (3.1.b) If X J,k+1 -X J,k ≤ W X δ J,k opt (3.1.b) Then accept X J
∆t J,k+2 = min X ∆t J,k+1 W X δ J,k opt X J,k+1 -X J,k (3.1.b) else ∆t J,k+1 = ∆t J,k+1 /2
Of particular interest are pseudo steady states of the system which are characterized by the equilibrium between the rates of oxide layer creation at the metallic interface and oxide layer dissolution at the solute interface. As a consequence, one would observe a moving oxide layer of constant thickness. In terms of the transformed system (26)-(28) such states are characterized by the stationarity of the unknowns Ψ, N, P, C and the oxide layer thickness L, while the boundary positions X 0 (t), X 1 (t) are still evolving. Therefore, we assume that the system has reached a pseudo steady state and terminate the simulation if the change in the thickness of the oxide layer is small compared to the velocity of the metallic interface: Potentiostatic case, Galvanostatic case, error of X 0 , X 1 and L error of X 0 , X 1 and L 

(X J,k+1 1 -X J,k 1 ) -(X J,k+1 0 -X J,k 0 ) X J,k+1 1 -X J,k 1 < ǫ.

Performance of the numerical methods

Comparison of the different numerical strategies

In this Section, we compare the following strategies presented in Section 4:

• Explicit handling of the boundary positions: (S e tot ). For the galvanostatic case, we use a fixed point method to calculate the corrosion potential.

• Implicit handling of the boundary positions: (S i tot ) and (S i,gc tot ). In the galvanostatic case, the equation for V is added in the nonlinear system of equations. We will compare the results obtained with a fixed time step and with the adaptive time step strategy.

The results in this section have been obtained using a model without the boundary velocity terms in (1b), (1c), (2b), (2c), (3b), (3c). No significant difference to the numerical performance of the full model has been observed. Table 5.1 presents for all cases the total number of Newton iterations required during a given simulation and the corresponding CPU time. For the adaptive time step approach, the parameter δ J,k opt has been fixed to δ J,k opt = 0.1 and the weights W X are:

W Ψ = 0.05, W P = 0.05, W N = 0.05, W C = 0.1, W V = 0.05, W X 0 = 0.5, W X 1 = 0.01 .
Potentiostatic case, Galvanostatic case, L 2 error norm of density profiles.

L 2 error norm of density profiles. We note that the use of a constant time step enforces the algorithm to proceed over the full simulation interval with the small time step required by the first time iteration. The use of the adaptive time step approach together with implicit handling of the boundary positions provides satisfactory times of computation.

Order of convergence in space and time

Since no exact solution is available for this problem, we estimate the error by calculating the difference to a reference solution computed on a fine space-and-time grid. Figures 5.1 and 5.2 respectively report the error for the interface positions and the density profiles for the schemes (S i tot ) and (S i,gc tot ) (see sections 4.2 and 4.3). Grid sizes range from h = 10 -3 to h = 2 × 10 -2 , and the time step was chosen adaptively. For all the plotted quantities, the second order convergence in space is confirmed. Such order can be expected due to the choice of the Bernoulli function in the definition of the numerical fluxes, as it has been proven for model problems in [START_REF] Il'in | A difference scheme for a differential equation with a small parameter multiplying the second derivative[END_REF][START_REF] Lazarov | Finite volume methods for convection-diffusion problems[END_REF]. In order to check the convergence in time of our method, we have run simulations with some fixed time steps and compare the obtained solutions to a reference solution computed with a small time step. Figure 5.3 demonstrates the first order convergence in time for the density profiles and the free corrosion potential (in the galvanostatic case). Similar results are obtained for the interface positions.

Newton convergence

Concerning the convergence rate of Newton's method, Table 5.2 shows that the average number of Newton steps per time step is small. The main deviation from this average number happens during the first time step. In general, we observe quadratic convergence of Newton's method. 4.474

Potentiostatic case

T (K) pH E redox (V/NHE) a Fe +2 (mol • m 3 ) 298 7 -0.2 1 • 10 -8 a Fe +3 (mol • m 3 ) R (J • K • mol) k (J • K -1 ) F (C • mol -1
• 10 -5 10 1 • 10 -20 D 2 (m 2 • s -1 ) D 3 (m 2 • s -1 ) Γ 0 (F • m -2 ) Γ 1 (F • m -2 ) 1 • 10 -6 1 • 10 -20 0.5 1 ∆Ψ pzc 0 ∆Ψ pzc 1 V (V/ENH) k 0 Fe (m • s -1 ) 0.392 -0.059 pH 0 V imposed 50 m 0 Fe (m • s -1 ) k 1 Fe (m • s -1 ) m 1 Fe (m • s -1 ) k 0 e (m • s -1 ) 6.65203 1 0.1 1 • 10 -8 m 0 e (mol/(m 2 s)) k 0 r (m • s -1 ) m 0 r (mol/(m 2 s)) k 0 ox (mol/(m 2 s)) 3.80943 • 10 -5 3.67525 1 • 10 -9 1 • 10 41 m 0 ox (mol/(m 2 s)) k 1 ox (mol/(m 2 s)) m 1 red (mol/(m 2 s)) k 0 d (pH) (mol/(m 2 s)) 10 1 • 10 -6 1 • 10 -5 0.2 • 10 -pH a 0 u , b 0 u (u = P, N, C, r) a 1 u , b 1 u (u = P, C) a 0 d 0.
5, 0.5 0.5, 0.5 0 

Numerical experiments

The physico-chemical parameters for claystones chosen are based on the values found in [START_REF] Szklarska-Smialowska | Electrochemical and ellipsometric investigations of passive films formed on iron in borate solutions[END_REF], where potentiostatic measurements have been reported for the potential range from -0.15 V/NHE to 1.05 V/NHE. The other parameters of the DPCM, which describe the metal and oxide layer characteristics, the kinetics and the electrostatic potential are discussed in [START_REF] Bataillon | Corrosion modelling of iron based alloy in nuclear waste repository[END_REF]. Some of them can be found in the literature [START_REF] Klinger | Electron conduction in magnetite and ferrites[END_REF][START_REF] Backhaus-Ricoult | Defects and cation diffusion in magnetite (vii): Diffusion controlled formation of magnetite during reactions in the iron-oxygen system[END_REF][START_REF] Parrott | Reformulation of boundary conditions at metal-semiconductor contacts[END_REF][START_REF] Moruzzi | Calculated electronic properties of metals[END_REF][START_REF] Büchler | Iron passivity in borate buffer[END_REF][START_REF] Castro | Surface electrochemical transformations on spinel iron oxide electrodes in aqueous solutions[END_REF][START_REF] Sikora | The passivity of iron in the presence of ethylenediaminetetraacetic acid. I. General electrochemical behavior[END_REF][START_REF] Garcell | Interfacial and rheological characteristics of maghemite aqueous suspensions[END_REF][START_REF] Hummel | Electronic properties of materials[END_REF]. Table 6.1 gives the values. For the three pH values, the current density becomes potential independent at less negative potentials. This corresponds to the well-known passive current density [START_REF] Landolt | Corrosion and surface chemistry of metals[END_REF]. It must be outlined that the passive current decreases with pH. Such behavior is well documented in the literature [START_REF] Sato | Ion migration in anodic barrier oxide films on iron in acidic phosphate solutions[END_REF]. For the same data, Figure 6.1(b) plots the dependency of the oxide layer thickness on the applied potential. The constant thickness reaches zero at certain value of the potential called passivation potential E p [START_REF] Landolt | Corrosion and surface chemistry of metals[END_REF]. For values of the applied potential less than E p , the surface of the metal is not covered by any oxide layer. From the figure, we can read the passivation potentials E p =-0.45V/NHE at pH 7, E p =-0.6V/NHE at pH 8, and E p =-0.64V/NHE at pH 9.

Potentiostatic case

Galvanostatic case

The left plot in Figure 6.2 shows the dependency of the thickness of the oxide layer on the pH value. The so-called steady state thickness follows a logarithmic law with a slope equal to 1. This behavior is directly linked to the chosen pH dependency k 0 d = 0.2 • 10 -pH . The thickness reaches zero at the passivation pH value which is 7.2 for the data used. This feature of the passivity is similar to the passivation potential E p but for spontaneous passivation. The value predicted is in accordance with the literature [START_REF] Climent | Proof by UV-visible modulated reflectance spectroscopy of the breakdown by carbonation of the passivating layer on iron in alkaline solution[END_REF]. Please note that the time to reach a constant interface velocity (pseudo steady state) strongly depends on the pH value, and may reach thousands of years in concrete. From an experimental point of view, the pseudo steady state is considered as reached when the thickness does not evolve significantly over several hours. This explains why the experimental curves published in the literature correspond to the curve obtained for 1 month. The break of the slope has been attributed to a change in the dissolution mechanism. The results presented here indicate that the break of the slope results mainly from the fact that the experimental time was too short to reach an actual pseudo steady state. The right plot in Figure 6.2 shows the evolution of the corrosion rate with respect to the pH value. The pseudo steady state corrosion rate decreases with the pH value with an order equal to -1 (linear in log plot). This was an expected result because in anaerobic condition the oxidant is water or more precisly the proton [START_REF] Landolt | Corrosion and surface chemistry of metals[END_REF]. As the proton activity in the solution has been defined as 10 -pH , the decrease shown in the right plot in Figure 6.2 simply depicts that in pseudo steady state, the corrosion rate is directly proportional to the activity of protons in solution. In order to perform the calculations corresponding to figures 6.2 and 6.3, the number of nodes in the discretization grid has been significantly increased in order to accommodate the comparably thick oxide layers in the case of high pH values. As a consequence, the computation time to obtain these results was 32.9h (for the full range of pH values). Fine tuning of the numerical parameters may allow to reduce this number if necessary.

Further remarks

The numerical experiments in both cases (potentiostatic and galvanostatic) suggest the existence of a pseudo steady state which is characterized by a constant thickness of the oxide layer and a constant velocity of the interface. The time to reach this steady state strongly depends on the pH value of the surrounding media. Future work will focus on the mathematical analysis of this steady state. While the presented data show that the model delivers meaningful results, we need to note that several parameters of the model, in particular the Butler Volmer coefficient a 0 d , are subject to discussion in the literature. While verification of the model by comparison to analytical results has been performed in [START_REF] Bataillon | Corrosion modelling of iron based alloy in nuclear waste repository[END_REF], future work among other topics will focus on comparison to experimental results.
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 51 Figure 5.1: Estimated error: difference between the boundary positions for different grid sizes and a those of a reference solution computed on a grid with 30000 points after 2 h, for δ = 0.1 and ∆t min = 5 • 10 -3 h.

Figure 5 . 2 :
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 53 Figure 5.3: Estimated error: difference after 2h between discrete solutions with 2000 grid points for different values of a fixed time step ∆t and a reference solution computed with ∆t = 2 • 10 -6 h.
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 61 Figure 6.1: Current density and oxide layer thickness after reaching pseudo steady state vs. applied potential, for different pH values in claystones. Parameter values are given in Table 6.1.
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 62 Figure 6.2: Thickness of the oxide layer (left) and corrosion rate (right) depending on pH value.
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 6 1(a) shows the current density after reaching constant thickness i.e. constant and equal interface velocities.
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 63 Figure 6.3: Free corrosion potential vs. pH value.
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