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Joint space and workspace analysis of a two-DOF closed-chain manipulator

The aim of this paper is to compute of the generalized aspects, i.e. the maximal singularity-free domains in the Cartesian product of the joint space and workspace, for a planar parallel mechanism in using quadtree model and interval analysis based method. The parallel mechanisms can admit several solutions to the inverses and the direct kinematic models. These singular configurations divide the joint space and the workspace in several not connected domains. To compute this domains, the quadtree model can be made by using a discretization of the space. Unfortunately, with this method, some singular configurations cannot be detected as a single point in the joint space. The interval analysis based method allow us to assure that all the singularities are found and to reduce the computing times. This approach is tested on a simple planar parallel mechanism with two degrees of freedom.

INTRODUCTION

The kinematic design of parallel mechanism has drawn the interest of several researchers. The workspace is usually considered as a relevant design criterion [START_REF] Merlet | Workspace-0riented Methodology for Designing a Parallel Manipulator[END_REF][START_REF] Clavel | DELTA, a Fast Robot with Parallel Geometry[END_REF][START_REF] Gosselin | A Global Performance Index for the Kinematic Optimization of Robotic Manipulators[END_REF]. Parallel singularities [START_REF] Wenger Ph | Definition Sets for the Direct Kinematics of Parallel Manipulators[END_REF] occur in the workspace where the moving platform cannot resist any effort. They are very undesirable and generally eliminated by design. Serial singularities [START_REF] Chablat | Working Modes and Aspects in Fully-Parallel Manipulator[END_REF] occur if the mechanism admit several solutions to the inverse kinematic model. To cope with the existence of multiple inverse kinematic solutions in serial manipulators, the notion of aspects was introduced in [START_REF] Borrel | A study of manipulator inverse kinematic solutions with application to trajectory planning and workspace determination[END_REF]. The aspects equal the maximal singularity-free domains in the joint space. For usual industrial serial manipulators, the aspects were found to be the maximal sets in the joint space where there is only one inverse kinematic solution.

A definition of the notion of aspect was given by [START_REF] Wenger Ph | Definition Sets for the Direct Kinematics of Parallel Manipulators[END_REF] for parallel manipulators with only one inverse kinematic solution and was extended by [START_REF] Chablat | Working Modes and Aspects in Fully-Parallel Manipulator[END_REF] for parallel manipulators with several solutions to the inverse and direct kinematic problem. These aspects were defined as the maximal singularity-free domains in the Cartesian product of the joint space and the workspace. To compute the aspects, we can used discretization methods. However, we cannot find any singularity in particular if the singularity is a point. Interval based analysis method was implemented by [START_REF] Merlet | ALIAS: an interval analysis based library for solving and analyzing system of equations[END_REF][START_REF] Chablat | An Interval Analysis Based Study for the Design and the Comparison of 3-DOF Parallel Kinematic Machine[END_REF] in ALIAS to compute the workspace of parallel mechanism. However, the result is a set of boxes in which is not easy to separate the maximum singularity free regions of the workspace and the computational times is difficult to estimate.

This article introduces an algorithm based on the tree-like structure and the interval analysis based method which takes the advantages of the interval analysis based method and the simplicity of tree-like structures.

ALGORITHM

The aim of this section is to define an algorithm able to compute either the joint space or the workspace of parallel mechanism. This is done using the structure of a quadtree model and the interval based method. This algorithm will be illustrated by a planar parallel mechanism in section 3 but can easily be extended to mechanism with three degrees of freedom in using octree model. Unlike numerical computing methods, such a method allows to prove formally that there is no singular configuration in the final result.

Definition of the quadtree/octree model

The tree-like structure, called in this paper, quadtree or octree, are a hierarchical data structure based on a recursive subdivision of space [START_REF] Meagher | Geometric Modelling using Octree Encoding[END_REF]. It is particularly useful for representing complex 2 -D or 3 -D shapes, and is suitable for Boolean operations like union, difference and intersection. Since the quadtree/octree structure has an implicit adjacency graph, arcwise-connectivity analysis can be naturally achieved. The quadtree/octree model of a space S leads to a representation with cubes of various sizes. Basically, the smallest cubes lie near the boundary of the shape and their size determines the accuracy of the quadtree/octree representation. Quadtree/octrees have been used in several robotic applications [START_REF] Wenger Ph | Definition Sets for the Direct Kinematics of Parallel Manipulators[END_REF], [START_REF] Faverjon | Obstacle avoidance using an octree in the configuration space of a manipulator[END_REF], [START_REF] Garcia | Computing moveability areas of a robot among obstacles using octrees[END_REF].

The main advantages of the octree model are (i) very compact file (only B (Black), W (White) and G (Gray) letter) and (ii) accelerates display speed facilities by differentiating model into lower levels of resolution while being rotated and higher resolution while an orientation is temporarily set. Conversely, the computational times can be high due to the discretization. If we test only the center of each cube, some singularities can exist and are not detected. This feature is true even if we increase the level of resolution. The accuracy of the model is directly defined by the depth of the quadtree and the size of the initial box. For a quadtree model with a depth d and a initial box of lengths b, the accuracy is b/2 d .

Notion of aspect for fully parallel manipulators

We recall here briefly the definition of the generalized octree defined in [START_REF] Chablat | Working Modes and Aspects in Fully-Parallel Manipulator[END_REF]: Definition 1. The generalized aspects Aij are defined as the maximal sets in

W • Q so that Aij ⊂ W • Q, Aij is connected, and Aij = {(X, q) ∈ M fi \ det(A) = 0}
In other words, the generalized aspects Aij are the maximal singularity-free domains of the Cartesian product of the reachable workspace with the reachable joint space. Definition 2. The projection of the generalized aspects in the workspace yields the parallel aspects WAij so that WAij ⊂ W , and WAij is connected.

The parallel aspects are the maximal singularity-free domains in the workspace for one given working mode. Definition 3. The projection of the generalized aspects in the joint space yields the serial aspects QA ij so that QA ij ⊂ Q, and QA ij is connected.

The serial aspects are the maximal singularity-free domains in the joint space for one given working mode.

The aim of this paper is to compute separately the parallel and serial aspects thanks to the properties of the quadtree models.

Introduction to ALIAS library

An algorithm for the definition of the joint space and workspace of parallel mechanism is described in the following sections. This algorithm uses the ALIAS library [START_REF] Merlet | ALIAS: an interval analysis based library for solving and analyzing system of equations[END_REF], which is a C++ library of algorithms based on interval analysis. These algorithms deal with systems of equations and inequalities of which expressions are an arbitrary combination of the most classical mathematical functions (algebraic terms, sine, cosine, log etc..) and of which coefficients are real numbers or, in some cases, intervals. Unfortunately, this library is not connected to the octree model and generates large data file to describe by a set of boxes the solution of the problem. Thus, the operations between the set of boxes is more difficult if we compare to the boolean operations that we can made with the octree models.

A first basic tool: Box verification

Our purpose is to determine the quadtree model associated with the joint space or the workspace, that we will call only the space C. For a given box B defined by two intervals, we note valid box if it is included in C and invalid box otherwise. For that purpose we need to design first a procedure, called M(B), that takes as input a box B and returns:

• 1: if every point in B is valid, • -1: if no point in B is valid,
• 0: if neither of the other two conditions could be verified.

To check if one point is valid, we can used several approaches. For example, in the Cartesian space, we have to compute the inverse kinematic model to test if at least one solution exists, which defines the workspace. Thus, for each solution, we can define completely the mechanism for each working mode and compute the determinant of the parallel Jacobian matrix [START_REF] Chablat | Working Modes and Aspects in Fully-Parallel Manipulator[END_REF]. This procedure is able to define the non-singular domains but their are not necessary connected. However, with a quadtree model, it is easy to perform a connectivity analysis to separate the quadtree model in connected domains. This is a main advantage of the tree-like structures in comparison with the method implemented in the ALIAS library. Some additional constraints can be to define dexterous domains in using a kinetostatic index as in [START_REF] Chablat | An Interval Analysis Based Study for the Design and the Comparison of 3-DOF Parallel Kinematic Machine[END_REF].

The problem is now to implement an inverse and direct kinematic model able to take as input a box B and to return, if the box is valid, a box S which contains the solutions of the problem.

A second basic tool: Quadtree model definition

The definition of a quadtree is made recursively by calling several times the same procedure, call Q(B, d, P ), that takes as input a box B, the local depth d in the tree and a pointer P on the data structure which contains the quadtree model.

• If M(B) returns -1, it is the end of the recursive search.

• If M(B) returns 1, a black node is created in the current depth.

• If M(B) returns 0, if the local depth is smallest than the maximal depth of the quadtree, we divide the box B into four new boxes B1, B2, B3 and B4, and we call

Q(B1, d + 1, P ) Q(B2, d + 1, P ) Q(B3, d + 1, P ) Q(B4, d + 1, P )
When M(B) returns -1, we can also create a another quadtree model, called complementary space in which we save the box B where at least one constraint is not valid. With this knowledge, we can compute the quadtree model with a higher definition without retesting the valid and non valid boxes. An example of this result will be given in the following section.

MECHANISM UNDER STUDY

For more legibility, a planar manipulator is used as illustrative example in this paper. This is a five-bar, revolute (R)-closed-loop linkage, as displayed in figure 1. The actuated joint variables are θ1 and θ2, while the Output values are the (x, y) coordinates of the revolute center P . The displacement of the passive joints will always be assumed unlimited in this study. Lengths L0, L1, L2, L3, and L4 define the geometry of this manipulator entirely.

Two sets of dimensions are used to illustrate the algorithm. The first one, called M1, is defined in [START_REF] Chablat | Working Modes and Aspects in Fully-Parallel Manipulator[END_REF] and its dimensions are L0 = 9, L1 = 8, L2 = 5, L3 = 5 and L4 = 8 , in certain units of length that we need not to specify. And, the second one, called M2, is defined in [START_REF] Figielski | Towards Development of a 2-DOF Planar Parallel Robot with Optimal Workspace Use[END_REF] and its dimensions are L0 = 2.55, L1 = 2.3, L2 = 2.3, L3 = 2.3 and L4 = 2.3 .

Kinematic Relations

The velocity ṗ of point P , of position vector p, can be obtained in two different forms, depending on the direction in which the loop is traversed, namely,

ṗ = ḃ1 + θ3E(p -b1) ṗ = ḃ2 + θ4E(p -b2) (1) 
with matrix E defined as E = 0 -1 1 0 and b1 and b2 denoting the position vectors, in the frame indicated in figure 1 of points B1 and B2, respectively. y A (0,0) 1
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The angle α and β used to solve the DKP Furthermore, note that ċ and ḋ are given by ḃ1 = θ1E(b1 -a2), ḃ2 = θ2E(b2 -a2)

Two Jacobian matrix, A and B, permit to study the serial and parallel singular configurations [START_REF] Wenger Ph | Definition Sets for the Direct Kinematics of Parallel Manipulators[END_REF],

A = (p -b1) T (p -b2) T , B= L1L2 sin(θ3 -θ1) 0 0 L3L4 sin(θ4 -θ2) = B11 0 0 B22 (2) 
Two assembly modes can be defined with the sign of det(A). To characterize the assembly mode, we can only compute (p -b1) × (p -b2).

The parallel singular configurations are located at the boundary of the joint space. Such singularities occur whenever B1, P and B2 are aligned. In such configurations, the manipulator cannot resist an effort in the orthogonal direction of B1B2. Besides, when B1 and B2 coincide, the position of P is no longer controllable since P can rotate freely around B1 even if the actuated joints are locked. This singularity cannot be find by the discretization of the workspace but is detected by the interval analysis based method.

Direct kinematic problem

For planar mechanism, the computation of the direct kinematic problem (DKP) is very simple. However, if we want to return the good information to the function C, we have to distinguish more cases. If there is no joint limits, they are zero or two solutions for the DKP.

The procedure takes as input a box B defined by two intervals θ1 = [θ1, θ1] and θ2 = [θ2, θ2], the actuated joint variables. In this example, the values of the length are defined as a float but can be also defined by a interval to represent the tolerances of manufacturing.

The algorithm can be described by the following steps:

• Compute the position of b1 and b2 which is the location of B1 and B2 respectively.

• Compute the distance L between B1 and B2: -If L = 0 then the mechanism can be in a singular configuration.

-[L, L] = || b1 -b2||
• Compute the angle α and β of the triangle (B1, B2, P ) (Figure 2).

-

C(α) = ( L2 + L 2 3 -L 2 4 )/(2L3 L).
β = arctan

B 2y -B 1y B 2x -B 1x ) -If (C(α) ≥ -1 and C(α) ≤ 1) then α = arccos(C(α)).
• Compute the two solutions P1 and P2 of point P :

-P1x = B1x + L3 cos(α + β) -P1y = B1y + L3 sin(α + β) -P2x = B1x + L3 cos(α -β) -P2y = B1y + L3 sin(α -β).
To perform this procedure, all the trigonometric function come from the ALIAS library and accept as input an interval and return an interval. For each step, we have to check that the argument are not out of range.

For the two mechanism under study, we can plot with this function the joint space (Figure 3). The results are equivalent to the solution computed in [START_REF] Chablat | Working Modes and Aspects in Fully-Parallel Manipulator[END_REF] and [START_REF] Figielski | Towards Development of a 2-DOF Planar Parallel Robot with Optimal Workspace Use[END_REF]. However, conversely to a discretization method, we can detect the parallel singularity where B1 and B2 coincide. Normally, it is a point but with the interval analysis method, the algorithm cannot define valid boxec where det(A) is equal to zero. The set of box where at least one constraint is not valid is called the complementary joint space, figure 4.

Selection of the assembly mode

For a parallel mechanism with only two solutions to the direct kinematic problem, the assembly mode is characterize by the sign of det(A). To simplify, we can

only compute t = ( b1 -p) × ( b2 -p) (3) 
and to test if tz is positive or negative.

Inverse kinematic problem

For the mechanism under study, there are four solutions for the inverse kinematic problem (IKP), two solutions for each leg. The procedure takes as input a box B defined by to two intervals x = [x, y] and ỹ = [y, y], the position of P .

The algorithm can be described by the following steps:

• Compute the distance M1 between A1 and P , and M2 between A2 and P .

• If (M1 > L1 + L3 or M2 > L2 + L4) then P is outside the workspace and the function returns -1.

• If (M1 < ||L1 -L3|| or M2 < ||L2 -L4||) then P is located in a hole of the workspace and the function returns -1.

• If (M1 > 0) and (M2 > 0) and (M1 > ||L1 -L3||) and (M2 > ||L2 -L4||) and (M1 < L1 + L3) and (M2 < L2 + L4) then compute the angles β1 = B1A1P and β2 = B2A2P noted in Figure 5: For the two mechanism under study, we can plot with this function the joint space (Figure 6). For the mechanism M∈, there is a hole in A1 and A2 which is only a point. On the picture, we can only notice that there exists a sub-division of the space because there are small boxes. The size of the hole is equal to the size of the smallest box.

-C(β1) = L 2 1 + M 2 1 -L 2 3 2 M1 L 1 C(β2) = L 2 2 + M 2 2 -L 2 4 2 M2 L 2 -If (|| C(β1)|| ≤ 1)

Selection of the working mode

For a parallel mechanism with only four solutions to the inverse kinematic problem, the working mode is characterized by the sign of B11 and B22. This can be done simply ũ = ( b1 -ã1) × (p -b1) ṽ = ( b2 -ã2) × (p -b2) [START_REF] Wenger Ph | Definition Sets for the Direct Kinematics of Parallel Manipulators[END_REF] and to test the sign of ũz or ṽz.

Computation of the generalized aspects

The number of aspects is the same for the both mechanisms. We can compute separately the serial and parallel aspects for all the working modes. For a give sign of det(A), B11 and B22, we have define a quadtree model. To obtain the generalized aspects, a connectivity analysis is made to separate the connected regions. We need to test only one point in the workspace and its projection on the joint space to associate a serial aspect to its parallel aspect counterpart. x The study of the joint space allow us to know if a trajectory between two generalized aspects exists by passing through a serial singularity. Figures 9 and 10 permit us to conclude that, for M1 and M2, no trajectory exists in which we change only one time the working modes, between the aspects 1 and 4 and between the aspects 2, 3 and 5.

q 2 L 3 q 1 b 1 a 1 L 4 L 2 L 1 B 1 B 2

Comparison between classical quadtree computation and the new algorithm

The aim of this section is to compare the number of times where the inverse or direct kinematic function is called to build the quadtree for the both mechanisms and for several depths of the tree which is equivalent to the accuracy of the model. For the joint space, the initial box B is defined by two intervals equal to [-π, π] and for the workspace, the initial box B is defined by two intervals equal to

[-(L1 + L3), (L1 + L3)].
With the discretization method, the number of times where the inverse or direct kinematic problem is used is n discretization = 2 2d with d is the depth of the tree. We call n quadtree the number of times where where the inverse or direct kinematic problem is used to build the quadtree model. To compare the computing cost between the both method, we define the following criteria:

K = n quadtree /n discretization (5) 
Table 1 compares the computing times for the joint space and the workspace for the mechanisms M1 and M2. When the depth of the quadtree is small, there is no advantage to used the interval analysis based method. But, when the depth increase, the advantages can be very important. For example, to compute the workspace of M1 with d = 10, we call 36893 times the IKP while the discretization method calls 2 20 = 1048576 times the IKP.

CONCLUSIONS AND FUTURE WORKS

In this paper, we have presented an algorithm able to compute the joint space and workspace of parallel mechanism by using the octree model and the interval based method. We have the maximum singularity regions, called aspects, for two planar mechanisms and we have compared the number of times where the inverse and direct kinematic problem is called according to the accuracy used. Thanks to the use of the interval analysis based method, the result is guaranteed for all the depth used, i.e. we are sure to detect all the singular configurations. The quadtree model can be saved in text file and its size is very small. Plugin exist now to visualize the model in a 3D viewer in Web pages (as www.octree.com). Future works will be made to define as interval the lengths of the legs and to find the influence of the manufacturing error on the joint space and workspace.
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Table 1 :

 1 Comparison between classical quadtree computation and the new algorithm to compute the joint space and the workspace

	Joint space Depth #	5	6	7	8	9	10
	M 1	99% 73% 40% 22% 13 % 9 %
	M 2	111% 83% 40% 18% 8 % 4 %
	Workspace Depth #	5	6	7	8	9	10
	M 1	72% 45% 25% 13% 7 % 3 %
	M 2	65% 37% 19% 10% 5 % 2 %
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