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Abstract. This paper investigates the existence conditions of cusgipm the design parameter
space of the RR-2PRR parallel manipulators. Cusp points make possible nogusim assembly-
mode changing motion, which can possibly increase the sitgecaspect, i.e. the maximum sin-
gularity free workspace. The method used is based on themofi discriminant varieties and
Cylindrical Algebraic Decomposition, and resorts to Grébbases for the solutions of systems of
equations.
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1 Introduction

It is well known that the workspace of a parallel manipulai®rdivided into
singularity-free connected regions [2]. These regionsaparated by the so-called
parallel singular configurations, where the manipulatseits stiffness and gets
out of control. The so-called cuspidal manipulators haeesthility to change their
assembly-mode without running into a singularity, whichgimay increase the size
of the singularity-free regions [9, 7]. The word “cuspidatéms from the notion
of cuspidal configuration, defined as one configuration wieee direct kinematic
solutions coalesce. A cuspidal configuration in the mauifmuljoint space allows
non-singular assembly-mode changing motions. Thus, m@térg cuspidal config-
urations is an important issue that has attracted the atteat several researchers
[9, 6, 13, 1]. In particular, [13] (resp. [1]) has analyzed ttuspidal configurations
of planar 3-RR (resp. 3-RR) manipulators More recently, [6] studied the AR
2PRR, a simpler planar 3-DOF manipulator that lends itself gehtaic calculus
[6]. In both papers, the cusp configurations were determimetboking for the
triple roots of a univariate polynomial. This approach majd/spurious solutions.
In this paper, the cuspidal configuration are determinegttly from the Jacobian of
the whole set of geometric constraints of the robot, whicargaties that only true
solutions are obtained. Then, we classify the parameteespia family of RER-
2PRR manipulators according to the number of cuspidal configama. It is shown
that these manipulators have either 0 or 16 cuspidal comfiiguns. The proposed

1 The underlined letter means an actuated joint
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method is based on the notion of discriminant varieties gfiddrical algebraic de-
composition, and resorts to Grobner bases for the solutibaystems of equations.

2 Mechanism under study

2.1 Kinematic equations

A RPR-2PRR parallel manipulator is @
shown in Fig. 1. This manipulator was an- 3.0
alyzed in [6]. It has 1 actuated prismatic

joint p;, and 2 passive prismatic joints H

p2 and p3. The two revolute joints cen- b )
tered inA; andAg are actuated while the W
ones centered i\, B1, B, and B; are / 1(XY)

9

passive. The pose of the moving platform
is described by the position coordinates o
(x,y) of By and by the orientatiom of A2
the moving platfornB,B,. The inputvari- Fig. 1 A RPR-2PRR parallel manipulators
ables (actuated joints values) are defingith (@=1,b=21,=2l3=2,x=1/2y=
by p1, 92-and 6. The pointsBy, B, and %llngnogfgyThe actuated joint symbols were
B3 are aligned, a=Rs, By), b= (B1, Bg),
L, = (Az, Bz) HHQLg = (A3,_ B3). ) )

The geometric constraints can be expressed by the follo®/eguations [6]:

fi:pf = +y?
fo 1 x=p2+LycoqB,) —bcoga) fa 1 x=Lzcog63) —acoqa) 1)
f3 1y =Losin(6,) — bsin(a) fs 1 y=p3+ Lzsin(63) —asin(a)

Without loss of generality, we fig = 1 in the rest of the article.

2.2 An algebraic model

The singular and cuspidal equations were previously coetpusing the three fol-
lowing steps [6]:

1. Reduce the equation system to a polynomial equation diémgon the articular
variablesps, 61, 6, and one pose variabte g(p1, 61, 62,a) = 0 (this step is done
by eliminating variables, either with resultants or withbBner basis )

2. Addthe constrain}a = 0 to define the parallel singularities

3. Add the constrai g =0 andg—z% = 0 to define the cuspidal configurations

This approach has the advantage of reducing the problemropgting the cusp

configurations, to the problem of analysing the triple ramfta single polynomial.

However, this only gives a necessary condition for the maatpr to have cusp
configurations. In particular it is possible that 3 confidimas of the robot coalesce
in one coordinate but not in the others.
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Let us come back to the theoretical definitions, using Jacoivatrices to define
directly the triple roots of the original system of equatamall the input and output
variables. IfP is a list of polynomials an a list of variables, let (P, X) be the
union of P = {py,..., pm} and of all thek x k minors of the Jacobian matrix of the
p; with respect to the;.

For the analysis of the RPR—2PRR manipulator, we introduce:

Y :=[x,Vy.a,pz,Ps3] W :=[b,Ly, L3, 1,0, 65] S:={fy,...,fs}.

Using these notations, the parallel singularities of thaimalator are defined by
{veRY p(v) =0,q(v) >0,¥Yp<c I5(SY),vq € {b,Ly,Ls,p1} so that the cuspidal
configurations are fully characterized by :

& ={veRM p(v)=0,q(v) >0,Vpe J5(Is(SY),Y),vq e {b,Lo,Ls,p1}}

3 Main tools from computational algebra
The algebraic problem to be solved is basically relatedeéaésolution of polyno-
mial parametric systems.

More specifically, one needs to solve a system of the follgvidmm :

E={veR", pi(v)=0,...,pm(v) =0,q:1(v) > 0,...q(v) > 0}

whereps, ..., pPm,d1,---,q are polynomials with rational coefficients depending
on the unknown¥X = [Xy, ..., Xy] and on the parametells= [Uy, ..., Uq].

There are numerous possible ways of solving parametriesyssin general. Here
we focus on the use of Discriminant Varieties (DV, [8]) andi@grical Algebraic
Decomposition (CAD, [3]) for two reasons. It provides a falrdecomposition of
the parameter space through an exactly known algebraietydno approximation).

It has been already successfully used for similar mathealatiasses of problems
(see [4]).

To reduce the dimension of the parameter space to three sd taan be dis-
played, we set, = Lz. Not that the proposed method can treat the general case
L, # L3 without any problems. Wheh, = L3, the system to solve is” with the
unknownsx,y, a, p2, p3, 62, 65] and the parametefb, Lo, p;].

3.1 Basic black-boxes
First experiments are often performed for specific valuethefparameters, espe-
cially singular and/or degenerated cases. Here, we mag@yenact computations,
namely formal elimination of variables (resultants, Grébbases) and resolution of
systems with a finite number of solutions, including uniagipolynomials.

Let us describe the global solver for zero-dimensionaksyst It will be used as
a black box in the general algorithm we describe in the sequel

Given any system of equatiops =0, ..., pm= 0 of polynomials ofQ[Xy, ..., X,
one first computes a Grobner basis of the ideqd, ..., pm > for any ordering.

At this stage, one can detect easily if the system has or hianitely many
complex solutions.
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If yes, then compute a so called Rational Univariate Reprtasien or RUR (see
[10]) of < p1,...,pPm >, Which is, in short, an equivalent system of the form :

{f(T) =0,% = %1(%>,...,xn = gg”(g))}, T being a new variable that is indepen-

dent of Xy,...,Xn, equipped with a so calleskeparating elemenr(injective on the
solutions of the system) € Q[X, ..., Xs] and such that :

V(pom) S V(S V((pa- .., )

(X1,-- %)~ B=U(X1,..., %) (%1(%?, __,9;(%3)))

defines a bijection between the (real) roots of the systemofgel by (pa, ..., pm))
and the (real) roots of the univariate polynomial (denoted bf )).

We then solve the univariate polynomiél computing so called isolating in-
tervals for its real roots, say non-overlapping intervalthwational bounds that
contain a unique real root dof (see [11]). Finally, interval arithmetic is used for
getting isolating boxes of the real roots of the system (sayaverlapping products
of intervals with rational bounds containing a unique resdtrof the system), by
studying the RUR over the isolating intervalsfofin practice, we use the function
RootFinding[Isolate]from Maple software, which performs exactly the computa-
tions described above.

For example, withlf = 2, L, = 2, L3 = 3, p1 = 2), the polynomial systenv’
defining the cuspidal configurations has 16 real solutiome @f these solutions is
(p2 =2.30,p3=1.86,0 = —2.36,x=1.79,y = 0.885 6, = —2.88 03 = —0.999).
We observe the three coalescing configurations arounddbisby calculating the
direct kinematic solutions with, = —2.892 andf; = —1.007. These solutions are
shown in Figure 2.

A A

2 | o/

By
“ 3 AAA,
A on, A1 e=9)
B> B 2

Fig. 2 A cuspidal configuration (left), and the three convergingfigurations (right).

3.2 Discriminant varieties
The above method allows one to study instances of the proafehrmay be used
together with a discretization of the parameter space t@ diest idea of the com-
plexity of the general problem to be solved. But the truegssidressed in this paper
is to find criteria on the parameters that allow classifying tonfigurations to be
studied (for example to distinguish the manipulators hgeinspidal configurations
from the others). This leads to a more general problem sinedtten has to study
non zero-dimensional, semi-algebraic sets.

Let p1,...,Pm,d1,---,q be polynomials with rational coefficients depending on
the unknowny, ..., X, and on the parametels, ..., Uy. Let us consider the con-
structible set :
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¢={veC" , pi(v)=0,...,pm(v) =0,01(v) #0,...q(v) # 0}

If we assume tha¥ is a finite number of points for almost all the parameter
values, a discriminant varielyp of ¢ is a variety in the parameter spa€8 such
that, over each connected open4gesatisfyingz NVp = 0, ¢ defines an analytic
covering. In particular, the number of points@fover any point of”Z is constant.

Let us now consider the following semi-algebraic set :

 ={veR¥ p(v) =0,q(v) > 0,Vp(Vv) € J5(J5(SY),Y),vq(v) € {b,L, L3, p1}}

If we assume that” has a finite number of solutions over at least one real point
that does not belong ¥, thenVp NRY can be viewed as a real discriminant variety
of .7, with the same property : over each connected operset RY such that
% NVp = 0, ¢ defines an analytic covering. In particular, the number affifgoof
R over any point of% is constant.

Discriminant varieties can be computed using basic and kwellvn tools from
computer algebra such as Grobner bases (see [8]) and aaftkhpe computing
such objects in a general framework is available in Mapléwsok through the
RootFinding[Parametricpackage. Figure 3 represents the discriminant variety of
the cuspidal configurations of the R2PRR manipulator.

3.3 The complementary of a discriminant variety

At this stage, we know, by construction, that over any simgaypnected open set
that does not intersect the discriminant variety (so-dakgions), the system has a
constant number of (real) roots.

The goal of this part is now to provide a description of theaeg for which the
number of solutions of the system at hand is constant. Fontleecompute an open
CAD ([3, 5)).

Let 4 C Q[U4,...,Uq] be a set of polynomials. For=d—1...0, we introduce
a set of polynomials?; C Q[Uy,...,Uq_i] defined by a backward recursion:

e Z4 :the polynomials defining the discriminant variety
e 7 : {Discriminantp,U;),LeadingCoefficieriip,U;), Resultantp,q,U;),
P.aeZ .}

We can associate to each an algebraic variety of dimension at mostl :V; =
V([Mpez, P). Figure 3 and 4 represent respectivélyandV, for the manipulator at
hand.

TheV,; are used to define recursively a finite union of simply conegapen
subsets ofR' of dimensioni: UEi:lﬁZ/iyk such thatV; N % x = 0, and one point; k
with rational coordinates in eacks .

In order to define theZ i, we introduce the following notations. jifis a univari-
ate polynomial withn real roots:

—o0if | <0
Root(p,|) = ¢ thel™" real roots ofpif 1 <I <n
+ooif | >n
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st

Fig. 3 Discriminant Variety of the cuspidal Fig. 4 V, for the cuspidal configurations of
configurations the manipulator.
Moreover, if p is an-variate polynomial, ang is an— 1-uplet, thenp” denotes
the univariate polynomial where the first- 1 variables have been replacedwby
Roughly speaking, the recursive process definingZheis the following:

e Fori=1,letpy = []pep, p. Taking1 x =|Root(p, k); Root( p,k-+1)[ for k from
0 tonwherenis the number of real roots @f, one gets a partition d that fits
the above definition. Moreover, one can chose arbitrarily i@tional pointu x
in each? .

e Then, letp; = [pe 2, P- The regions’; x and the pointsi; x are of the form:

Uy ={(Ve, .., Vim1, Vi) | Vi= (V1,00 Vim1) € %-1,)s
vi €]Root Y. 1), Root(pY, | + 1)}
o o - (Br,-sBi-1) = Ui—1
Uk = (Bl7"‘ﬂB|*17B|)ﬂ with {BI E]ROOT(D:JFLJ,I),]ROOT(D:JFLJ,I +1)[

wherej,| are fixed integer.

For our example, we get fops a trivariate polynomial of degree 33, f@e a
bivariate polynomial of degree 113, and foy a univariate polynomial of degree
59. The zero-dimensional solver then provides the posithat roots ofp; (Table
1), from which we easily deduce the open intervalg. We then use the zero-
dimensional solver to solve evepy(uyk,Uz2) and deduce all the tests points of
the %, in each cells of Figure 4. Finally we use the zero-dimendisolver to
solve everyps(uzx,Us) and deduce all the tests points of thg),, describing so
the complementary of the discriminant variety.

Table1 Numerical values of the positive roots pf

b{|bi| by | bs | bs | bs | bg |br| bg | by |big|b11|bi2
0.0/0.5330.5640.6170.6560.7071.0{1.41]1.5211.621.771.8

3.4 Discussing the number of solutions of the parametric system.

At this stage, we have a full description of the complemeantéduthe discriminant
variety of the system to be solved : a recursive process @camstruction of each
cell %4k and a test point (with rational coordinates) in each of treedls. By def-
inition of the discriminant variety, we know that the systéias a constant finite
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number of solutions over each of these cells and computisgntimber for each
cell is the only remaining step. This can be done simply byisglall the systems
ZU=uq0 K= 1...nq using the zero-dimensional solver.

For our example, the process described in 3.3 returns 34stafedimension 3
(%321, ...,%3344). We solve the systeny” for each of the 344 associated sample
points, and we get always either O or 16 solutions. By selgainly the cells where
the manipulator has 16 cuspidal configurations, we obt&ib&cells shown in Fig-
ure 5. Table 2 provides the different formula bounding the¢rdimensional cells
31,..., %3344 and Table 3 represents the 58 cells of Figure 5, where thepmlani
tor has 16 cuspidal configurations.

Table2 Formula describing the boundaries of the cells in Table 3.

by = 0,by = Roo(8b8 — 1164 + 6b2 — 1,2) Loy ()= Rom<(b2 + 1)3 §-3 <b2 30+ 1) (bz —3b+ 1) (b-12(b+12L5+
bg = Root4b2 + b8 — 364 —1,2), by = Root(b8 +3b6 +3b% +b2 —1,2) (bz + 1) (b-14(b+1)413 (b 1)8(b+1)8,2

bs = Root—2b% + b8+ 362 —1,2).bg = 1/v2, by = 1, bg = /(2) Lo, ()= 1-b2, Loy (b) = 1/v/1-12, L2 (1-b2)/b, Log(b) =

bg = Roo2b2 +b8 —3b% —1,2), by g = RoothB — b —3b4 32 —1,2) Log(b) = b2/V1-b2, Loy (B)=1/V /b2 -1, 2g(D)= b2/vVb2 1

byq = Root—4b% b8 362~ 1,2) Lag(b) = (b2 —1)/b, L2, = b2 -1

b1o = Rootb® — 6b% + 11b2 - 8,2), bjz=w

3
Py, (bLy) = Roo(—p$bS + 3b% (L%b2+1—L%> pf 302 (—7L%b2+7L%+Lg+L‘2‘b4 —2L‘2‘b2+1> P+ (L%b2+1— L%) 2)
3
p1, (bLp) = Rootpf + (—3b4 +31302 - 3L§) pf+ (21L§b6 +3140% 61402 308 213p% +3L§) pf+ (Lgbz . Lg) 2)
p1, (bLp) = b2, P15 (bLp) =1/b

Table 3 Cells of R® where the manipulator has cuspidal configurations.

[bg by (IL2g L2, l-1p1y P1,D)- (L2, L2g[:1P15 1, D): (L2g L2, 1P15 P15 D) (Lo, Log P15 1, )

Ibz b3 (IL2g Logl:1P14 P15 1) (L2g L2, 1014 P15 1): (L2, L2g 1015 P15 1): (Log Lo, P15 P1, D (ho, Log [ P15 P1, D)
Ibgba[ (JL2g Logl-1p1y P1,D): (L2g L2, [:1P1y P15 D)- (L2, L2, 1015 P15 D): (Lo, Log [ P15 1, D Loz Log [ JP15P1, D)
Jbgbs| (JL2g Logl-1p1y P1,D)- (L2g L2, [:1P1y 1, D)- (L2, L2, 1015 P15 D) (Lo, Log [ P15 1, D Loz Log [ JP15P1, D)
Jbs bg| (1L2g L2, [1P14 P15 1): (L2, Log 1015 01, ): (IL2g L2, 1015 P15 1): (Lo, Log [ P15 P1, D (log Log [ JP15 P1, D)
Jog b7[ (1L2; L2, [1P14 P1,D): (L2, L2y 1015 01, - (L2, L2g 1015 P1, D) (Log Log P15 P2, D Loz Log [ P15 P1, D)
Jb7bg| (L2 Logl-1p1, P14 - (L2g L2y ol JP1, P1y D (L2 g L2, [Py, P15D)- (L2, Logllp1, P15 D). (L2g L2g 1 1p1, P15 1)
Ibgbg[ (1L2g Log l:1P1, P14 ): (L2g L2y 101, P14 ): (1L2g L2y o [1P1, P14 ) (1L2g g Log 1P1, P15 D) (Log Log [ 1P1, P15 1)
Ibg byl (1L2; Lo, [1P1, P14 D L2y Log [ 1P1, P14 - (L2g L2y o [1P1, P14 s (1L2g g Log [-1P1, P15 D) (Log Log [1P1, P15 1)
Ib1gbyl (IL2; L2, l1p1, P14 - (L2, Log l:1p1, P14 D)- (L2g L2g o l1P1, P14 - L2y g Logl1P1, P15 D). (L2g L2g 1P1, P15 )
1b11b12( (1L2g L2, [-1P1, P14 - L2y Log 1 1P1, P14 D): (JL2g Log [1P1, P14 s (ILog Loy o1 1P1, P14 [ Loy g Log [P, P15 1)
Iby2bs3 (]L21 L2g [:1P15 P14 D): (Log Logl:1P1, 1y D) (Log Loy o1 1P1, P14 D) (L2 o Log [1P1, P15 1)

4 Conclusion

We have proposed a general method to describe rigorouslgesign parameters
for which a manipulator has cuspidal configurations. Thishoé can be applied
directly to other mechanisms, such as the ones studied t2]4or example. The
tools used to perform the computations were implementedagle library called
Sirop&. For 3D illustration purposes, we have detailed the mainmaations to
be performed with manipulators satisfyihg = L3. However, the proposed method
allows one directly to solve the general cake # L3) by computing a discrimi-
nant variety of the system with 4 parametbrk,, L3, p1, and by decomposing?*
with a CAD adapted to the discriminant variety. This ded@ip generalizes and

2 http://www.irccyn.ec-nantes.fr/ moroz/siropa/doc
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completes the analyse done in [6]. There is still some litiites though. In particu-
lar, when the system that defines the cuspidal configuraliasso solution, it may
mean that there exists a manipulator with no cuspidal cordtgns, but it may also
mean that no manipulator can be assembled with these desigmpters. Thus it
is essential to be able to describe precisely the set of dgggameter values for
which a manipulator can be assembled.

Fig. 5 The cells ofR® where the manipulator admits cuspidal configurations,tfview (left) and
back view (right).
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