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Abstract. This paper investigates the existence conditions of cusp points in the design parameter
space of the RPR-2PRR parallel manipulators. Cusp points make possible non-singular assembly-
mode changing motion, which can possibly increase the size of the aspect, i.e. the maximum sin-
gularity free workspace. The method used is based on the notion of discriminant varieties and
Cylindrical Algebraic Decomposition, and resorts to Gröbner bases for the solutions of systems of
equations.

Key words: Kinematics, Singularities, Cusp, Parallel manipulator, Symbolic computation

1 Introduction
It is well known that the workspace of a parallel manipulatoris divided into
singularity-free connected regions [2]. These regions areseparated by the so-called
parallel singular configurations, where the manipulator loses its stiffness and gets
out of control. The so-called cuspidal manipulators have the ability to change their
assembly-mode without running into a singularity, which thus may increase the size
of the singularity-free regions [9, 7]. The word “cuspidal”stems from the notion
of cuspidal configuration, defined as one configuration wherethree direct kinematic
solutions coalesce. A cuspidal configuration in the manipulator joint space allows
non-singular assembly-mode changing motions. Thus, determining cuspidal config-
urations is an important issue that has attracted the attention of several researchers
[9, 6, 13, 1]. In particular, [13] (resp. [1]) has analyzed the cuspidal configurations
of planar 3-RPR (resp. 3-PRR) manipulators1. More recently, [6] studied the RPR-
2PRR, a simpler planar 3-DOF manipulator that lends itself to algebraic calculus
[6]. In both papers, the cusp configurations were determinedby looking for the
triple roots of a univariate polynomial. This approach may yield spurious solutions.
In this paper, the cuspidal configuration are determined directly from the Jacobian of
the whole set of geometric constraints of the robot, which guaranties that only true
solutions are obtained. Then, we classify the parameter space of a family of RPR-
2PRR manipulators according to the number of cuspidal configurations. It is shown
that these manipulators have either 0 or 16 cuspidal configurations. The proposed

1 The underlined letter means an actuated joint
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method is based on the notion of discriminant varieties and cylindrical algebraic de-
composition, and resorts to Gröbner bases for the solutions of systems of equations.

2 Mechanism under study
2.1 Kinematic equations
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Fig. 1 A RPR-2PRR parallel manipulators
with (a= 1,b= 2,L2 = 2,L3 = 2,x= 1/2,y=
1, θ = 0.2). The actuated joint symbols were
filled in gray.

A RPR-2PRR parallel manipulator is
shown in Fig. 1. This manipulator was an-
alyzed in [6]. It has 1 actuated prismatic
joint ρ1, and 2 passive prismatic joints
ρ2 and ρ3. The two revolute joints cen-
tered inA2 andA3 are actuated while the
ones centered inA1, B1, B2 and B3 are
passive. The pose of the moving platform
is described by the position coordinates
(x,y) of B1 and by the orientationα of
the moving platformB1B2. The input vari-
ables (actuated joints values) are defined
by ρ1, θ2 andθ3. The pointsB1, B2 and
B3 are aligned, a= (B1, B2), b= (B1, B3),
L2 = (A2,B2) andL3 = (A3,B3).

The geometric constraints can be expressed by the following5 equations [6]:

f1 : ρ2
1 =x2+y2

f2 : x=ρ2+L2 cos(θ2)−bcos(α) f4 : x=L3 cos(θ3)−acos(α) (1)

f3 : y=L2 sin(θ2)−bsin(α) f5 : y=ρ3+L3 sin(θ3)−asin(α)

Without loss of generality, we fixa= 1 in the rest of the article.

2.2 An algebraic model
The singular and cuspidal equations were previously computed using the three fol-
lowing steps [6]:

1. Reduce the equation system to a polynomial equation depending on the articular
variablesρ1,θ1,θ2 and one pose variableα: g(ρ1,θ1,θ2,α) = 0 (this step is done
by eliminating variables, either with resultants or with Gröbner basis )

2. Add the constraint∂g
∂α = 0 to define the parallel singularities

3. Add the constraint∂g
∂α = 0 and ∂ 2g

∂α2 = 0 to define the cuspidal configurations

This approach has the advantage of reducing the problem of computing the cusp
configurations, to the problem of analysing the triple rootsof a single polynomial.
However, this only gives a necessary condition for the manipulator to have cusp
configurations. In particular it is possible that 3 configurations of the robot coalesce
in one coordinate but not in the others.
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Let us come back to the theoretical definitions, using Jacobian matrices to define
directly the triple roots of the original system of equations in all the input and output
variables. IfP is a list of polynomials andX a list of variables, letJk(P,X) be the
union ofP= {p1, . . . , pm} and of all thek× k minors of the Jacobian matrix of the
pi with respect to theXi.

For the analysis of the RPR–2PRR manipulator, we introduce:
Y := [x,y,α,ρ2,ρ3] W := [b,L2,L3,ρ1,θ2,θ3] S:= { f1, . . . , f5}.
Using these notations, the parallel singularities of the manipulator are defined by

{v ∈ R11, p(v) = 0,q(v)> 0,∀p∈ J5(S,Y),∀q∈ {b,L2,L3,ρ1} so that the cuspidal
configurations are fully characterized by :

S = {v ∈ R11, p(v) = 0,q(v)> 0,∀p∈ J5(J5(S,Y),Y),∀q∈ {b,L2,L3,ρ1}}

3 Main tools from computational algebra
The algebraic problem to be solved is basically related to the resolution of polyno-
mial parametric systems.

More specifically, one needs to solve a system of the following form :

E = {v ∈ Rn, p1(v) = 0, . . . , pm(v) = 0,q1(v)> 0, . . .ql (v)> 0}

wherep1, . . . , pm,q1, . . . ,ql are polynomials with rational coefficients depending
on the unknownsX = [X1, . . . ,Xn] and on the parametersU = [U1, . . . ,Ud].

There are numerous possible ways of solving parametric systems in general. Here
we focus on the use of Discriminant Varieties (DV, [8]) and Cylindrical Algebraic
Decomposition (CAD, [3]) for two reasons. It provides a formal decomposition of
the parameter space through an exactly known algebraic variety (no approximation).
It has been already successfully used for similar mathematical classes of problems
(see [4]).

To reduce the dimension of the parameter space to three so that it can be dis-
played, we setL2 = L3. Not that the proposed method can treat the general case
L2 6= L3 without any problems. WhenL2 = L3, the system to solve isS with the
unknowns[x,y,α,ρ2,ρ3,θ2,θ3] and the parameters[b,L2,ρ1].

3.1 Basic black-boxes
First experiments are often performed for specific values ofthe parameters, espe-
cially singular and/or degenerated cases. Here, we mainly use exact computations,
namely formal elimination of variables (resultants, Gröbner bases) and resolution of
systems with a finite number of solutions, including univariate polynomials.

Let us describe the global solver for zero-dimensional systems. It will be used as
a black box in the general algorithm we describe in the sequel.

Given any system of equationsp1= 0, . . . , pm= 0 of polynomials ofQ[X1, . . . ,Xn],
one first computes a Gröbner basis of the ideal< p1, . . . , pm > for any ordering.

At this stage, one can detect easily if the system has or has not finitely many
complex solutions.



4 G. Moroz1,2, D. Chablat1, P. Wenger1, F. Rouiller2

If yes, then compute a so called Rational Univariate Representation or RUR (see
[10]) of < p1, . . . , pm >, which is, in short, an equivalent system of the form :
{ f (T) = 0,X1 = g1(T)

g(T) , . . . ,Xn = gn(T)
g(T) }, T being a new variable that is indepen-

dent ofX1, . . . ,Xn, equipped with a so calledseparating element(injective on the
solutions of the system)u∈Q[X1, . . . ,Xn] and such that :

V(〈p1, . . . , pm〉) u−→ V( f )
u−1

−−→ V(〈p1, . . . , pm〉)
(x1, . . . ,xn) 7→ β = u(x1, . . . ,xn) 7→

(

g1(β )
g(β ) , . . . ,

gn(β )
g(β )

)

defines a bijection between the (real) roots of the system (denoted byV(p1, . . . , pm))
and the (real) roots of the univariate polynomial (denoted by V( f )).

We then solve the univariate polynomialf , computing so called isolating in-
tervals for its real roots, say non-overlapping intervals with rational bounds that
contain a unique real root off (see [11]). Finally, interval arithmetic is used for
getting isolating boxes of the real roots of the system (say non overlapping products
of intervals with rational bounds containing a unique real root of the system), by
studying the RUR over the isolating intervals off . In practice, we use the function
RootFinding[Isolate]from Maple software, which performs exactly the computa-
tions described above.

For example, with (b = 2, L2 = 2, L3 = 3, ρ1 = 2), the polynomial systemS
defining the cuspidal configurations has 16 real solutions. One of these solutions is
(ρ2 = 2.30,ρ3 = 1.86,φ = −2.36,x= 1.79,y= 0.885,θ2 = −2.88,θ3 = −0.999).
We observe the three coalescing configurations around this root by calculating the
direct kinematic solutions withθ2 = −2.892 andθ3 =−1.007. These solutions are
shown in Figure 2.
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Fig. 2 A cuspidal configuration (left), and the three converging configurations (right).

3.2 Discriminant varieties
The above method allows one to study instances of the problemand may be used
together with a discretization of the parameter space to geta first idea of the com-
plexity of the general problem to be solved. But the true issue addressed in this paper
is to find criteria on the parameters that allow classifying the configurations to be
studied (for example to distinguish the manipulators having cuspidal configurations
from the others). This leads to a more general problem since one then has to study
non zero-dimensional, semi-algebraic sets.

Let p1, . . . , pm,q1, . . . ,ql be polynomials with rational coefficients depending on
the unknownsX1, . . . ,Xn and on the parametersU1, . . . ,Ud. Let us consider the con-
structible set :
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C = {v ∈ Cn , p1(v) = 0, . . . , pm(v) = 0,q1(v) 6= 0, . . .ql(v) 6= 0}

If we assume thatC is a finite number of points for almost all the parameter
values, a discriminant varietyVD of C is a variety in the parameter spaceCd such
that, over each connected open setU satisfyingU ∩VD = /0, C defines an analytic
covering. In particular, the number of points ofC over any point ofU is constant.

Let us now consider the following semi-algebraic set :

S = {v ∈R11, p(v) = 0,q(v)> 0,∀p(v) ∈ J5(J5(S,Y),Y),∀q(v) ∈ {b,L2,L3,ρ1}}

If we assume thatS has a finite number of solutions over at least one real point
that does not belong toVD, thenVD∩Rd can be viewed as a real discriminant variety
of S , with the same property : over each connected open setU ⊂ Rd such that
U ∩VD = /0, C defines an analytic covering. In particular, the number of points of
R over any point ofU is constant.

Discriminant varieties can be computed using basic and wellknown tools from
computer algebra such as Gröbner bases (see [8]) and a full package computing
such objects in a general framework is available in Maple software through the
RootFinding[Parametric]package. Figure 3 represents the discriminant variety of
the cuspidal configurations of the RPR-2PRR manipulator.

3.3 The complementary of a discriminant variety
At this stage, we know, by construction, that over any simplyconnected open set
that does not intersect the discriminant variety (so-called regions), the system has a
constant number of (real) roots.

The goal of this part is now to provide a description of the regions for which the
number of solutions of the system at hand is constant. For that, we compute an open
CAD ([3, 5]).

LetPd ⊂Q[U1, . . . ,Ud] be a set of polynomials. Fori = d−1. . .0, we introduce
a set of polynomialsPi ⊂Q[U1, . . . ,Ud−i] defined by a backward recursion:

• Pd : the polynomials defining the discriminant variety
• Pi : {Discriminant(p,Ui),LeadingCoefficient(p,Ui), Resultant(p,q,Ui),

p,q∈ Pi+1}
We can associate to eachPi an algebraic variety of dimension at mosti−1 :Vi =

V(∏p∈Pi
p). Figure 3 and 4 represent respectivelyV3 andV2 for the manipulator at

hand.
TheVi are used to define recursively a finite union of simply connected open

subsets ofRi of dimensioni: ∪ni
k=1Ui,k such thatVi ∩Ui,k = /0, and one pointui,k

with rational coordinates in eachUi,k.
In order to define theUi,k, we introduce the following notations. Ifp is a univari-

ate polynomial withn real roots:

Root(p, l) =







−∞ if l ≤ 0
the l th real roots ofp if 1 ≤ l ≤ n
+∞ if l > n
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PSfrag

Fig. 3 Discriminant Variety of the cuspidal
configurations

Fig. 4 V2 for the cuspidal configurations of
the manipulator.

Moreover, if p is an-variate polynomial, andv is an−1-uplet, thenpv denotes
the univariate polynomial where the firstn−1 variables have been replaced byv.

Roughly speaking, the recursive process defining theUi,k is the following:

• For i = 1, let p1 =∏p∈P1
p. TakingU1,k =]Root(p,k);Root(p,k+1)[ for k from

0 ton wheren is the number of real roots ofp1, one gets a partition ofR that fits
the above definition. Moreover, one can chose arbitrarily one rational pointu1,k
in eachU1,k.

• Then, letpi = ∏p∈P1
p. The regionsUi,k and the pointsui,k are of the form:

Ui,k = {(v1, ...,vi−1,vi) |v := (v1, ...,vi−1) ∈ Ui−1, j ,
vi ∈]Root(pv

i , l),Root(pv
i , l +1)[}

ui,k = (β1, ...,βi−1,βi), with

{

(β1, ...,βi−1) = ui−1, j

βi ∈]Root(p
ui−1, j
i , l),Root(p

ui−1, j
i , l +1)[

where j, l are fixed integer.

For our example, we get forp3 a trivariate polynomial of degree 33, forp2 a
bivariate polynomial of degree 113, and forp1 a univariate polynomial of degree
59. The zero-dimensional solver then provides the positivereal roots ofp1 (Table
1), from which we easily deduce the open intervalsu1,k. We then use the zero-
dimensional solver to solve everyp2(u1,k,U2) and deduce all the tests points of
the U2,k′ in each cells of Figure 4. Finally we use the zero-dimensional solver to
solve everyp3(u2,k,U3) and deduce all the tests points of theU3,k′ , describing so
the complementary of the discriminant variety.

Table 1 Numerical values of the positive roots ofp1

b b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12

0.0 0.5330.5640.6170.6560.7071.0 1.41 1.52 1.62 1.77 1.88

3.4 Discussing the number of solutions of the parametric system.
At this stage, we have a full description of the complementary of the discriminant
variety of the system to be solved : a recursive process for the construction of each
cell Ud,k and a test point (with rational coordinates) in each of thesecells. By def-
inition of the discriminant variety, we know that the systemhas a constant finite
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number of solutions over each of these cells and computing this number for each
cell is the only remaining step. This can be done simply by solving all the systems
S|U=ud,k

, k= 1. . .nd using the zero-dimensional solver.
For our example, the process described in 3.3 returns 344 cells of dimension 3

( U3,1, ...,U3,344 ). We solve the systemS for each of the 344 associated sample
points, and we get always either 0 or 16 solutions. By selecting only the cells where
the manipulator has 16 cuspidal configurations, we obtain the 58 cells shown in Fig-
ure 5. Table 2 provides the different formula bounding the three dimensional cells
U3,1, ...,U3,344 and Table 3 represents the 58 cells of Figure 5, where the manipula-
tor has 16 cuspidal configurations.

Table 2 Formula describing the boundaries of the cells in Table 3.

b1 = 0,b2 = Root(8b6−11b4+6b2−1,2) L21
(b) = Root

(

(

b2+1
)3

L6
2−3

(

b2+3b+1
)(

b2−3b+1
)

(b−1)2 (b+1)2 L4
2+

b3 = Root(4b2+b6−3b4−1,2), b4 = Root(b8+3b6+3b4+b2−1,2) 3
(

b2+1
)

(b−1)4 (b+1)4 L2
2− (b−1)6 (b+1)6 ,2

)

b5 = Root(−2b4+b6+3b2−1,2), b6 = 1/
√

2, b7 = 1, b8 =
√

(2) L22
(b) = 1−b2, L23

(b) = 1/
√

1−b2, L24
(b) = (1−b2)/b, L25

(b) = ∞

b9 =Root(2b2+b6−3b4−1,2), b10=Root(b8−b6−3b4−3b2−1,2) L26
(b) = b2/

√

1−b2, L27
(b) = 1/

√

b2−1, L28
(b) = b2/

√

b2−1

b11 = Root(−4b4+b6+3b2−1,2) L29
(b) = (b2−1)/b, L210

(b) = b2−1

b12 = Root(b6−6b4+11b2−8,2), b13= ∞

ρ11
(b,L2) = Root(−ρ6

1b6+3b4
(

L2
2b2+1−L2

2

)

ρ4
1 −3b2

(

−7L2
2b2+7L2

2+L4
2+L4

2b4−2L4
2b2+1

)

ρ2
1 +

(

L2
2b2+1−L2

2

)3
,2)

ρ12
(b,L2) = Root(ρ6

1 +
(

−3b4+3L2
2b2−3L2

2

)

ρ4
1 +

(

21L2
2b6+3L4

2b4−6L4
2b2+3b8−21L2

2b4+3L4
2

)

ρ2
1 +

(

L2
2b2−b4−L2

2

)3
,2)

ρ12
(b,L2) = b2, ρ13

(b,L2) = 1/b

Table 3 Cells ofR3 where the manipulator has cuspidal configurations.
]b1b2[ (]L21

L22
[, ]ρ11

ρ12
[), (]L22

L23
[, ]ρ13

ρ12
[), (]L23

L24
[, ]ρ13

ρ12
[), (]L24

L25
[, ]ρ13

ρ14
[)

]b2 b3[ (]L21
L26

[, ]ρ11
ρ12

[), (]L26
L22

[, ]ρ11
ρ12

[), (]L22
L23

[, ]ρ13
ρ12

[), (]L23
L24

[, ]ρ13
ρ12

[), (]L24
L25

[, ]ρ13
ρ14

[)

]b3 b4[ (]L21
L26

[, ]ρ11
ρ12

[), (]L26
L22

[, ]ρ11
ρ12

[), (]L22
L24

[, ]ρ13
ρ12

[), (]L24
L23

[, ]ρ13
ρ14

[), (]L23
L25

[, ]ρ13
ρ14

[)

]b4 b5[ (]L21
L26

[, ]ρ11
ρ12

[), (]L26
L22

[, ]ρ11
ρ12

[), (]L22
L24

[, ]ρ13
ρ12

[), (]L24
L23

[, ]ρ13
ρ14

[), (]L23
L25

[, ]ρ13
ρ14

[)

]b5 b6[ (]L21
L22

[, ]ρ11
ρ12

[), (]L22
L26

[, ]ρ13
ρ12

[), (]L26
L24

[, ]ρ13
ρ12

[), (]L24
L23

[, ]ρ13
ρ14

[), (]L23
L25

[, ]ρ13
ρ14

[)

]b6 b7[ (]L21
L22

[, ]ρ11
ρ12

[), (]L22
L24

[, ]ρ13
ρ12

[), (]L24
L26

[, ]ρ13
ρ14

[), (]L26
L23

[, ]ρ13
ρ14

[), (]L23
L25

[, ]ρ13
ρ14

[)

]b7 b8[ (]L21
L29

[, ]ρ12
ρ11

[), (]L29
L210

[, ]ρ14
ρ11

[), (]L210
L27

[, ]ρ14
ρ13

[), (]L27
L28

[, ]ρ14
ρ13

[), (]L28
L25

[, ]ρ14
ρ13

[)

]b8 b9[ (]L21
L29

[, ]ρ12
ρ11

[), (]L29
L27

[, ]ρ14
ρ11

[), (]L27
L210

[, ]ρ14
ρ11

[), (]L210
L28

[, ]ρ14
ρ13

[), (]L28
L25

[, ]ρ14
ρ13

[)

]b9 b10[ (]L21
L27

[, ]ρ12
ρ11

[), (]L27
L29

[, ]ρ12
ρ11

[), (]L29
L210

[, ]ρ14
ρ11

[), (]L210
L28

[, ]ρ14
ρ13

[), (]L28
L25

[, ]ρ14
ρ13

[)

]b10b11[ (]L21
L27

[, ]ρ12
ρ11

[), (]L27
L29

[, ]ρ12
ρ11

[), (]L29
L210

[, ]ρ14
ρ11

[), (]L210
L28

[, ]ρ14
ρ13

[), (]L28
L25

[, ]ρ14
ρ13

[)

]b11b12[ (]L21
L27

[, ]ρ12
ρ11

[), (]L27
L29

[, ]ρ12
ρ11

[), (]L29
L28

[, ]ρ14
ρ11

[), (]L28
L210

[, ]ρ14
ρ11

[, (]L210
L25

[, ]ρ14
ρ13

[)

]b12b13[ (]L21
L29

[, ]ρ12
ρ11

[), (]L29
L28

[, ]ρ14
ρ11

[), (]L28
L210

[, ]ρ14
ρ11

[), (]L210
L25

[, ]ρ14
ρ13

[)

4 Conclusion
We have proposed a general method to describe rigorously thedesign parameters
for which a manipulator has cuspidal configurations. This method can be applied
directly to other mechanisms, such as the ones studied in [4,12] for example. The
tools used to perform the computations were implemented in aMaple library called
Siropa2. For 3D illustration purposes, we have detailed the main computations to
be performed with manipulators satisfyingL2 = L3. However, the proposed method
allows one directly to solve the general case (L2 6= L3) by computing a discrimi-
nant variety of the system with 4 parametersb,L2,L3,ρ1, and by decomposingR4

with a CAD adapted to the discriminant variety. This description generalizes and

2 http://www.irccyn.ec-nantes.fr/ moroz/siropa/doc
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completes the analyse done in [6]. There is still some limitations though. In particu-
lar, when the system that defines the cuspidal configurationshas no solution, it may
mean that there exists a manipulator with no cuspidal configurations, but it may also
mean that no manipulator can be assembled with these design parameters. Thus it
is essential to be able to describe precisely the set of design parameter values for
which a manipulator can be assembled.

ρ1

L2 b
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Fig. 5 The cells ofR3 where the manipulator admits cuspidal configurations, front view (left) and
back view (right).
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