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Metamodel-Assisted Evolutionary Algorithms are low-cost optimization meth-
ods for CPU demanding problems. Memetic Algorithms combine global and
local search methods, aiming at improving the quality of promising solutions.
This paper proposes a Metamodel-Assisted Memetic Algorithm which com-
bines and extends the capabilities of the aforementioned techniques. Herein,
metamodels undertake a dual role: they perform a low-cost pre-evaluation of
population members during the global search and the gradient-based refine-
ment of promising solutions. This reduces significantly the number of calls
to the evaluation tool and overcomes the need for computing the objective
function gradients.

In multi-objective problems, the selection of individuals for refinement is
based on domination and distance criteria. During refinement, a scalar strength
function is maximized and this proves to be beneficial in constrained optimiza-
tion. The proposed Metamodel-Assisted Memetic Algorithm employs principles
of Lamarckian learning and is demonstrated on mathematical and engineering
applications.

Keywords: Metamodel-Assisted Memetic Algorithms; Fitness function;
Strength; Multi-objective Optimization.

1. Introduction

In the literature, a considerable number of papers appeared on the use of surrogate evalu-
ation models or metamodels to assist global search (GS ) methods, Shan and Wang (2005),
such as the Evolutionary Algorithms (EAs), Madsen et al. (2000), Ong et al. (2000), Ul-
mer et al. (2004, 2003), Jin et al. (2000), Buche et al. (2005), Lim et al. (2008). These
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methods can be classified based on the way metamodels are coupled with or updated
during the evolutionary search. Further discussion on the so-called Metamodel-Assisted
Evolutionary Algorithms (MAEAs) can be found in relevant review papers and books
such as in Giannakoglou (2002), Keane and Nair (2005), Jin et al. (2002). In MAEAs, the
role of metamodels is to provide approximations to the fitness or cost of candidate solu-
tions and, thus, save a great amount of evaluations which would otherwise be carried out
by the CPU-demanding problem-specific tool. In Karakasis and Giannakoglou (2005),
Giannakoglou et al. (2001), they are used to pre-evaluate the population members, in
the so-called Inexact Pre-Evaluation (IPE ) phase of each generation of the MAEA. IPE
is based on metamodels trained on the fly, on a small number of already evaluated indi-
viduals in the neighborhood of each inividual (local metamodels).

Memetic Algorithms (MAs), Dawkins (1976), Moscato (1999), Krasnogor (2002), Ong
and Keane (2004), Ong et al. (2006), Krasnogor and Gustafson (2002), Hart (1994), are
optimization methods that combine GS and local search (LS ). MAs profit of the abilities
of EAs to explore the most promising regions of the design space without being trapped
into local optima and the efficiency of deterministic methods to further refine promising
solutions located during GS. However, MAs may become CPU demanding, since they
employ calls to the evaluation tool and, likely, the one computing the gradient of the
objective function.

This paper presents a Metamodel-Assisted Memetic Algorithm (MAMA) for multi-
objective optimization (MOO) problems, in which locally trained metamodels approxi-
mate the objective function values during the GS and the gradient required for the re-
finement. The core GS tool is a MAEA whereas an ascent method, Nocedal and Wright
(1999), using the gradient provided by the metamodels is used for the LS. The same
set of patterns is used to train a radial basis function (RBF ), Haykin (1999), network
for each individual during the IPE phase of the MAEA and the refinement process. In
contrast to the MAEA which, in MOO problems, seeks the Pareto set of non-dominated
solutions, LS copes with the maximization of a (scalar) strength function. In the liter-
ature of MAs for MOO, it is proposed either to refine only one of the objectives at a
time, Bosman and de Jong (2005), or to handle a linear combination of weighted objec-
tives, Ishibuchi and Murata (1996), Jaszkiewicz (2002), Ishibuchi et al. (2003), Lim et al.
(2008). The MPAES algorithm proposed in Knowles and Corne (2000) is an exception
since it employs a form of Pareto ranking based on comparing individuals to an archive
of non-dominated solutions.

In the present paper, a new scheme is proposed. The function to be maximized in LS
is a strength function that takes into account domination criteria. During the refinement
process, the local RBF networks are re-trained on the strength function values, com-
puted by considering the current offspring, parent and elite populations, and are used to
compute ascent directions. This is important when the objective functions have rugged
landscapes or we are dealing with constrained problems where the objective function is
penalized proportionally to the degree of constraints’ violation. The outcome of the LS
process may displace the starting point, for both genotype and phenotype, according to
the Lamarckian learning rules. Relevant papers on MAMAs almost exclusively focus on
single-objective optimization (SOO) problems and make use of metamodels to support
either both GS and LS, Zhou et al. (2007a,b), or only LS, Liang et al. (1999, 2000),
Hacker (2002).

The proposed MAMA is firstly demonstrated on mathematical benchmark cases and
its performance is analyzed statistically and compared to EAs and MAEAs. Two con-
strained engineering applications, namely the design of a combined cycle power plant and
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a compressor cascade, are also studied. All the examined cases deal with two objectives.

2. The Proposed MAMA

The proposed MAMA was built on an existing MAEA, Giannakoglou (2002), for MOO
problems with M objectives. One may clearly distinguish the proposed MAMA from a
MAEA or a “conventional” MA by (a) the LS algorithm which relies on local metamodels
trained on a scalar strength function to be maximized and (b) the coupling of LS with
the core MAEA, where a scheme for selecting individuals for LS is proposed.

MAMA involves four sets of candidate solutions: the offspring set Pλ,g, the parent
set Pµ,g, the archival set Pα,g (which progressively approaches the Pareto front of non-
dominated solutions) and an extra set PLS,g of individuals qualified to undergo LS. The
second index g stands for the generation counter. Candidate solutions are denoted by
~x∈RN and the objective function vector is ~F (~x)∈RM . During the first few generations
(g < gIPE , where gIPE is user-defined), the proposed MAMA behaves as a (µ,λ) EA and
the λ offspring are all evaluated on the problem-specific tool. The so-evaluated individuals
~x, paired with the ~F (~x) values, are recorded in a database D.

Dealing with MOO problems, it is necessary to adopt a fitness assignment technique;
through this technique a unique scalar fitness value φ is assigned to each population
member, depending on its ~F (~x) and dominance criteria. Herein, the selected technique
was inspired by the widely used SPEA2 (Strength Pareto EA), Zitzler et al. (2001). Two
terms contribute additively to the fitness value φ of any individual. The first term is the
raw fitness R and the second is density D. The raw fitness R of an individual is determined
by the strength S (i.e. the number of dominated individuals) of its dominators in Pλ,g.
The D value of each individual is determined by its distance from the k−th closest neighbor
in the normalized objectives space, where k=

√
λ. Then the scalar φ=φ(R(S), D) value

is computed, as in Zitzler et al. (2001). An illustrative example of the calculation of φ is
shown in figure 1. In the sake of clarity, when φ is computed using approximate objective
function values ~̃F (~x) (provided by the metamodels during the IPE phase, see Step 1
below), this will be denoted by φ̃.

The MAMA steps presented below apply if g ≥ gIPE , during which D is non-empty
(|D|= λD) and continues to be updated by recording all new individuals evaluated on
the problem-specific tool. In figure 3, the corresponding algorithm flowchart is shown.

Step 1. [GS : Inexact Pre-Evaluations] For each individual ~x∈Pλ,g, its K closest D entries
are selected to populate the corresponding training set TK . It is recommended that K
takes on a value close to (or slightly higher than) the number N of design variables. An
RBF network (with N input and M output units; N and M are equal to the number
of design variables and the number of objectives, respectively) is trained on the objec-

tive function vectors of the TK patterns and an approximate ~̃F (~x) is obtained. After
the metamodel-based evaluation (for all but the Pλ,g members which have been previ-
ously evaluated and can be restored from D) and by applying dominance and strength
criteria, as previously described, fitness values φ and φ̃ are assigned to all individuals
in Pλ,g. The λ individuals are sorted according to their fitness values (irrespective of
the evaluation tool used) and the top λe of them are selected to populate Pe,g, where
λe <λ is a user-defined integer.

Step 2: [GS : Exact evaluations] Each ~x ∈ Pe,g is re-evaluated using the problem-specific
tool and stored in D. The ~F (~x) values displace the metamodel-based ones for the
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Pe,g members. In constrained optimization cases, if a candidate solution violates even
a single constraint, the corresponding ~F (~x) includes an exponential penalty factor
depending on the degree of constraint violation.

Step 3. [LS : Preparation] A number of Pλ,g members for which ~F (~x) are known, is singled
out in PLS,g (λLS = |PLS,g|), according to distance and dominance criteria, as it will be
discussed elsewhere in this paper. The PLS,g members are selected from Pe,g (⊂Pλ,g)
and the subset Pλ,g ∩D, so that only individuals that have been evaluated on the
problem-specific tool may undergo LS.

Step 4. [LS : Refinement] The previously populated PLS,g members are refined using a
gradient-based descent method which, in contrast to conventional MAs, aims at max-
imizing their strength S. This search is subject to 2N inequality constraints, cor-
responding to the upper and lower variables’ bounds. To avoid calculations on the
problem-specific tool during LS, the gradient of S is approximated using the RBF
network trained on the S values of the TK patterns associated with each individual
(as formed in Step 1). The process initiates from the genotype ~x of the individual for
which both ~F (~x) (from Step 2) and strength S (from Step 3) are known and ends
up with a new individual ~x∗. This should be evaluated on the problem-specific tool
before being accepted or not. The new individual is archived in D and, in case the
starting objectives vector is improved, both ~x∗ and ~F ( ~x∗) displace ~x and ~F (~x) in Pλ,g

and PLS,g according to the Lamarckian learning rules. An example of the LS process
is shown in figure 2.

Step 5. [GS : Evolution] Fitness φ and φ̃ are updated for all individuals in Pg =Pµ,g ∪Pλ,g ∪
Pα,g. The elitism operator E is applied to Pe,g and Pα,g to update the elite set and
the evolution operators (parent selection P , crossover C and mutation M) to create
the new offspring population. Schematically,

Pa,g+1 = E(Pe,g ∪ Pα,g)

Pµ,g+1 = P (Pµ,g ∪ Pλ,g)

Pλ,g+1 = M(C(Pµ,g+1,Pα,g+1)).

Step 6. [Termination] If the maximum number of evaluations (on the problem-specific tool)
is reached or the set Pα remains unchanged for a number of generations, the algorithm
terminates. Otherwise, g←g+1 and the evolution continues from Step 1.

As already discussed, in order to maximize the expected gain from the refinement process,
PLS,g should be carefully populated. The number of refined individuals λLS is not fixed
and the user defines only its upper bound λmax

LS . In MOO problems, LS should hopefully
give new solutions that either dominate one or more members of the current archival
front or fill the gap between two non-dominated members or stretch the current front.
In problems with multimodal objective functions, it is evident that whether a gradient-
based search may or may not achieve any of these goals depends on the starting point.
Thus, the formation of PLS,g is based on three selection rules:

• PLS,g is populated by individuals evaluated on the problem-specific tool.
• Candidates with higher strength S must be selected with priority; S is calculated by

processing Pλ,g without taking into consideration the evaluation tool (problem-specific
tool or metamodel).

• A candidate is not allowed to enter PLS,g if it lies in the vicinity of a previous entry.

To summarize, among neighboring candidates, the most dominant one is chosen and the
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others are excluded. For instance, consider that among the two neighboring candidate
solutions A and B shown with circles in figure 4, only one must be selected for LS.
Though A does not dominate B and vice-versa, A is selected for LS since its strength is
higher.

3. Method Application & Assessment

3.1. Validation on Mathematical Problems

Before going through the two engineering applications, a thorough validation of the
proposed method on three two-objective function minimization problems is presented in
brief. These problems are known as the ZDT1, ZDT2 and ZDT3 (see Zitzler et al. (2000)
for detailed descriptions) and correspond to convex, concave and discontinuous Pareto
fronts, respectively. Each of them involved 30 optimization variables and was solved using
EA, MAEA and the proposed MAMA. To cope with MOO problems, the SPEA2 fitness
assignment algorithm was used in all of them. Each run was repeated 25 times with
different random number generation (RNG) seeds. The statistical processing of results
is based on the hypervolume performance indicator IH , Huang et al. (2007). Using IH ,
the front quality is quantified by the percentage of the volume (area) of a bounding box
which is not dominated by the front. By definition, small IH values denote high quality
fronts.

For all optimization runs, the parent and offspring populations used in EA, MAMA
and MAEA had µ=60 and λ=100 members, respectively. For the MAEA and MAMA,
the IPE phase (i.e. the use of metamodels) started when the database D (of previously
evaluated individuals) size exceeded 400 (λD≥400). In MAMA, the LS started simulta-
neously with the IPE phase. Also, at each generation λe =15 and λmax

LS =12 .
Tables 1, 2 and 3 present statistical measures of the performances of the three algo-

rithms during the evolution and demonstrate the superiority of MAMA, compared to
MAEA and EA. Statistical t-tests on the average IH values prove that, with the same
CPU cost, MAMA outperforms EA and MAEA for a confidence level of 99.9% and for
all the tested problems. Table 4 shows the outcomes of the t-test analysis of the ZDT3
results. The reader may also refer to figures 5, 6 and 7 for a visual comparison of the opti-
mal fronts obtained at the same CPU cost. Note that, in all cases, more than 60% of the
individuals selected for LS were improved at least with respect to one of the objectives.

3.2. Design of a Combined Cycle Power Plant

This application is concerned with the optimal design of a combined cycle power plant
(CCPP, Bonataki et al. (2004)). The power plant consists of a gas turbine (GT ) produc-
ing a power output of 120 MW, a dual-pressure heat recovery steam generator (HRSG), a
two-admission steam turbine (ST ), feedwater tank, condenser, condensate and feedwater
pumps and two generators (G1 and G2), as in figure 8. At the exit of the GT, the flue
gas is cooled by traversing seven high- and low-pressure heat exchangers in the HRSG.
Superheated high- and low-pressure steam is generated which is, then, expanded in the
ST.

The 13 design parameters in total are classified to those determining the GT per-
formance (pressure ratio, air-to-fuel ratio, polytropic efficiencies of the compressor and
turbine, etc.) and those related to the HRSG design variables (heat exchange areas,
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operating pressures and temperatures for the working fluids).
In the present design, the two objectives to be maximized were the power plant ef-

ficiency and the produced power. The design was subject to a number of constraints
related among other to the requirement that flue gas temperatures should exceed the
water or steam temperature (by a safety margin) at different points along the HRSG.
Due to the high number of constraints, many heavily penalized individuals entered D
and this might cause troubles if the RBF networks were trained on penalized responses.
For example, to approximate the score of a feasible solution which, in the design space,
is located close to even a single infeasible solution, the presence of the latter in the RBF
network training set may heavily mislead its prediction. The situation may become even
worse, if the same RBF network was also used to drive LS. This problem is alleviated
since the RBF network that supports LS is trained on the strength function values
S instead of the penalized cost values. This is a noticeable advantage of the proposed
MAMA.

As in the previous cases, the proposed MAMA is compared with MAEAs and EAs,
based on three individual runs (using different RNG seeds). The core (µ,λ)-EA used in
MAMA and MAEA had a common configuration: µ=40, λ=60; LS and the IPE phase
initiated when λD≥400. Also, λe =15, λmax

LS =10.
Average IH indicator values and the range of deviation around the mean for a 66%

probability are shown in figure 9. A t-test analysis on the final results (for 10000 exact
evaluations) proved that, for 99.9% probability and irrespective of the RNG seed, MAMA
reaches better optimal fronts than EA or MAEA (MAMA vs. EA: t0 =13.03 and MAMA
vs. MAEA: t0 =3.42).

Figure 10 presents the fronts of non-dominated solutions obtained using the three
algorithms at the cost of 500, 3000, 7000 and 10000 exact evaluations, for one of the three
RNG seeds. It is obvious that MAMA performs better than the other two algorithms.
In figure 11, some statistics on the performance of the LS process are shown; during the
evolution, an average percentage of 45% of the members in PLS were improved by LS,
for at least one of the objectives.

3.3. Two Operating Point Optimization of a Compressor Cascade
Airfoil

The second engineering test case is concerned with the design of an optimal compressor
cascade airfoil at two operating points, with two objectives. The first objective is the
minimization of the total pressure loss coefficient ω at the design point OP1 (inlet flow
angle α

(OP1)
1 =47o, inlet Mach number M

(OP1)
1 =0.618 and Reynolds R

(OP1)
e =8.41 · 105).

The second objective is the minimization of the same quantities at a different operation
point OP2 (α(OP2)

1 = 52o, M
(OP2)
1 =0.621 and R

(OP2)
e =7.63·105). The cascade streamtube

thickness before the leading edge (LE ) and after the trailing edge (TE ) was fixed to 1.0
and ∼0.9, respectively, Axial-Velocity-Density-Ratio with a linear variation in between
LE and TE (AVDR =∼0.9).

The objective function to be minimized was expressed by ω = pt2,is−pt2

pt1−p1
, where p and pt

stand for static and total pressure, the subscripts 1 and 2 correspond to the cascade inlet
and exit and is denotes isentropic flow. Drela’s MISES analysis software for cascades,
Drela and Giles (1987), was used for the evaluation of candidate airfoils during the
optimization. MISES is based on an integral boundary layer method coupled with an
external inviscid flow solver.

All candidate designs were subject to geometrical and flow constraints, related to
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the airfoil thickness (not allowed to exceed some minimum values at several chordwise
positions) and the flow turning (which should exceed ∆α

(OP1)
12 =24o and ∆α

(OP2)
12 =27o).

The airfoil pressure and suction sides were parameterized using two Bezier polynomial
curves, with 7 control points each, giving rise to 20 design variables in total. On both
curves, the first and last control points were kept fixed whereas the remaining five control
points were free to vary within user-defined bounds.

The optimization was carried out by implementing a core (µ,λ)-EA (20,40) for all
algorithms (EA, MAEA and MAMA); LS and IPE phase started at λD = 300, with
λe =8 and λmax

LS =4.
Figure 12 illustrates the non-dominated front computed by the three algorithms at the

same cost of 5000 calls to the MISES software and the “convergence” history expressed in
terms of the hypervolume indicator IH . Note that, during the first 1000 evaluations, the
two metamodel-assisted algorithms showed an equally efficient performance, compared
to EAs. After 1500 evaluations, MAMA descended further though MAEAs and EAs
drifted slowly without noticeable improvement in IH . The elite front resulted from the
MAMA after 5000 evaluations outperforms all the rest. For the optimal front computed
by MAMA shown in figure 12 (right), its edge points were post-processed and are shown
in figure 13 (contour profiles, isentropic Mach number distribution along the airfoil).

4. Conclusions – Comments

This paper presents a Metamodel-Assisted Memetic Algorithm which is suitable for
multi-objective, constrained optimization problems. The proposed MAMA is advanta-
geous since, as shown in the examined cases, reduces the CPU cost compared to conven-
tional MAs or MAEAs. It was beyond the scope of this paper to compare this population-
based stochastic algorithm with any other deterministic search algorithm. Such a compar-
ison would simply come up with the well-known differences in efficiency and effectiveness
of the two “rival” classes of methods. The purpose of this paper was to demonstrate the
MAMAs superiority with respect to two methods (EAs and MAEAs) of the same class.

The CPU reduction was achieved by implementing local metamodels, trained on the
fly on a small number of neighboring individuals, separately for each new candidate
solution. The metamodels support both global and local search. During the local search,
a novelty of our method is that the metamodel training is based on strength values
(scalars that represent the number of offspring dominated by an individual) rather than
objective function values. In constrained problems, where the objective function might
be penalized due to the violation of constraints and/or problems where the objective
function has a rugged landscape, this is important since penalties or abrupt landscape
slopes do not affect the metamodel predictions.

We have chosen to use RBF networks which often produce better fits to various types
of functions, compared to other rival techniques (such as polynomial regression or the
kriging metamodel; see Jin and Chen (2001)); however, any other metamodel can be
used instead. Depending on the problem, gradients computed using the RBF networks
may be inaccurate but this doesn’t affect the good performance of our method. This is
attributed to two key features of our method (a) each RBF network corresponds to a
small part of the search space, where the landscape is not usually expected to be rugged
enough and (b) the landscape modeled by networks is the strength function. Therefore,
to the authors’ experience, inaccurate predictions of the strength gradient from the RBF
network, during the local refinements, is not risky. According to the results shown here
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as well as other applications studied using this method, this neither imposes limitations
to the applicability of the proposed method nor increases its CPU cost (due to the fact
that during each refinement, either successful or failed due to RBF network inaccuracies,
the extra CPU cost is that of a single evaluation).

5. Acknowledgment

This work was co–funded by the PENED03 program (Measure 8.3 of the Operational
Program Competitiveness, of which 80 % is European Commission and 20 % national
funding), under project number 03ED111.

References

Bonataki, E., Georgoulis, L., and Giannakoglou, C.G.K.C., 2004. Optimal design of com-
bined cycle power plants based on gas turbine performance data. In: ERCOFTAC
Design Optimization: Methods & Applications, Athens, Greece, 31 March - 2 April
2004., Athens.

Bosman, A. and de Jong, D.E., 2005. Exploiting gradient information in numerical
multi–objective evolutionary optimization. In: GECCO ’05: Genetic and Evolution-
ary Computation Conference, Washington DC, USA New York, NY, USA: ACM,
755–762.

Buche, D., Schraudolph, N.N., and Koumoutsakos, P., 2005. Accelerating evolutionary
algorithms with gaussian process fitness function models. IEEE Transactions on
Systems, Man and Cybernetics – Part C: Applications and Reviews, 35, 183–194.

Dawkins, R., 1976. The selfish gene. Oxford: Oxford University Press.
Drela, M. and Giles, M., 1987. Viscous-inviscid analysis of transonic and low Reynolds

number airfoils. AIAA Journal, 25 (10), 1347–1355.
Giannakoglou, K., Giotis, A., and Karakasis, M., 2001. Low-Cost Genetic Optimization

based on Inexact Pre-Evaluations and the Sensitivity Analysis of design parameters.
Journal of Inverse Problems in Engineering, 9 (4), 389–412.

Giannakoglou, K.C., 2002. Viscous-inviscid analysis of transonic and low Reynolds num-
ber airfoils. International Review Journal Progress in Aerospace Sciences, 38, 43–7
6.

Hacker, K., 2002. Efficient global optimization using hybrid genetic algorithms. In: 9th
AIAA//ISSMO: Symposium on Multidisciplinary Analysis and Optimization, At-
lanta, USA.

Hart, W., 1994. Adaptive Global Optimization with Local Search. Thesis (PhD). Uni-
versity of California, USA.

Haykin, S., 1999. Neural networks: A comprehensive foundation. Prentice Hall Interna-
tional, Inc.

Huang, V.L., et al., Problem Definitions for Performance Assessment of Multi-objective
Optimization Algorithms. , 2007. , Technical report, Nanyang Technological Univer-
sity, Singapore Special Session on Constrained Real-Parameter Optimization.

Ishibuchi, H. and Murata, T., 1996. Multiobjective genetic local search algorithm. In:
IEEE International Conference on Evolutionary Computation, Nagoya, Japan, 20-22
May 1996., 119–124.

Ishibuchi, H., Yoshida, T., and Murata, T., 2003. Balance between genetic search and

Page 8 of 46

URL: http:/mc.manuscriptcentral.com/geno  Email: A.B.Templeman@liverpool.ac.uk

Engineering Optimization

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

February 24, 2009 19:56 Engineering Optimization georgopoulou

REFERENCES 9

local search in memetic algorithms for multiobjective permutation flowshop schedul-
ing. IEEE Transactions on Evolutionary Computation, 7 (2), 204–223.

Jaszkiewicz, A., 2002. Genetic local search for multi-objective combinatorial optimiza-
tion. European Journal of Operational Research, 137 (22), 50–71.

Jin, R. and Chen, W., 2001. Comparative studies of metamodeling techniques under
multiple modeling criteria. Structural and Multidisciplinary Optimization, 23, 1–13.

Jin, Y., Olhofer, M., and Sendhoff, B., 2000. On evolutionary optimization with approx-
imate fitness functions. In: D.W. et al., ed. GECCO ’00: Genetic and Evolutionary
Computation Conference Morgan Kaufmann, 786–793.

Jin, Y., Olhofer, M., and Sendhoff, B., 2002. A Framework for Evolutionary Optimization
With Approximate Fitness Functions. IEEE Transactions on Evolutionary Compu-
tation, 6 (5), 481–494.

Karakasis, M. and Giannakoglou, K., 2005. On the use of metamodel-assisted, multi-
objective evolutionary algorithms. Engineering Optimization, 38 (8), 941–957.

Keane, A. and Nair, P., 2005. Computati onal approaches for aerospace design: The
pursuit of excellence. West Sussex: John Wiley & Sons, Inc.

Knowles, J. and Corne, D., 2000. M-PAES: A memetic algorithm for multiobjective
optimization. In: 2000 Congress on Evolutionary Computation – CEC ’00 IEEE
Press, 325–332.

Krasnogor, N., 2002. Studies on the theory and design space of memetic algorithms.
Thesis (PhD). UK.

Krasnogor, N. and Gustafson, S., 2002. Toward truly ”memetic” memetic algorithms:
discussion and proof of concepts. In: Advances in Nature-Inspired Computation: The
PPSN VII Workshops. PEDAL (Parallel, Emergent and Distributed Architectures
Lab). University of Reading. ISBN 0-9543481-0-9. icalp.tex; 9/12/2003; 16:52; p.21
22 Natalio Krasnogor, Steven Gustafson.

Liang, K., Yao, X., and Newton, C., 1999. Combining landscape approximation and local
search in global optimization. In: CEC ’99, Congress on Evolutionary Computation,
Washington, USA IEEE Press, 1514–1520.

Liang, K., Yao, X., and Newton, C., 2000. Evolutionary search of approximated n-
dimensional landscapes. International Journal of Knowledge-based Intelligent En-
gineering Systems, 4, 172–183.

Lim, D., et al., 2008. Generalizing surrogate-assisted evolutionary computation. IEEE
Transactions on Evolutionary Computation, in press.

Madsen, J., Shyy, W., and Haftka, R., 2000. Response Surface Techniques for Diffuser
Shape Optimization. AIAA Journal, 38, 1512–1518.

Moscato, P., 1999. Memetic algorithms: A short introduction. McGraw-Hill Company.
Nocedal, J. and Wright, S.J., 1999. Numerical Optimization. Springer-Verlag.
Ong, Y.S., et al., 2006. Classification of adaptive memetic algorithms: a comparative

study. IEEE Transactions on Systems, Man, and Cybernetics – Part B, 36 (1), 141–
152.

Ong, Y. and Keane, A., 2004. Meta-Lamarckian learning in memetic algorithms. Evolu-
tionary Computation, IEEE Transactions on, 8 (2), 99–110.

Ong, Y., Nair, P., and Keane, A., 2000. Evolutionary Optimization of Computationally
Expensive Problems via Surrogate Modeling. AIAA Journal, 41 (4), 687–696.

Shan, S. and Wang, G.G., 2005. An Efficient Pareto Set Identification Approach for
Multiobjective Optimization on Black-Box Functions. Journal of Mechanical Design,
127 (5), 866–874.

Ulmer, H., Streichert, F., and Zell, A., 2003. Model-assisted steady-state evolution strate-

Page 9 of 46

URL: http:/mc.manuscriptcentral.com/geno  Email: A.B.Templeman@liverpool.ac.uk

Engineering Optimization

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

February 24, 2009 19:56 Engineering Optimization georgopoulou

10 REFERENCES

gies. In: GECCO ’03: Genetic and Evolutionary Computation Conference, Chicago,
USA, Chicago, USA, 610–621.

Ulmer, H., Streichert, F., and Zell, A., 2004. Evolution strategies with controlled model
assistance. In: CEC ’04, Congress on Evolutionary Computation, Portland, USA,
Portland, USA.

Zhou, Z., et al., 2007a. Memetic algorithm using multi-surrogates for computationally
expensive optimization problems. Journal of Soft Computing, 11 (10), 957–971.

Zhou, Z., et al., 2007b. Combining global and local surrogate models to accelerate evolu-
tionary optimization. IEEE Transactions on Systems, Man, and Cybernetics – Part
C: Applications and Reviews, 37 (1), 66–76.

Zitzler, E., Deb, K., and Thiele, L., 2000. Comparison of multiobjective evolutionary
algorithms: empirical results. Evolutionary Computation, 8, 173–195.

Zitzler, E., Laumans, M., and Thiele, L., SPEA2: Improving the Strength Pareto Evolu-
tionary Algorithm for multiobjective optimization. , 2001. , Technical report, Zurich
TIK–Report 103.

Page 10 of 46

URL: http:/mc.manuscriptcentral.com/geno  Email: A.B.Templeman@liverpool.ac.uk

Engineering Optimization

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

February 24, 2009 19:56 Engineering Optimization georgopoulou

REFERENCES 11

6. Appendix

For the validation of the proposed method, three benchmark two-objective function min-
imization problems, namely the ZDT1, ZDT2 and ZDT3 (see Zitzler et al. (2000)) test
problems, were solved. For all the ZDT -problems, the equations expressing the design
space and the objective functions are given in equations 1 and 2. The functions G(~x) and
h(~x) differ among the three test cases.

F1(~x)=x1 and F2(~x)=h(~x)G(~x) (1)

~x∈RN , N =30, xn∈ [0, 1], n=1, N (2)

The ZDT1 problem has a convex optimal Pareto front, shown in the upper-left plot in
figure 14. The functions G(~x) and h(~x) are given in equation 3.

G(~x) = 1 +
9

N−1

N∑

n=2

xn , h(~x) = 1−
√

F1(~x)
G(~x)

(3)

The ZDT2 problem has a concave optimal Pareto front, shown in figure 14, upper-right.
The functions G(~x) and h(~x) are given in equation 4

G(~x) = 1 +
9

N−1

N∑

n=2

xn , h(~x) = 1− (
F1(~x)
G(~x)

)2 (4)

ZDT3 leads to a discontinuous Pareto front shown in the lower plot in figure 14,
achieved by setting xn =0, n=2, N . The functions G(~x) and h(~x) are given in equation 5.

G(~x) = 1 +
9

N−1

N∑

n=2

xn , H(~x) = 1−
√

F1(~x)
G(~x

− F1(~x)
G(~x)

sin (10πF1 (~x)) (5)
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F
2

F1

S3=5

S1=1

φ=φ(R,D)

F
2

F1

D=1/(r+1)

S=3

S2=3

R=S1+S2+S3=9

k=

r

9

Figure 1. Calculation of the fitness φ for MOO cases, according to the raw fitness R, the strength
S and the density D. The strength S of any individual equals the number of the rest members
in Pλ it dominates. For the individual shown with a triangle, its R value is determined by the
summation of strengths of its dominators, i.e. R = S1 + S2 + S3. Its density D is adversely
proportional to the distance from its closest

√
λ neighbor in the objectives space. Finally, its

fitness φ equals the summation of R plus D. For further details on the φ function, the reader is
addressed to Zitzler et al. (2001).

F2

F1

1/S

Figure 2. Example of the LS process. Training patterns are marked with empty squares. The
individual to be refined is marked with the empty circle and the LS outcome with a black filled
circle. Black diamonds correspond to the offspring population.
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Global Search

Inexact Pre-Evaluation

Exact Evaluation

Local Search

Exact Evaluation

λe << λ

λLS < λe    

   Local Refinement

on the utility function

ConvergenceSTOP

λ o!spring

Random Initialization

ith generation

i=0

λ o!spring

 promising

λe o!spring

exactly evaluated &

promising

Evolutionary Operators

e elitesμ parents

λ o!spring

Figure 3. Flowchart of the proposed MAMA algorithm.

F
2

F1

A

B

SB=5

SA=11

Figure 4. Example of the selection of individuals to undergo refinement. Individuals with circles
represent individuals evaluated on the problem-specific tool (Pe,g), whereas diamonds correspond
to offpsring (Pλ,g\Pe,g) evaluated only on the metamodel. Among A and B, A is the most favored
to be selected for LS, since its strength is greater than the one of B and, thus, its refinement is
more likely to lead to improvement.

Page 13 of 46

URL: http:/mc.manuscriptcentral.com/geno  Email: A.B.Templeman@liverpool.ac.uk

Engineering Optimization

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

February 24, 2009 19:56 Engineering Optimization georgopoulou

14 REFERENCES

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0  0.2  0.4  0.6  0.8  1

F
2

F
1

Pareto

EA

MAEA

MAMA

1000 Evaluations

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1

F
2

F
1

Pareto

EA

MAEA

MAMA

10000 Evaluations

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1

F
2

F
1

Pareto

EA

MAEA

MAMA

20000 Evaluations

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1

F
2

F
1

Pareto

EA

MAEA

MAMA

25000 Evaluations

Figure 5. ZDT1 : Fronts of the elite solutions for EA, MAEA, MAMA at the cost of 1000 (top-
left), 10000 (top-right), 20000 (bottom-left) and 25000 (bottom-right) calls to the function evalua-
tion tool for the best performing RNG seed. The exact Pareto front corresponds to the continuous
line.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1

F
2

F
1

Pareto

EA

MAEA

MAMA

25000 Evaluations

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.5  0.55  0.6  0.65  0.7  0.75  0.8

F
2

F
1

Pareto

EA

MAEA

MAMA

25000 Evaluations

Figure 6. ZDT2 : Fronts of the elite solutions for EA, MAEA, MAMA at the cost of 25000 (left)
calls to the function evaluation tool for the best performing RNG seed. The right plot focuses on
a part of the optimal front, to clearly show that the proposed MAMA approximates better the
exact Pareto front (continuous line).
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Figure 7. ZDT3 : Fronts of the elite solutions for EA, MAEA, MAMA at the cost of 2500 (left)
and 5000 (right) calls to the function evaluation tool for the best performing RNG seed. The
exact Pareto front is also shown (continuous line).
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Figure 8. Design of a CCPP: Power plant configuration with a dual pressure heat recovery steam
generator.
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Figure 9. Design of a CCPP: Statistical measures for the performance of EA vs. MAMA (left)
and MAEA vs. MAMA (right) for the thre three runs: average IH values and the range of deviation
(pairs of dashed lines) around the mean for a 66% probability are shown.
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Figure 10. Design of a CCPP: Fronts of non-dominated solutions achieved using EAs, MAEAs
and MAMA at 500, 3000, 7000 and 10000 exact evaluations.
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Figure 11. Design of a CCPP: LS statistics for the proposed MAMA: Percentage of totally
or semi-improved (improved for all or at least one of the objectives, respectively) on the total
number of individuals selected to undergo LS.
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Figure 12. Design of a compressor cascade at two operating points: Left plot: Fronts of non-
dominated solutions computed by the three methods at a cost of 5000 exact evaluations. Right
plot: Convergence measured in terms of the dominated hypervolume IH .
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Figure 13. Design of a compressor cascade at two operating points: Comparison of the extreme
Pareto individuals computed using MAMA at the cost of 5000 evaluations.
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Figure 14. Mathematical Benchmarks: Analytical Pareto front of the ZDT1 (up-left), the ZDT2
(up-right) and the ZDT3 (low) test problems, gained by setting xn =0, n=2, N .
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Table 1. ZDT1 : Statistical measures for the performance of EA, MAEA and the proposed MAMA for
the 25 runs: average, best, median and worst IH values along with the standard deviation for 5000, 15000
and 25000 evaluations on the problem-specific tool are shown. Statistical t-tests prove that the proposed
MAMA outperforms EA and MAEA, at any “instant” of the evolution.

Algorithm Evaluations Average Stdev Best Median Worst

EA
5000 0.144 0.009 0.128 0.150 0.165
15000 0.088 0.003 0.083 0.088 0.093
25000 0.080 0.002 0.077 0.080 0.083

MAEA
5000 0.094 0.004 0.088 0.096 0.102
15000 0.076 0.001 0.074 0.077 0.079
25000 0.073 0.001 0.071 0.073 0.075

MAMA
5000 0.071 0.001 0.070 0.072 0.074
15000 0.069 0.0004 0.069 0.070 0.071
25000 0.069 0.0004 0.069 0.069 0.070

Table 2. ZDT2 : Statistical measures for the performance of EA, MAEA and the proposed MAMA for 25
runs: average, best, median and worst IH values for 5000, 15000 and 25000 evaluations on the problem-
specific tool are shown.

Algorithm Evaluations Average Stdev Best Median Worst

EA
5000 0.240 0.009 0.223 0.239 0.255
15000 0.163 0.004 0.156 0.163 0.169
25000 0.151 0.002 0.147 0.150 0.154

MAEA
5000 0.192 0.018 0.166 0.186 0.216
15000 0.155 0.014 0.144 0.175 0.201
25000 0.149 0.011 0.141 0.164 0.184

MAMA
5000 0.164 0.035 0.138 0.200 0.262
15000 0.142 0.012 0.136 0.155 0.186
25000 0.140 0.009 0.136 0.146 0.173
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Table 3. ZDT3: Statistical measures for the performance of EA, MAEA and the proposed MAMA for 25
runs: average, best, median and worst IH values for for 2500 and 5000 evaluations on the problem-specific
tool are shown.

Algorithm Evaluations Average Stdev Best Worst

EA 2500 0.27 0.04 0.23 0.31
5000 0.19 0.02 0.17 0.21

MAEA 2500 0.16 0.03 0.13 0.22
5000 0.14 0.02 0.12 0.22

MAMA 2500 0.13 0.02 0.12 0.16
5000 0.12 0.01 0.11 0.13

Table 4. ZDT3 : Results of the t-test analysis (values of the t0 variable) for the three methods at sev-
eral “instants” during the evolution, which prove that MAMA outperform EA and MAEA for a 99.9%
probability.

500 1500 2500 5000

MAMA vs. EA 9.2 12.4 13.0 8.5
MAMA vs. MAEA 5.5 4.2 4.1 4.5
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