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Abstract

The robotic manipulation of microscopic objects is disturbed directly by the adhesion between the end-effector and
the objects. In the micro scale, no reliable model of adhesion is available and currently the behaviour of the micro-objects
cannot be predicted before experiments. This paper proposes a new model of adhesion based on the analytical resolution
of the coupling between the mechanical deformation of the micro-objects and van der Waals forces. In the nanoscale, the
impact of the deformation can be neglected and the proposed model is thus similar to the classical expression for van der
Waals forces. In the microscale, the deformation induces van der Waals forces to increase significantly and a new analytical
expression is proposed. The limit of validity of this ’deformable van der Waals forces’ is also discussed. This result can be
used as an alternative to classical adhesion-deformation models in literature (Johnson-Kendall-Roberts (JKR) or Derjaguin-
Muller-Toporov (DMT)), which have been validated at the macroscale but are not sufficient to describ the interaction forces
in the microscale (typically from 100 nm to 500 µm).

keywords : pull off force, deformation, adhesion, van der Waals forces, micromanipulation

1 Introduction

The study of micromanipulation consists of developing models and fabricating experimental tools for the
individual manipulation and characterization of microcomponents. The manipulator covers a large variety of
microgrippers (mechanical and optical tweezers, capillary grippers...) actuated using numerous physical ef-
fects (thermal expansion, piezoelectricity, smart memory alloy...). Characterization mainly implies mechanical
characterization of stiffness performed, for example, with an atomic force microscope. The major industrial per-
spective of micromanipulation is to develop reliable micro-assembly techniques, based on robotic assembly or
self-assembly. Both require adequate models to estimate the surface forces disturbing the micromanipulation.

The goal of developing models at the microscale may be questioned for many reasons:

1. the task is huge and the forces dominating at the micro- and nanoscales can be modeled only partially:
for example, some of them cannot be modeled in a quantitative way (e.g. hydrogen bonds) suitable for
robotics purpose, most of proposed models are valid only at equilibrium (at least all the models based on
the derivation of surface or potential energies);

2. it is impossible sometimes to know the parameters involved in the existing models, for example, the distri-
bution of electrical charges on a dielectric oxide layer;

3. in the micro- and nanoscales, the physical measurements suffer from a very large experimental dispersion,
which makes the models’ refinements questionable. According to individual’s experience, experimental
measurements are typically obtained with an error greater than a few tens of percent.
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Nevertheless the use of - even basic - models helps the microrobotician to roughly describe the micro-objects
behavior and design best grippers and tools. Classical adhesion models like JKR [1], DMT [2] and Maugis-
Dugdale [3] are usually proposed to study adhesion in micromanipulation [4]. These models are based on the
elastic deformation of two solids in contact (e.g. microcomponent/gripper in micromanipulation) and cannot
match the experimental data very well at the microscale.

We propose, therefore, a new analytical model taking into account the elastic deformation and the van der
Waals forces as the main source of adhesion [5, 6]. Capillary condensation is supposed to play a major role in
humid environments [7], but as a preliminary step in this paper, we will only consider dry environments in
which capillary condensation can be neglected. Moreover, materials used are supposed to be non-conductive
and neutral so electrostatic forces are not considered.

This paper is organized in the following sections. Section 2 presents the coupled problem of adhesion and
deformation and the innovative iterative scheme used to solve it. Section 3 recalls the basics of van der Waals
(vdW) forces and presents the vdW interaction between a truncated sphere and a plane, which is used in the
iterative resolution. Section 4 describes the iterative scheme which provides an implicit expression for the force.
Two analytical approximations are also provided which are valid in nano- and microscales, respectively. Finally,
Section 5 suggests further work and conclusions are drawn in Section 6.

2 Problem description

2.1 The lack of adhesion model for micromanipulation

The main idea of this paper is to extend the existing model to the microscale. On the one hand, JKR, DMT or
Maugis models are usually used to compute pull-off forces (force needed to split two objects in contact). They
are computed with global energy calculation and their efficiency is well established at macroscale [8] but they are
not correlated with experimental microscale measurements. These models take into account the impact of the
deformation on the pull-off force but they are restricted to sphere/plane contact and cannot be applied to more
complex geometries (e.g parallelepipedic objects) usually used in microhandling [9].

On the other hand, atomic models based on the Hamaker computation could be extended from nanoscale to
microscale. So van der Waals theory could be used to predict adhesion phenomena [6] for any kind of geometry
(see Section 3.1). However, in the microscale, this theory underestimates pull-off forces. Moreover, it does not
take into account the deformation which has a significant impact in microscale.

An Atomic Force Microscope (AFM) with a cantilever whose stiffness is 0.3 N/m has been used to measure
pull-off forces. Measurements have been carried out in a temperature and humidity controlled environment
to minimize the capillary condensation. For example, the measured pull-off force is 1.6± 0.6 µN when a glass
sphere with 10 µm diameter contacts a glass substrate. JKR and DMT theories predict a larger force of 8.0 µN and
10.7 µN and the van der Waals theory predicts a smaller value of 0.6 µN. New investigation should be performed
in order to predict pull-off forces better in the microscale.

So new models are necessary to understand the behavior of objects whose size is between 100 nm and 100 µm.
This paper proposes a way to take into account the deformation of the object in the calculation of van der Waals
forces.

2.2 A new method for adhesion modeling

The sum of van der Waals forces applied by an object to another one depends on their contact surface and can
also be considered as a global force which induces a deformation. This deformation increases the contact surface
and the global van der Waals forces too. This coupled problem can be seen as an algorithm that uses sequentially
two models (Fig. 1). The first one computes van der Waals forces according to the object shape. The other one
computes deformation shape according to an external load. An iterative calculation is able to converge to the
physical equilibrium.

This generic principle can be applied to calculate or simulate adhesion forces of a large variety of geometries.
However, this paper focuses on the analytical expression applied to sphere/plane contact based on an analytical
expression for the van der Waals forces and a deformation model via the Hertz theory. For more complex geo-
metries including roughness [10], the calculation of the van der Waals forces should be replaced by a numerical
calculation, and another deformation model should be considered (e.g [11] for axisymmetric shapes) or modelled
via finite element method.

3 Modeling adhesion with van der Waals forces for simple rigid geometries

The first step in the calculation is to calculate the van der Waals forces on a deformed object. A pairwise
summation of the energy given by the Lennard-Jones potential leads to classical expression for the van der Waals

2



Undeformed objects
contact surface S(0)=0
adhesion force F(0)=0

Deformation 
model

contact surface S(n)

Model of van der 
Waals forces

adhesion force F(n)

F(n)=F(n-1)?

S=S(n)
F=F(n)

yes

no

n=n+1

Figure 1: Algorithm proposed for calculating the adhesion force between two objects using the coupling between
deformation and van der Waals forces.

forces. Computation for simple shape objects attracted by a plane is carried out here as an example which can be
applied to any kind of geometries.

3.1 The Lennard-Jones potential and the Hamaker approximation

The Lifshitz theory considers "dance of charges" coupled with relativistic effects [12] to calculate electro-
dynamic free energy that is at the origin of van der Waals forces. It is commonly approximated using the
Lennard-Jones potential:

φ(r) = ε0(
r0

r
)12 − 2ε0(

r0

r
)6. (1)

This potential represents the interaction between two neutral atoms (or molecules) separated by a distance r
(Fig. 2). r0 is the equilibrium distance when the force F = −∂φ/∂r (Fig. 3) is null and ε0 is the corresponding
energy. The 1/r12 term describes the strong repulsion that appears when the two atoms are closer than r0. For
r > r0, the Lennard-Jones potential is usually approximated by the 1/r6 term (Fig. 2):

φ(r) = −C
r6

where C = 2ε0r0
6. (2)
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Figure 2: Comparison of Lennard Jones potential
(solid line) and 1/r6 potential (dashed line).
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Figure 3: Comparison of forces derived from the
Lennard Jones potential (solid line) and from the 1/r6

potential (dashed line).

Adhesion forces are computed by a pairwise summation of the Lennard-Jones energies. Considering molec-
ular densities of materials, the discrete summation can be replaced with an integral. This method is commonly
called the Hamaker approximation [13] which is summarized very well in [14].
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3.2 Interaction between a molecule and an infinite plane

The first step in computation of the van der Waals forces is to sum every pairwise energy between the plane
and a molecule of the second object. The van der Waals forces have a short cut-off radius so the plane can be
considered as infinite without any influence on the result. Then, using notations of Fig. 4 and considering a
molecular density β1 for the plane Ω1, the adhesion energy πp between a molecule and a plane can be formulated
as below:

πp(z) = β1

∫
Ω1

−C
r6

dΩ1 = −πCβ1

6z3
. (3)

dx
ξd

ξ
x

O

x

r

1Ω

O

z

ξ

Figure 4: Notations used for the first step of van der Waals forces calculation: attraction force between a molecule
and a rigid, infinite plane.

3.3 Interaction between a sphere and an infinite plane

Now the second part of the calculation can be performed by considering a molecular density β2 for the second
object (a sphere of radius R). For sphere and plane, the energy of interaction is:

Πsp = β1β2

∫
Ω2

−πC
6z3

dΩ2. (4)

The Hamaker constant A = π2Cβ1β2 appears in the formulation.
The sphere studied is supposed to be larger than its distance from the plane (assumed to be r0 = 0.3 nm). So

for R >> r0 the force that derive from the potential of eq. (4) is:

Fsp = −AR
6r2

0

. (5)

3.4 Interaction between a truncated sphere and an infinite plane

We consider a truncated sphere which represents the volume of a sphere of radius R where the cap with a δ
height has been removed (see Fig. 5). The planar surface of the truncated sphere is at a distance r0 from the plane.
Integral of eq. (4) has now to be computed with a modified Ω2 described in Fig. 5. The volume Ω2 extends from
ξ = δ to 2R for the truncated sphere rather than from 0 for the full sphere. Thus, still considering non-atomic
sized spheres (R >> r0) and little deformations (R >> δ), a new expression for the van der Waals forces can be
formulated as:

Fs′p = −AR(r0 + 2δ)
6r3

0

. (6)

The first term of this force is equal to the force between a full R-radius sphere and a plane seen in eq. (5).
Considering that δ << R, the term ARδ

3r30
represents the force due to a cylinder whose radius corresponds to the

truncated part of the sphere. The increase of the contact surface between a sphere and a truncated sphere induces
an increase of the van der Waals forces despite the reduction of the volume.

The force computed in eq. (6) is used in our coupled model to represent the van der Waals forces applied to a
deformed object. The van der Waals forces computation consequently considers that the plane is rigid.
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Figure 5: Integration of van der Waals forces between a truncated sphere and an infinite plane.

4 Sphere deformation under van der Waals forces

A deformation model is needed for the second phase of the algorithm presented in Fig. 1. In the case of a
contact between a sphere and a plane, deformation according to load can be computed via the Hertz theory.

4.1 Hertz contact modeling

This model which defines the contact surface is the basis for the other models well known in adhesion mod-
eling (JKR and DMT). It computes the radius of contact a and the penetration δ for two spheres pressed together
with a force F (Fig. 6). Hertz model does not consider adhesion directly. This model is based on a geometrical
and mechanical analysis under three assumptions:

• contact radius a is small compared to the radii of spheres;

• there is no friction at the interface;

• there is no tensile stress in the contact area.

Elastic properties of the ith material are Ei (Young’s modulus) and νi (Poisson’s coefficient). The modified
Young’s modulus E∗ is defined as:

1
E∗

=
1− ν2

1

E1
+

1− ν2
2

E2
. (7)

So in case of a sphere/plane contact, the contact radius a and penetration depth δ can be calculated via Hertz
theory:

a3 = −3
4
RF

E∗
, (8)

δ =
a2

R
. (9)

penetrationδ

R

contact radius

penetration

a

δ

F
r

Figure 6: Sketch of a sphere/plane contact.
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4.2 Computation of a model including deformation for a sphere/plane contact

We assume that the deformed sphere can be seen as a truncated sphere which is described in Section 3.4. At
every step of the algorithm, van der Waals forces Fn are calculated by eq. (6) and the contact radius an is given
by the Hertz theory (eq. (8)). The penetration into the plane δn is linked to the contact radius an by eq. (9). So
eq. (6) can be rewritten as:

Fn = −A(r0R+ 2a2
n)

6r3
0

. (10)

At the initial step of the algorithm, the contact radius is considered as null, i.e. a0 = 0. For all steps n, eq. (8)
implies:

an+1 = −
(

3R
4E∗

)1/3

Fn
1/3. (11)

Considering eq. (10), a sequence (an) can be defined:

an+1 = λ1/3(r0R+ 2a2
n)1/3, (12)

where
λ = AR/8r3

0E
∗. (13)

The sequence (12) converges to its unique positive fixed point a∞. Fixed point is classically defined by an =
an+1 = a∞, so a∞ is the unique real solution of eq. (14):

a∞
3 − 2λa∞2 − λr0R = 0. (14)

This third-order equation can be solved analytically with the Cardan formula but the result is too complex to
be exploited easily. The surface radius advdW of the deformable van der Waals (dvdW) model can be obtained
by numerical computation of eq. (14) (see Fig. 7). Moreover, Sections 4.3 and 4.4 will show that an analytical
solution exists for nano and microspheres.
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Figure 7: Comparison of forces computed with classical and deformable van der Waals theories at nano and
microscales (log scale). Dashed line: classical van der Waals theory. Dash-dotted line: approximation of micro-
spheres (eq. 18). Solid line: numerical solution of the deformable van der Waals (dvdW) model (eq. 14) matches
classical van der Waals (eq. 5) at nanoscale and analytical formula (18) at microscale.

4.3 Approximation of micro-sized spheres

This subsection presents an expression for the van der Waals forces in the case of micro-sized spheres. Equa-
tion (14) could be normalized by the (2λ)3 term:(a∞

2λ

)3
−
(a∞

2λ

)2
− Rc
R

= 0, (15)
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where

Rc =
r0R

2

8λ2
=

8r7
0E
∗2

A2
(16)

is a constant which depends only on properties of the sphere material.
If Rc/R << (a∞/2λ)3, eq. (15) can be rewritten as:

a∞
2λ
≈ 1.

So for R >> Rc, the algorithm for the deformation caused by van der Waals forces converges to a contact radius:

ãdvdW = 2λ =
AR

4r3
0E
∗ . (17)

Applying this approximation to eq. (10), a simplified force can be solved out as below:

F̃dvdW = − A3R2

48r9
0E
∗2 . (18)

For example, in case of glass objects (see Table 1), Rc is 0.5 µm and this approximation (R >> Rc) can be used
for glass micro-sized spheres commonly used in micromanipulation.

Table 1: Mechanical properties of glass
Young’s modulusa E = 68 GPa
Poisson’s coefficienta ν = 0.19
Modified elastic modulus (see eq. (7)) E∗ = 35.3 GPa
Hamaker coefficient A = 6.5× 10−20 J
Minimum distance between atoms r0 = 0.3 nm

asource: www.matweb.com for SiO2 96%

4.4 Approximation of nano-sized spheres

This section is focused on the second asymptotic solution of eq. (14) which represents the case of nano-sized
spheres.

Another way to normalize eq. (14) is to divide it by a λr0R term:(
a∞

3
√
λr0R

)3

−
(
R

Rc

)1/3( a∞
3
√
λr0R

)2

− 1 = 0. (19)

So for R/Rc << a∞/
3
√
λr0R, eq. (19) becomes: (

a∞
3
√
λr0R

)3

≈ 1.

Anf for R << Rc, the contact radius and adhesion force become:

ãdvdW = 3
√
λr0R = 3

√
AR2

8r2
0E
∗ , (20)

F̃dvdW = −AR
6r2

0

= Fsp. (21)

In the case of glass (Rc = 0.5 µm), this model matches the classical van der Waals theory at nanoscale (R <<
Rc). Moreover, the classical theory cannot predict the contact radius so the original expression (20) completes the
current theory.

4.5 Discussion

The aim of this discussion is to estimate the error in the analytical expressions F̃dvdW proposed in (18) and
(21) compared to an exact solution FdvdW of eq. (14). A coefficient QF is defined as a normalized force error
quotient:

QF =

∣∣∣∣∣FdvdW − F̃dvdWFdvdW

∣∣∣∣∣ =
∣∣∣∣∆FF

∣∣∣∣ . (22)
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Considering eq. (10), FdvdW can be written as:

FdvdW = lim
n→∞

Fn = −
A(r0R+ 2a2

dvdW )
6r3

0

. (23)

The estimation of the error in the analytical expressions consists in estimating the error in the force QF as a
function of the radius R of the sphere. The limit of validity of nano and microsized spheres approximations
depends on the normalized error ε between the analytical expression ãdvdW for the contact radius and the exact
contact radius advdW :

advdW
ãdvdW

= 1 + ε, (24)

where ε is supposed to be negligible compared to 1.

4.5.1 Estimation of error in the case of micro-sized spheres

For R >> Rc, considering the definition (24) of ε and the value (17) of ãdvdW , equation (15) can be written as:

(1 + ε)3 − (1 + ε)2 − Rc
R

= 0. (25)

Considering that the normalized error ε is negligible compared to 1, eq. (25) becomes:

ε ≈ Rc
R

<< 1. (26)

This result can be used to estimate QF :

For R >> Rc, QF ≈ 3
Rc
R
. (27)

Eq. (27) gives an estimation of the error if the analytical formula (18) is used rather than a numerical solution
of eq. (14). This relation can be used to determine the validity domain of eq. (18). We consider that the model (18)
is valid only if the relative error QF is smaller than a criterion 1/k. The parameter 1/k represents the maximum
relative error of the model (typically 1/k=10%) within its validity domain. The validity domain is thus defined
by:

QF ≤ 1/k. (28)

According to eq. (27) this inequation can be expressed as a function of the sphere radiusR rather than the relative
error QF :

QF ≤ 1/k ⇔ R ≥ 3kRc. (29)

For glass, an error in force less than 10% can be observed for R ≥ 3× 10Rc = 15 µm (Fig. 8). So this approxi-
mation is clearly validated for micro-sized spheres.

4.5.2 Estimation of error in the case of nano-sized spheres

In the same way, using the nanosize approximation R << Rc, we can show that:

ε ≈ 1
3 3
√
Rc/R− 2

<< 1, (30)

and thus:

QF ≤ 1/k ⇔ R ≤ 1/k3Rc. (31)

For glass, an error in force less than 10% can be observed for R ≤ 1/103Rc = 0.5 µm. For such small objects,
the hypothesis R >> r0 used for the Hamaker summation in Section 3.4 is no longer valid. This fact shows that
the deformation cannot be neglected in the nanoscale either. However, the classical van der Waals expression
found at nanoscale (21) gives an order of magnitude of the force. Indeed, the exact solution of equation (14) and
the classical van der Waals expression (20) give the same order of magnitude for k = 1 (|FdvdW | ≤ 2 |Fsp|), i.e. for
R ≤ Rc = 0.5 µm.
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Figure 8: Adhesion models depending on sphere radius (critical radius Rc calculated for a glass sphere).

5 Future work

In order to validate the proposed models, comparisons with experimental data and finite element simulation
will be performed in the near future. In this way, the influence of the assumptions on deformation shape and on
the rigid plane (for the integration of van der Waals forces) could be analyzed.

In a more general way, two similar studies that consider capillary condensation and electrostatic forces as
the main causes of adhesion are also planned. These will help us to know which phenomenon is preponderant
according to the environment characteristics and the object’s material. These studies should be the way to build
a simulator based on numerical integration applicable to more complex geometries. This numerical tool will be
able to predict micro-objects interaction, which should be able to provide design rules in micromanipulation.

6 Conclusion

A new principle for adhesion forces computation has been proposed in this paper. The principle is based on
the calculation of the coupling between van der Waals forces and the deformation of the object. Indeed, van der
Waals forces induces a deformation that increases the contact surface, and at the same time the increased contact
surface also increases the van der Waals forces itself. In order to solve this coupling problem, the proposed
algorithm uses two independent models: Hertz model for the deformation and analytical expression for the van
der Waals forces. In case of sphere/plane contact, analytical expressions for the deformable van der Waals forces
have been proposed and their validity domains have been determined. The proposed algorithm can be extended
to other more complex geometries using numerical computations.

This work has shown that the impact of the deformation of the object cannot be neglected especially in the
microscale. In the nanoscale, the impact of the deformation is small and an order of magnitude of van der Waals
forces can be found by neglecting the deformation.
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