
HAL Id: hal-00545528
https://hal.science/hal-00545528

Submitted on 10 Dec 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Hierarchical conditional dependency graphs as a
unifying design representation in the CODESIS

high-level synthesis system
Apostolos Kountouris, Christophe Wolinski

To cite this version:
Apostolos Kountouris, Christophe Wolinski. Hierarchical conditional dependency graphs as a unifying
design representation in the CODESIS high-level synthesis system. 13th International Symposium on
System Synthesis (ISSS ’00), Sep 2000, Madrid, Spain. pp.66-71, �10.1109/ISSS.2000.874030�. �hal-
00545528�

https://hal.science/hal-00545528
https://hal.archives-ouvertes.fr

g.
Hierarchical Conditional Dependency Graphs as a Unifying Design Representation
in the CODESIS High-Level Synthesis System

Apostolos A. Kountouris Christophe Wolinski

MITSUBISHI ELECTRIC ITE IRISA
80, Av. Des Buttes de Coesmes Campus Universitaire de Beaulieu

35700 Rennes, FRANCE F-35042 Rennes CEDEX, FRANCE
kountouris@tcl.ite.mee.com wolinski@irisa.fr

Abstract mutual exclusiveness detection and operation schedulin
lo
u
n
L
a
a
a
l
t
d

-
o
ly
t

[1

r
,
h

u
a
x

rk
 o
e
l
e

ues
o-
ut

ri-
9].
ry

l
ove
of

e
 to
n-

n

rip-
 is
w
rm
cs
es

n
ive

the
nd

the
.

a
In high-level hardware synthesis (HLS) there is a ga
on the quality of the synthesized results between data-f
and control-flow dominated behavioral descriptions. He
ristics destined for the former usually perform poorly o
the latter. To close this gap, the CODESIS interactive H
tool relies on a unifying intermediate design represent
tion and adapted heuristics that are able to accommod
both types of designs as well as designs of a mixed d
flow and control-flow nature. Preliminary experimenta
results in mutual exclusiveness detection and in efficien
scheduling conditional behaviors, are encouraging an
prompt for more extensive experimentation.

1. Introduction

The topic of efficiently scheduling conditional behav
iors having a complex conditional structure, has been th
oughly investigated in previous research work main
because traditional DFG based heuristics do not efficien
handle this kind of descriptions [1].

Several better adapted heuristics were proposed (
[2], [3], [4], [5], [6]). The quality of their results depends
heavily on the ability to exploit conditional resource sha
ing ([2], [4], [6], [7]) and speculative execution ([3], [5]
[16], [17]) possibilities as well as shorten path lengt
using node duplication techniques [3].

In resource constrained scheduling these techniq
permit to better utilize the hardware resources in the dat
ath and obtain better schedules which result in shorter e
cution paths and less control logic.

An important issue, also underlined in previous wo
([9], [10]) relates to the effects of the syntactic variance
the input descriptions, on the synthesis results. These n
ative effects intervene in two distinct but interrelated leve
as far as scheduling conditional behaviors is concern

Permission to make digital or hard copies of part or all of this work or person

distributed for profit or commercial advantage and that copies bear this notice
on servers, or to redistribute to lists, requires prior specific permission and/or a
ISSS 2000, Madrid, Spain
© 2000 IEEE 1080-1082/00 $10.00

66
p
w

-

S
-
te
ta-

ly

r-

ly

],

-

s

es
p-
e-

f
g-

s
d;

CDFG based mutual exclusiveness detection techniq
[3], [11] using the structure of the input description, pr
duce different schedules for semantically equivalent b
syntactically different descriptions. This is due to the va
ability on the amount of detected mutual exclusiveness [
Furthermore, CFG-based scheduling (i.e. PBS [6]) is ve
sensitive to the statement order in the input description.

From the above it is clear that efficient HLS for contro
dominated designs relies on the combination of the ab
techniques and in effectively coping with the problem
syntactic variance.

1.1. A unifying approach

In our previous work of [22], [19] we aligned with the
view supported by others [5], [8], [9], in advocating for th
need of more flexible internal design representations,
optimize the HLS results and effectively handle both co
trol and data flow dominated designs.

In this paper it is explained why the adoption of a
intermediate design representation, like the Hierarchical
Conditional Dependency Graph (HCDG) unifies and
enhances the high-level synthesis of behavioral desc
tions. Unification is mainly achieved because the HCDG
well adapted to describe both control-flow and data-flo
designs. Representing control and data flow in a unifo
manner is key to efficient scheduling/allocation heuristi
that combine the aforementioned optimization techniqu
under a single framework.

Thanks to its origins in formal specification the HCDG
constitutes a formal framework on which HLS desig
activities can be optimized and freed from the negat
effects of structural syntactic variance (if nesting, order).

Though benchmark results are a good indication on
interest of the proposed approach, further refinement a
validation on larger designs is needed. To this end
CODESIS interactive synthesis tool has been developed

l or classroom use is granted without fee provided that copies are not made or

 and the full citation on the first page. To copy otherwise, to republish, to post
 fee.

a
o

l

in
th

g

io
e

 f
n

i/o,
ith
m-

pre-

trol
d-
es
ws.
s.
n-
ly

n-
us
 of
 is
f a
f
ct-
ing

 an

l-

tion
n
an
are
r
ame

-
H

2. The HCDG internal design representation

The HCDG [20] is a special kind of directed graph th
represents data and control dependencies from a unif
dataflow perspective. It consists of the Conditional Depen-
dency Graph (CDG) and the Guard Hierarchy (GH). To
better illustrate the notions of the HCDG a small examp
will be used throughout this paper. Taken from [8], its C
like representation is shown in figure 1 and its HCDG
figure 2. For details on the HCDG construction process
interested reader is referred to [19].

Figure 1. Control-flow dominated description

Figure 2. Example HCDG; CDG and GH

The CDG consists of a set of nodes and set of ed
both labeled by guard conditions, called guards in the
sequel. Guards (named Hi) are a special type of nodes
(shown as rectangles) and represent boolean condit
that control the execution of operations and the assignm
of values to variables. They have also been used as a
mal control model in [4], [5] using a CDFG representatio

process jian(a, b, c, d, e, f, g, x, y)
in port a[8], b[8], c[8], d[8], e[8], f[8], g[8];
in port x, y;
out port u[8], v[8];
{

static T1;
static T2[8], T3[8], T4[8], T5[8];
T1 = (a +1 b) < c;
T2 = d +2 e;
T3 = c +3 1;
if (y) {

if (T1) u = T3 +4 d; /*u1 */
else if (!x) u = T2 +5 d; /*u2 */
if (!T1 && x) v = T2 +6 e;

} else {
T4 = T3 +7 e;
T5 = T4 +8 f;
u = T5 +9 g; /*u3 */

}
}

+1

?a

?d

?f

?y

?x +2 +3

+5 +4+6

+9

!v

!u

+8

?e

<

H2H3H7H6H4H9H10

H1

H10

H1

H1

H2 H9

H9

H9
H10 H6

H3

H3

H3

H3

H3

H3

H1

H6 H6

H10

H1

H1

H1

H1

H9

H1

H7

+7

?g

?c

Guards

H10

H1

?b

Conditional Dependency Graph
H1

H2 H3 H4 H5

H6 H7 H8

H9 H10

Guard Hierarchy

H1

H2

H1

H1 H1
67
t
rm

e
-

e

es

ns
nt
or-
.

The rest of nodes (ovals) correspond to operations (
computation, data multiplexing and state storage w
either register or transparent latch semantics) that co
pute/assign values to variables. I/O node names are
fixed by ?/! respectively.

Edges represent control and data dependencies. Con
dependencies (most of them omitted in figure 2 for rea
ability reasons) are from guard nodes to the CDG nod
labelled by them and are represented by dashed arro
Solid arrows represent data (computation) dependencie

The HCDG obeys the principle of static single assig
ment. Nodes may have more than one definition on
under mutually exclusive conditions (e.g. !u). In table 1
the guard definitions for the example are given.

2.1. Formal semantics and the guard hierarchy

Initially the HCDG was developed as internal represe
tation of systems described in the SIGNAL synchrono
formal specification language, used for the specification
reactive, real-time systems. The interested reader
referred to [25] for more details. Being so it disposes o
formal calculus that allows for the compile time proof o
correctness properties as well as the definition of corre
ness preserving graph transformations useful in optimiz
the synthesis results [24].

In a discrete time model where time is considered as
infinite sequence of logical instants, a guard is the set of
logical instants that the boolean condition defining it, eva
uates to true. The theoretical foundations of the HCDG
consider guards as sets and guard formulas as applica
of set operations on these sets. In [21] it is shown how a
equivalent representation of guard formulas as boole
functions can be obtained and vice-versa. Guards
equivalence classes of the HCDG nodes grouping togethe
nodes labeled by the same guard, thus active at the s
logical instants.

The guard nodes of a HCDG are organized in a Guard
Hierarchy (GH) which is a hierarchical tree-like, represen
tation of the design control (figure 2, bottom). The G
represents the inclusion relation between guards.

Inclusion relation. Lets denote by hi the boolean func-
tion corresponding to guard Hi. hi evaluates to true when-

Guard Boolean Definition Guard Boolean Definition

H1 1 H6

H2 H7

H3 H8

H4 H9

H5 H10

Table 1. Guard Definitions

y T1⋅

y y T1⋅

y y T1⋅ y T1 x⋅ ⋅+

y y T1⋅+ y T1 x⋅ ⋅

y y T1⋅ y T1 x⋅ ⋅+ + y T1 x⋅ ⋅

te

o
-

a
'

])
c
fo
y

ri

s
s

ie
-

h
t

 t
n
o
t
o
a
m

i

the

e
is

tal
a-

ods
in
ce.
a-
by
a-
h-

ndi-
ndi-
ur
two

m-

tual
 by
 in
ir-
e

cts)
cts

N

ever Hi is present otherwise to false. The inclusion relation
represented by the tree like structure of GH simply sta
that: . Using the
boolean definitions the inclusion relation between tw
guards will be denoted as: . In addi
tion, inclusion can be extended to the following cases:

In [21], the guard hierarchy is implemented as a hier
chy of BDD’s. Control representations based on BDD
have already been used in previous work ([15], [4], [5
The originality of the GH lies on the hierarchy constru
tion and not at the use of BDD's which are simply used
their efficiency. Using BDD’s two things can be efficientl
achieved. First, equivalence between guard formulas can
be easily established to avoid redundancy. Second, du
hierarchization, it is easy to find the maximum depth in the
tree that a guard node can be inserted, by means of a
cial factorization algorithm (see [21] for details). Thi
yields an optimally refined inclusion hierarchy.

The some of the advantages of using the inclusion h
archy information will be shown later on. Briefly, it per
mits to minimize the number of mutex tests [19] in guard
exclusiveness detection used for conditional resource s
ing especially useful in interactive design environmen
where speed is important. The hierarchy also enables
development of probabilistic priority functions used i
HCDG based list scheduling that efficiently account f
conditional behavior [24]. Finally, in [20] it is shown tha
guard inclusion information is very important in order t
triangularize a larger number of systems of guard equ
tions than it would be possible by using a rewriting syste
based only on the axioms of boolean algebra.

2.2. Efficient static mutual exclusiveness detection

Mutual guard exclusiveness will be noted by ⊗. Since
in the formal foundations of the HCDG guards are sets of
logical instants, two guards are mutually exclusive if the
intersection is empty: . In

Hj descendants Hi()∈()∀ Hj Hi⊆⇒

H2 H1⊆ h2 h1≤≡

Hk Hi Hj∪= Hi Hk⊆ Hj Hk⊆,⇒
Hk Hi Hj∩= Hk Hi⊆ Hk Hj⊆,⇒

H1 H2∩ ∅=() H1 H2⊗⇔

Benchmark Number of
operations

Total
number of

pairs

Gupta&Li [8]
desc1

9 36
desc2

Gajski [26]
desc1

6 15
desc2

Kim [11]
desc1

24 226
desc2

Parker [12]
desc1

16 120
desc2

test [19]
desc1

8 + 3 28 + 3
desc2
68
s

r-
s
.
-
r

ng

pe-

r-

ar-
s
he

r

-

r

terms of the guard boolean function representations
above translates to: , which
is the mutex test of [15].

Guard inclusion, as shown in [19], permits to minimiz
the number of mutual exclusion tests significantly. Th
optimization relies on the following proposition:
Let then:

meaning that if two guards H1, H2 are mutually exclusive
then every guard in the sub-hierarchy of H1 is mutually
exclusive to every guard in the sub-hierarchy of H2.

A set of benchmarks was used for the experimen
evaluation of the mutual exclusiveness identification cap
bilities of the proposed approach compared to the meth
of [26], [8], which are the most powerful methods so far
terms of coverage and insensitivity to syntactic varian
The benchmark from [19], was included to test the cap
bilities of our approach to reason on conditions defined
simple arithmetic relations [23]. Two semantically equiv
lent but syntactically different descriptions for each benc
mark were used (desc.1, desc.2). The first, has a maximal
conditional nesting as opposed to second one where co
tions are flattened and each assignment is in its own co
tional block. The results in the table below show that o
method has at least as much coverage as the other
methods for a smaller number of mutex tests.

2.3. Mutual exclusiveness representation

Guard mutual exclusiveness is represented by a co
patibility graph, MEG for Mutual Exclusiveness Graph,
where vertices represent guards and edges the mu
exclusiveness relation between the guards connected
the edge. For the example the resulting MEG is shown
figure 3. Cliques in the MEG correspond to groups of pa
wise mutually exclusive guards. Depending on th
resource sharing context (FUs, registers, interconne
each vertex has an associated list of specification obje

h1 h2⋅ false= H1 H2⊗⇔

subhier H() descendants H() H{ }+=

H1 H2⊗
Hi Hj(,)() subhier H1() subhier H2()×∈∀ Hi Hj⊗,

⇒

umber of
mutex
pairs

% coverage Number of
mutex testsGupta [8] Gajski [26] Ours

22 100 86 100
20

22 100 100 100

7 100 100 100
5

7 100 100 100

120 100 100 100
2

120 100 100 100

55 100 78 100
24

55 100 100 100

18 + 0 78 78 100
11

18 + 0 78 78 100

o
u
u
t

t

r
o

u

lin
s

 i
n
e
d
t

t

s
n
s
io

io
e
d
d
m

o
in
d
a
r

rds
eas-
des
rce

or-
ce
 so
dul-
is

e
ce

ri-
e

at
ne

ity
]

ri-
al
nt
g

di-

of
sly
rce
being active under this guard and can be allocated t
resource of that type. For instance, during scheduling s
a structure permits to easily find groups of mutually excl
sive operations that may share the same functional uni
a specific type.

In [22] it is argued that the best adapted algorithm
find such cliques is based on the initial-graph-partition
algorithm presented in [13]. Other heuristics e.g. [14] a
not as well adapted to satisfy our clique constructi
objectives since clique maximality is not always a good
optimization criterion when scheduling is considered.

Figure 3. MEG for the example

Amongst other applications HCDGs and guard excl
siveness have also been used to false path identification
(see [23] for more details) useful in path-based schedu
heuristics as well as more accurate static timing analysi

2.4. Optimization by HCDG transformations

Constructing the HCDG reflects the way the design
described by the designer. Applying graph transformatio
semantically equivalent representations are produc
Using guard information transformations like dead co
elimination, code motions, node duplication, path leng
reduction by dependency rearrangement, etc. can be ea
performed. In our approach, transformations are of tw
types; pre- and post-scheduling.

The objective of pre-scheduling transformations is
remove syntactic variance and bring the HCDG into
form that will eventually yield better scheduling result
Such transformations include, lazy execution guard tra
formation to increase conditional resource sharing pos
bilities, dependency rearrangement and node duplicat
at mutually exclusive guards to shorten path lengths.

The term lazy execution is used to denote the situat
when a node produces a value only as often as this valu
used by other nodes. Computing the appropriate no
guards for lazy execution may introduce additional guar
in the guard hierarchy and some control paths may beco
longer. However the transformed graph contains more c
ditional resource sharing possibilities and in a schedul
scheme where conditional resource sharing is combine
speculative execution this lengthening of control paths c
be effectively amortized. Finally, in certain cases whe

max clique

H1
H8

H2

H5

H4

H3
H9

H7
H6

H10
69
 a
ch
-
of

o

e
n

-

g
.

s
s
d.
e
h
sily
o

o
a
.
s-
i-
n

n
 is
e
s
e

n-
g
 to
n

e

the result of a node is used at mutually exclusive gua
the node can be duplicated at these guards without incr
ing hardware costs since the duplicated operation no
are mutually exclusive and may share the same resou
during scheduling. Post-scheduling transformations, inc
porate scheduling information (i.e. conditional resour
sharing and speculative execution) into the HCDG and
the transformed graph can be used in subsequent sche
ing iterations or post-scheduling high-level synthes
activities (i.e. allocation/binding etc.).

Comparing figure 2 to figure 4, in the HCDG of th
example the initial node guards were modified to enfor
lazy node execution (e.g. +1, +2, +3, < initially labelled by
guard H1). Also, the node +3, used under mutually exclu-
sive conditions (H6 ⊗ H3), was duplicated to shorten the
control paths. The data merge node (triangle u) is intro-
duced to enforce the single assignment principle for va
able u (in the behavioral description) which has multipl
definitions (u1, u2, u3) under mutually exclusive condi-
tions, represented by guards H3, H6, H10 respectively.

Figure 4. HCDG after optimizing transformations

3. HCDG based List Scheduling Heuristic

In this section a modified list scheduling heuristic th
takes advantage of the HCDG features, is described. O
important advantage of list scheduling is that its qual
depends on the choice of the priority function [1]. In [22
we exploit the guard hierarchy to define a probabilistic p
ority function that better accounts for the condition
nature of the design. This is combined to an intellige
scheduling policy that employs pre-scheduling optimizin
transformations (lazy execution, node duplication), con
tional resource sharing and speculative execution.

This process has several advantages. The list schedul-
ing priority criterion is satisfied for the greatest number
distinct execution instances (paths) simultaneou
because the constructed cliques for conditional resou

+1

+2
+3_1

+5 +4+6

+9

!v
+8

<

H2H3H7H6H4H9H10

H2

H2

H2 H9

H9

H9

H10 H6

H3

H3

H3

H3

H3

H6

H6 H6

H10

H7

H7

H2

H7

H6

H1

H7

+7

Guards

H10

H2

?b

CDG
H5

H10H6

H3
u

H3

node
duplication

?a

?y
?x

?e

?d

?f

?g

!u

?c

+3_2

H1

H2

th
a
l

n
t

n
i

e

rc

e

e
e
r
u
f
e

e
c
ll

o

nt is
r

ts
G

on
e
es

e
to
e
L)

he
d-
sharing contain always the highest priority node and
largest number of other higher priority nodes that c
share a resource with it. In respect to [9] and [5], specu
tive execution is considered only after normally executi
nodes have been scheduled. In this way the risk of leng
ening execution paths by displacing normally executi
operations in favor of speculatively executing ones,
avoided. Finally, conditional resource sharing is exploit
during scheduling and not before and so lengthening
execution paths due to inappropriate conditional resou
sharing (i.e. [2], [11]), is also avoided.

3.1. Experimental results

The HCDG-based list scheduling heuristic is compar
to other similar heuristics (Kim [2], CVLS [7], [3], PBS
[6], Brewer [5], ADD-FDLS [9]) using benchmarks
appearing in previous work (kim, waka, maha, jian from
[2], [7], [12], [8] respectively). For each benchmark th
HCDG was constructed, the guard hierarchy was refin
the HCDG was transformed for lazy execution and gua
mutual exclusiveness was established using the techniq
described in [18]. Results are given in the tables 2 to 5,
various resource constraints (cmp/+/- one cycle resourc
and chaining length (cn: 1, means no chaining) in terms
“ total / longest path / shortest path” numbers of states.

Finally, the insensitivity of the scheduling results to th
effects of syntactic variance is shown in table 6. For ea
benchmark two semantically equivalent but syntactica
different descriptions (descr.1, descr.2) are used. The first,
has a maximal conditional nesting as opposed to sec

Resources Kim PBS crit. path Brewer ours
cmp: 0, +: 1, -: 1, cn: 1 8/8/3 - - -/5/- 5/5/4
cmp: 0, +: 1, -: 1, cn: 2 6/5/2 9/5/2 8/8/- - 5/5/4
cmp: 0, +: 2, -: 3, cn: 1 - - - -/4/- 4/4/2
cmp: 0, +: 2, -: 3, cn: 3 3/3/2 - 4/4/- - 3/3/2
cmp: 0, +: 2, -: 3, cn: 5 - 4/3/1 - - 3/3/2

Table 2. Results for the “ maha” benchmark

Resources CVLS Kim PBS Brewer ours

cmp: 1, +: 1, -: 1, cn: 1 7/7/5 7/7/4 - - 7/7/4
cmp: 1, +: 1, -: 1, cn: 2 - 7/7/3 8/7/3 -/7/- 6/6/3
cmp: 1, ALU: 2, cn: 1 - - - - 7/7/4
cmp: 1, ALU: 2, cn: 2 - 6/6/3 6/6/3 - 6/6/3

Table 3. Results for the “ waka” benchmark

Resources Kim Brewer ADD ours

cmp: 2, +: 2, -: 1, cn: 1 8/8/6 - 6/6/5 6/6/6
cmp: 1, +: 2, -: 1, cn: 1 - -/6/- 6/6/6
cmp: 2, ALU: 2, cn: 1 - - - 6/6/6

Table 4. Results for the “ kim ” benchmark

Resources ours (cn=1) ours (cn=2)

cmp: 1, +: 1, cn: 1 4/4/3 4/4/3
cmp: 1, +: 2, cn: 1 4/4/2 3/3/2

Table 5. Results for the “ jian ” benchmark
70
e
n
a-
g
h-
g
s
d
of
e

d

d,
d
es

or
s)

of

h
y

nd

one where conditions are flattened and each assignme
in its own conditional block. It is worth noting that fo
both descriptions the same HCDG was derived.

4. The CODESIS tool

In order to validate our results in more realistic contex
and quantitatively evaluate the effectiveness of the HCD
and the HCDG-based heuristics the CODESIS interactive
CAD tool has been developed. Currently the specificati
front-end is the SIGNAL formal specification languag
but in the future other standard descriptions languag
(e.g. C, VHDL) will be supported. Translation of th
HCDG into C and VHDL already exists and allows us
interface to existing implementation tools like softwar
compilers and hardware synthesis (behavioral and RT
tools. A graphical user interface permits to visualize t
HCDG, interactively apply graph transformations, sche
uling heuristics and visualize the obtained results.

Figure 5. Scheduling results for " jian "

Figure 6. Example of register sharing

Figure 7. Controller FSM

Bench. waka maha kim jian

Resources
cmp: 1
+: 1
-: 1

cmp: 1
ALU: 2

cmp: 0
+: 1
-: 1

cmp: 0
+: 2
-: 3

cmp: 2
+: 2
-: 1

cmp: 2
ALU: 2

cmp: 1
+: 1
-: 1

cmp: 1
+: 2
-: 1

descr. 1 7/7/4 7/7/4 5/5/4 4/4/2 6/6/6 6/6/6 4/4/4 4/4/2
descr. 2 7/7/4 7/7/4 5/5/4 4/4/2 6/6/6 6/6/6 4/4/4 4/4/2

Table 6. Insensitivity to syntactic variance

w
is

n

n
la
b
e

d
r

o

e
b
r
o

o
y
o
n
's
r
lu
F
n
e
n

a

l-
g

7

-
e

e
o

u-
st

EE

nd
c.

o-

s.

.
s

-
):

.

ata
9-

on
I

m-

n.

g.

l
al
e,

-

es

-
ly
,

 a
ai-

i-
-

o-
f

s
,

CODESIS screenshots in figure 5 and figure 6 sho
conditional resource sharing for functional units and reg
ters used in scheduling and register allocation algorithm
for the example. In figure 7 the automatically derived a
optimized control FSM is shown.

The design and development of the tool are entire
object oriented in Java allowing for easy extensions a
incorporation and use of new features in a plug and p
fashion. For instance, new scheduling heuristics can
introduced, different priority functions can be tested, pr
and post-scheduling transformations can be applied
variable order etc. Due to its interactivity, extensibility an
visualization capabilities, this tool will be very useful fo
research, experimentation and educational purposes.

5. Conclusions

The HCDG is a powerful internal design representati
with the ability to treat both data-flow and control-flow
designs under the same framework. Techniques and h
ristics developed for data-flow oriented designs can
readily adapted for the HCDG. In addition several othe
have been developed to tackle the problems related to c
trol-flow intensive designs.

The HCDG-based scheduling approach exploits m
of the existing scheduling optimization techniques, enjo
ing their combined benefits. Both speculative executi
and conditional resource sharing are combined in a u
form and consistent framework similarly to dynamic CV
of [3] and guards in [4], [5]. Even more, it does not suffe
from effects of syntactic variance at both the mutual exc
siveness detection and scheduling levels, as CDFG or C
based approaches do. The hierarchical control represe
tion permits to minimize the number of mutual exclusiv
ness tests and also develop probabilistic priority functio
that account for the conditional nature of the design.

Finally, to test our ideas in more realistic contexts
user friendly HLS tool has been built using the HCDG
its internal representation.

References

[1] R. A. Bergamaschi, S. Raje, I. Nair, L. Trevillyan. Contro
Flow versus Data-Flow Based Scheduling: Combinin
Both Approaches in an Adaptive Scheduling System. IEE
Trans. VLSI, 5(1): 82-100, 1997.

[2] T. Kim, J.W.S. Liu, C.L. Liu. A Scheduling Algorithm For
Conditional Resource Sharing. Proc. ICCAD 91, 84-8
1991.

[3] K. Wakabayashi, T. Yoshimura. Global Scheduling Inde
pendent of Control Dependencies Based on Condition V
tors. Proc. 29th DAC, 1992.

[4] Radivojevic, F. Brewer. Analysis of Conditional Resourc
Sharing Using a Guard-based Control Representati
Proc. ICCD'95, 434-439, Oct. 1995.
71
-
s,
d

ly
d
y
e
-
in

n

u-
e
s
n-

st
-
n
i-

-
G
ta-
-
s

a
s

E

,

c-

n.

[5] Radivojevic, F. Brewer. Incorporating Speculative Exec
tion in Exact Control-Dependent Scheduling. Proc. 31
DAC, 479-484, Jun. 1994.

[6] R. Camposano. Path-based Scheduling for Synthesis. IE
Trans. on CAD, 10(1): 85-93, 1991.

[7] K. Wakabayashi, T. Yoshimura. A Resource Sharing a
Control Synthesis Method for Conditional Branches. Pro
IEEE ICCAD’89, 62-65, 1989.

[8] J. Li, R. K. Gupta. An Algorithm To Determine Mutually
Exclusive Operations In Behavioral Descriptions. Eur
DAC'97.

[9] V. Chaiyakul, D.D. Gajski, L. Ramachandran. Minimizing
Syntactic Variance with Assignment Decision Diagram
UCI, Tech. Rep. ICS-TR-92-34, Apr. 1992.

[10] Y-L. Lin. Recent Developments in High-Level Synthesis
ACM Trans. on Design Automation of Electronic System
(TODAES), 2(1): 2-21, Jan. 1997.

[11] T. Kim, N. Yonezawa, J.W.S. Liu, C.L. Liu. A Scheduling
Algorithm For Conditional Resource Sharing - A Hierar
chical Reduction Approach. IEEE Trans. on CAD, 13(4
425-438, Apr. 1994.

[12] A.C. Parker, J.T. Pizarro, M. Mliner. MAHA: A Program
for Data Path Synthesis. Proc. 23rd DAC, 252-258, 1986

[13] R. Puri, J. Gu. An Efficient Algorithm for Microword
Length Minimization. Proc. DAC'92, 651-656, 1992.

[14] C.J. Tseng, D.P. Siewiorek. Automated Synthesis of D
Paths on Digital Systems. IEEE Trans. on CAD, 5(3): 37
395, Jul. 1986.

[15] R. A. Bergamaschi, R. Camposano, M. Payer. Allocati
Algorithms Based on Path Analysis. Integration, The VLS
Journal, 13(3): 283-99, Sept. 1992.

[16] L.C.V. dos Santos, J.T.J van Eijndhoven, J.A.G. Jess. Co
bining Code Motion and Scheduling. ProRISC '96.

[17] Kifli, G. Goossens, H. De Man. A Unified Scheduling
Model for High-Level Synthesis and Code Generatio
Proc. EDTC'95, 234-238, Mar. 1995.

[18] A. Kountouris, C. Wolinski. Hierarchical Conditional
Dependency Graphs for Conditional Resource Sharin
Proc. Euromicro’98, Wasteras, Sweden, 1998.

[19] A. Kountouris, C. Wolinski. Extensive Conditiona
Resource Sharing Based on Hierarchical Condition
Dependency Graphs. Proc. 12th Int'l VLSI Conferenc
Goa, India, Jan. 1999.

[20] L. Besnard. Compilation de SIGNAL: Horloges, Depen
dances, Environment. Ph.D., Univ. of Rennes I.

[21] T. P. Amagbegnon. Forme Canonique Arborescente d
Horloges de SIGNAL. Ph.D., Univ. of Rennes I, 1995.

[22] A. Kountouris, C. Wolinski. Combining Speculative Exe
cution and Conditional Resource Sharing to Efficient
Schedule Conditional Behaviors. Proc. ASP-DAC’99
Hong-Kong, Jan. 1999.

[23] A.Kountouris, C.Wolinski. False Path Analysis Based on
Hierarchical Control Representation. Proc. ISSS'98, T
wan, Dec. 1998.

[24] A.Kountouris, C.Wolinski. High Level Pre-Synthesis Opt
mization Steps Using Hierarchical Conditional Depen
dency Graphs. Proc. Euromicro’99, Italy, Aug. 1999.

[25] P. Le Guernic, M. Le Borgne, T. Gautier, C. Le Maire. Pr
gramming Real Time Applications with SIGNAL. Proc. o
the IEEE, 79(9): 1321-1336, Sep. 1991.

[26] H-P. Juan, V. Chaiyakul, D. D. Gajski. Condition Graph
for High-Quality Behavioral Synthesis. Proc. ICCAD’94
San Jose, CA, 1994.

