Sequence based heuristics for two-dimensional bin packing problems

Filipe Pereira Alvelos, T. M. Chan, Paulo Vilaça, Tiago Gomes, Elsa Silva, José Manuel Valério de Carvalho

- To cite this version:

Filipe Pereira Alvelos, T. M. Chan, Paulo Vilaça, Tiago Gomes, Elsa Silva, et al.. Sequence based heuristics for two-dimensional bin packing problems. Engineering Optimization, 2009, 41 (08), pp.773791. 10.1080/03052150902835960 . hal-00545363

HAL Id: hal-00545363

https://hal.science/hal-00545363

Submitted on 10 Dec 2010

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Sequence based heuristics for two-dimensional bin packing problems

Journal:	Engineering Optimization		
Manuscript ID:	GENO-2008-0224.R3		
Manuscript Type:	Original Article		
Aate Submitted by the	12-Feb-2009		
Complete List of Authors:	Alvelos, Filipe; Universidade do Minho, Production and Systems; University of Minho, Algoritmi Research Center Chan, T. M.; University of Minho, Algoritmi Research Center Vilaça, Paulo; University of Minho, Algoritmi Research Center Gomes, Tiago; University of Minho, Algoritmi Research Center Silva, Elsa; University of Minho, Algoritmi Research Center Valério de Carvalho, José Manuel; Universidade do Minho, Production and Systems; University of Minho, Algoritmi Research Center		
Keywords:	Cutting and packing, 2D rectangular SBSBPP with guillotine constraints, local search, greedy heuristics, VND		

scholarone:
Manuscript Central

Sequence based heuristics for two-dimensional bin packing problems Filipe Alvelos ${ }^{\mathrm{ab}^{\mathrm{b}}}$, T. M. Chan ${ }^{\mathrm{b}}$, Paulo Vilaça ${ }^{\mathrm{b}}$, Tiago Gomes ${ }^{\mathrm{b}}$, Elsa Silva ${ }^{\mathrm{b}}$ and J. M. Valério de Carvalho ${ }^{\text {ab }}$
${ }^{a}$ Department of Production and Systems, University of Minho, Braga, Portugal
${ }^{b}$ Algoritmi Research Center, University of Minho, Braga, Portugal
|
This article addresses several variants of the two-dimensional bin packing problem. In the most basic version of the problem it is intended to pack a given number of rectangular items with given sizes in rectangular bins in such a way that the number of bins used is minimized. Different heuristic approaches (greedy, local search, and variable neighborhood descent) are proposed for solving four guillotine two-dimensional bin packing problems. The heuristics are based on the definition of a packing sequence for items and in a set of criteria for packing one item in a current partial solution. Several extensions are introduced to deal with issues pointed out by two furniture companies.
Extensive computational results on instances from the literature and from the two furniture companies are reported and compared with optimal solutions, solutions from other five (meta)heuristics and, for a small set of instances, with the ones used in the companies.

Keywords: Cutting and packing; guillotine constraints; greedy heuristics; local search; variable neighbourhood descent \qquad

[^0]Deleted: Sequence based heuristics for two-dimensional bin packing problems ${ }^{\|}$
This paper addresses several variants of the two-dimensional bin packing problem. In the most $\boldsymbol{\|}$
basic version of the problem it is intended to pack a given number of rectangular items with given sizes in rectangular bins in such a way that the number of bins used is minimized. $\boldsymbol{\|}$
Different heuristic approaches (greedy, local search, and variable neighborhood descent) are proposed for solving four guillotine two-dimensional bin packing problems. The heuristics are based on the definition of a packing sequence for items and in a set of criteria for packing one item in a current partial solution. Several extensions are introduced to deal with issues pointed out by two furniture companies. \uparrow
Extensive computational results on instances from the literature and from the two furniture companies are reported and compared with optimal solutions, solutions from other five (meta)heuristics and, for a small set of instances, with the ones used in the companies. -

Keywords: Cutting and packing; 2D rectangular SBSBPP with guillotine constraints; greedy heuristics; local search; VND ${ }^{\boldsymbol{T}}$
-Page Break
Deleted: paper
Deleted: 2D rectangular SBSBPP with
Deleted: $V N D$

1. Introduction

In this article, two-dimensional bin packing problems, where an unlimited number of

Deleted: with

Deleted: s
and to the items, respectively. The objective of minimizing the number of bins used is equivalent to the minimization of the wood waste produced in the cutting process. Note that, conceptually, cutting and packing are equivalent. However, it is usual (Wäscher et al. 2007) to distinguish between bin packing problems and cutting stock problems, depending on whether there are few equal items (bin packing problems) or many equal items (cutting stock problems).

According to the typology of Wäscher et al. (2007), the problem addressed is a twodimensional rectangular Single Bin Size Bin Packing Problem (SBSBPP) with additional constraints which are described next. In the specific problems addressed in this article, it is imposed by the wood cutting process itself that only orthogonal (parallel to one edge of the plate) and guillotine (from one edge of the plate to the opposite one) cuts are allowed. Furthermore, the number of stages is limited to two or three. A stage is a set of cuts with the same orientation that, conceptually, can be executed at the same time. In a staged problem, the orientation of the cuts in consecutive stages alternates between horizontal and vertical. Assuming the first set of cuts is horizontal, feasible two-stage and three-stage packings for a single bin are depicted in Figure 1 and Figure 2, respectively. In both cases two horizontal cuts
are executed in the first stage, dividing the bin in three shelves: the bottom one with items 1,2 , and 3 ; the middle one with items 4 and 5 ; and the top one with waste. In the second stage, vertical cuts are executed in each shelf. For the two-stage problem, three vertical cuts are executed to obtain items 1, 2, and 3 (bottom shelf) and two vertical cuts are needed to obtain items 4 and 5 (middle shelf). For the three-stage problem, the bottom shelf is made of two stacks (set of items packed on the top of each other): one stack with item 1 and one stack with items 2 and 3. In this case, the two stacks are separated by vertical cuts in stage two, and items 2 and 3 are obtained by using two horizontal cuts in stage three.

In the examples, for the two-stage problem, items in the same shelf have the same height and, for the three-stage problem, items in the same stack have the same width. When this happens, the problem is without trimming. If those conditions are not fulfilled, additional cuts (with the opposite orientation relative to the last stage, i.e., horizontal for two-stage problems and vertical for three-stage problems) may be required to separate items from waste. If this additional set of cuts is allowed, the problem is said to have trimming. Examples of feasible packings are given in Figure 3 and Figure 4 for two and three-stage problems with trimming, respectively.

Figure 1 here
Figure 2 here
Figure 3 here Figure 4 here

In summary, four versions of the problem are considered: two-stage without trimming, two-stage with trimming, three-stage without trimming, and three-stage with trimming. In the remaining of the article these four versions are denoted as the core problems. In order to accommodate different settings (imposed by technological constraints and/or defined by the final user who may have requirements based on other issues other than cutting such as the production flow or stock management) in which the proposed heuristics may be used, several extensions to the core problems are also considered. Before introducing those extensions, note that items with the same sizes can be considered as belonging to the same type. The number of items of a given type is the demand of the item type. The following extensions to the core problems are considered:

- allowing rotation (by 90 degrees) of the items;
- allowing to cut more items (of a required type) than the demand (overproduction);
- executing a single cut (head-cut) with the opposite orientation relative to the one of the first stage before the first stage;
- limiting the maximum number of item types per bin;
- performing vertical cuts in the first stage;
- incorporating the side objective of reducing the number of cuts. The proposed heuristics are based on packing the items sequentially, keeping record of the spaces which are free to receive items that come later in the sequence. The location in which an item is packed is chosen according to some criteria. Several greedy heuristics, which differ in the definition of the sequence of items and in the criteria used to pack the items in the available free spaces, are proposed. Using the sequence of items as the representation of a solution (obtainable by applying one of the above mentioned greedy procedures) three local search heuristics are proposed. The corresponding three neighbourhood structures are based on modifications of the current sequence. The last proposed approach is a variable neighbourhood
descent (VND) metaheuristic which allows exploring the three neighbourhood structures of the local search heuristics systematically.

This article is organized as follows. In Section 2, a literature review on related cutting and packing problems and solution approaches is presented. In sections 3, 4, and 5, the proposed approaches for solving the core problems are described. In section 3, the greedy heuristics are presented; in section 4, the three local search approaches, which differ in the neighbourhood structures employed, are presented; and in section 5, the VND metaheuristic, which combines the neighbourhood structures previously introduced, is presented. In section 6, it is detailed how the proposed approaches can be extended to deal with variants of the core problems. In section 7, computational tests performed in order to evaluate the proposed approaches are reported. In particular, comparisons of the quality of the solutions with the optimal ones, with the ones obtained with five (meta)heuristics from the literature, and with solutions made available by two furniture companies are shown. In section 8 , the main conclusions of this work are drawn.

2. Literature review

Local search heuristics have been widely applied in combinatorial optimization and may be seen as the base of several metaheuristics as tabu search or simulated annealing. For a survey on local search the interested reader is referred to Yagiura and Ibaraki (2002). For a recent survey on general overview of these problems, and to the categorized database of articles on cutting and

VND and variable neighbourhood search the interested reader is referred to Hansen et al. (2008).
Cutting and packing problems have been extensively studied in the last decades. The interested reader is referred to Dyckhoff et al. (1997) and Wäscher et al. (2007) for a more

Deleted: et al

Deleted: paper packing available in the "EURO Special Interest Group on Cutting and Packing" site (http://paginas.fe.up.pt/~esicup/).

Several heuristics were previously proposed for the two-stage with trimming core problem. A two-step approach was first proposed by Chung et al. (1982). In the first step, the items are sorted by decreasing height and then packed in shelves sequentially following a first fit policy (an item is packed in the first shelf that can accommodate it). In the second step, the shelves obtained in the first step are packed in the bins following again a first fit policy. Extensions and modifications of this approach were proposed by Berkey and Wang (1987), as the finite best strip (FBS) heuristic in which the items (first step) and the shelves (second step) are packed using a best fit policy. A heuristic (finite first fit) which packs the items directly in the bins was also proposed by Berkey and Wang. Again, the items are sorted by decreasing height, and then packed sequentially. One item is placed in the first shelf where it fits. If the item does not fit in any shelf, a new bin is created and the item is packed in it. In the greedy heuristics proposed in this article, the items are also packed sequentially in the bins. However, other types of sequences are also considered and the location in which an item is packed is not the first one where it fits, but the best one according to a criterion which can vary for locations in existing shelves, in existing bins (top of the upper shelf), or in a new bin. These ideas are also adapted to three-stage problems and the extensions aforementioned are taken into account.

Lodi et al. (1999) presented several heuristics for different variants of the twodimensional bin packing problem. For the two-stage with trimming problem, a two-step approach (knapsack packing) was proposed. In the first step, a set of shelves is obtained and then, in the second step, a one-dimensional bin packing problem is solved to pack them in the bins. In this heuristic, a shelf is constructed by selecting the tallest unpacked item and solving a knapsack problem to decide which of the unpacked items should be packed in the shelf. In the knapsack problem, the profits are the areas of the items, the weights are the widths of the items
and the capacity is given by the available width. The extension of this approach for three-stage problems is not straightforward. In the same reference, besides heuristics for non-guillotine cutting problems, other heuristics were presented for guillotine cutting (as the floor ceiling heuristic) which may not produce solutions for two or three-stage problems. Extensions for allowing rotation are also proposed. Still in the same reference, a tabu search metaheuristic was proposed with the important feature of having two conceptual levels. In a higher level, a target bin is selected to be emptied. Then, it is attempted to pack the items in the target bin together with the items of some subsets of bins. This last procedure relies on a lower level in which subsets of items are packed in bins. The lower level defines the type of problem addressed (the ones mentioned in the article are the problems with or without rotation and with guillotine cuts or free). In order to deal with all the core problems and extensions already mentioned, the same idea of having two levels in used in the local search based heuristics proposed in this article. In the higher level sequences of items are considered and modified without taking into account which core problem with which combination of extensions is being solved. In the lower level, the items are packed taking into account the specific problem and the obtained solution is evaluated.

Exact approaches have also been proposed for the two-stage problem as the ones by Lodi et al. (2004), where a compact integer programming model was presented. It is noteworthy that models conceived for cutting stock problems may also be applied in bin packing problems, as it is the case of the classic column generation models of Gilmore and Gomory (1965). In (Fekete and Schepers 2007), a related problem is addressed with a different type of exact approach, which is based on the characterization of two-dimensional orthogonal packings through interval graphs and on an enumerative search scheme.

Deleted: paper

Deleted: paper

Deleted: et al

Specific approaches for three-stage problems are not as frequent as the ones for two-stage problems. Exceptions are the compact and branch and price exact models of Puchinger and Raidl (2007) and the nested column generation approach of Vanderbeck (2001) for cutting stock
problems. The authors are aware of only one publication dealing with head-cuts and a limit on the maximum number of item types per bin, where approaches for a particular problem in a wood cutting company were devised by Morabito and Belluzzo (2007). The followed approach is based on the column generation model of Gilmore and Gomory where each column is associated with a cutting pattern and the subproblem is solved by dynamic programming.

The more general problem in which there are no guillotine cutting constraints was recently addressed by Parreño et al. (2008) by combining a GRASP and a VND metaheuristic. The neighbourhood structures defined in the VND are based on removing a set of items (from different bins) from the current solution and packing them again with a constructive algorithm. In the work of Boschetti and Mingozzi (2003), empty bins are considered in turn and filled by items in a sequence defined by prices attributed to the items and updated in each iteration. Monaci and Toth (2006) used greedy heuristics to generate the columns of an integer programming (set covering) model which is then solved by a Lagrangean heuristic. Pisinger and Sigurd (2007) developed a column generation based approach with the subproblem solved by constraint programming. In (Faroe et al. 2003), a solution is represented by the coordinates of the items (boxes in the case of the three dimensional problem also considered in the article) and the neighbourhood of a solution is defined by movements (within the same bin or from one bin to another bin) of items. A packing with no overlapping in the current number of bins minus one is persecuted until a time limit or a lower bound on the number of bin is achieved. For a survey in two-dimensional packing problems, the interested reader is referred to (Lodi et al. 2002).

3. Greedy heuristics

In this section, the greedy heuristics for solving the core problems (two-stage and three-stage, with and without trimming) two-dimensional bin packing problems are presented. The adaptations to deal with the core problems extensions will be discussed in section 6 .

The heuristics are based on a packing sequence for items. In order to define the sequence, three possible criteria to sort (in decreasing order) the item types are considered: by width, by height, and by area. After a sequence is defined based on one of those criteria, each item is packed in turn. As illustrated in Figure 5, in general, an item can be packed in an existing stack (in Figure 5, rectangle A) (only for three-stage problems), in the rightmost part of an existing shelf (B and C), in the top of the shelves of a bin which is already being used (D), or in an empty bin.

Figure 5 here.

A greedy heuristic starts with a list of items sequenced according to a given criterion. While the list is not empty, the first item is packed and removed from the list. Firstly, the packing in the best fit location in a stack (according to a given criterion) is attempted. If there are no feasible locations for placing the item in the stacks, the packing in the best fit location in a shelf (according to a given criterion) is attempted. If there are no feasible locations for placing the item in the shelves, the packing in the best fit location in a bin (according to a given criterion) is attempted. If there are no feasible locations for placing the item in bins, the item is packed in a new bin. The defined criteria for packing items in different locations are the smaller residual width, height, or area.

In Figure 6, it is illustrated how an item is packed. Consider that the current (partial) solution is made by items 1,2 , and 3 , and the next item to be packed is item 4 . Since item 4 does not fit in rectangle A , the other rectangles, B and C , on existing shelves are considered. If the criterion defined in the particular heuristic being used for packing in existing shelves is the width, the item 4 is packed in B because of the smaller remaining width after being packed. If the criterion is given by the area, item 4 is packed in C since, proportionally, more area is occupied in that case when comparing with B.

Figure 6 here.
A greedy heuristic has two phases: the sorting phase and the packing one. The packing phase has an outer cycle in which all items are considered in turn and an inner cycle in which all locations are considered in turn. The number of locations is bounded by n, since in each iteration of the outer cycle one location is deleted (the one in which the item is packed) and at most 2 new locations are created (one on the right of the item just packed and another on the top). Being so, the worst-case time complexity of each greedy heuristic is $O\left(n^{2}\right)$.

4. Local search heuristics

The three local search heuristics are based on the same representation of a solution as a sequence of items and in a greedy heuristic which constructs a solution from a sequence. They also share the way an initial solution is obtained and how a solution is evaluated. This section starts with the presentation of the common aspects of the local search heuristics and follows with the details of the differences between them which lie in their neighbourhood structures.

The initial sequence and the set of criteria for packing the items (when constructing a solution from a sequence) are obtained by running a subset of the greedy heuristics previously
presented and selecting the one that provides the best solution according to the evaluation function shown next. The value of a solution s is given by the following function

$$
\mathrm{V}(\mathrm{~s})=\mathrm{b}_{\mathrm{s}} \mathrm{a}+\mathrm{a}_{\mathrm{s}}-\mathrm{n}_{\mathrm{s}},
$$

where b_{s} is the number of bins used in the solution s, a is the area of a bin, \underline{a}_{s} is the occupied area of the bin in solution s with the smallest occupied area, and \underline{n}_{s} is the number of items packed in that same bin. The rationale behind this function is that a solution with fewer used bins is always better than another solution that uses more bins and that if two solutions have the same number of bins, the solution where it is easier to empty one used bin is better than the other one. In the three local search heuristics, a first descent strategy is used.

4.1. Swap adjacent item types

The first neighbourhood structure consists in swapping adjacent item types (SAIT). A sequence of types can be defined by replacing consecutive items of the same type by their type. Two types are adjacent if, in the sequence of types, they appear one after the other. A sequence is in the neighbourhood of the current sequence if the position of two adjacent types in the sequence of types is swapped. After a swap of adjacent types, all the items of what was the first type come after all the items of what was the second type.

An illustration of this neighbourhood_structure is given in Table 1, where all the neighbour sequences of a given current solution are presented. The sequence of types of the current sequence is 12312 .

4.2. Swap adjacent sub-sequences

The second neighbourhood consists in swapping adjacent sub-sequences (SAS). In fact, a set of neighbour sequences is considered since a parameter (size) controls the size of the sub-sequences being swapped. A neighbour sequence is obtained by considering a set of (2 *size) consecutive

Deleted: subsequences

Deleted: subsequences
items of the current sequence, and by defining two sub-sequences with the same number of items. After swapping the sub-sequences, the first size items (first sub-sequence) come after the second size items (second sub-sequence). The order of the items within each sub-sequence is not changed.

An example of the neighbourhood for the size parameter equal to two is given in Table 2. As shown in the example, if the size parameter is greater than one, the neighbourhood is not fully explored: the sequence is first divided in adjacent (not overlapping) sub-sequences and only those are considered in the swapping operations. The search is initialized with the neighbourhood of size one and when no improvement is obtained for a given size, the size parameter is incremented by one.

4.3. Reverse sub-sequences

The third neighbourhood consists in reversing sub-sequences (RS). A size parameter is used in
Deleted: subsequences

Deleted: subsequences

Deleted: subsequences
Deleted: subsequence
Deleted: subsequence
Deleted: subsequence

Deleted: subsequences
the same way as in the SAS local search heuristic. A neighbour sequence is obtained by considering a set of size consecutive items of the sequence and reversing their order.

In Table 3, an example is given for the size parameter equal to two. Note that, in some easily identifiable cases, the same sequence is obtained and thus the corresponding solution is the same as the current one and it is not evaluated.

5. VND metaheuristic

The VND metaheuristic proposed is based on the three neighbourhood_structures which are sequentially explored by the same order they were previously introduced (SAIT - SAS - RS). In the sequential VND variant used, a neighbourhood is explored, even if there was an improvement in the previous one.

The algorithm is given in Figure 7. There are two stopping criteria: one is achieved when a time limit is reached (TimeLimit parameter) and the other is achieved when the three neighbourhood structures are explored without any improvement.

Figure 7 here.

6. Extensions

In this section, variants of the approaches proposed for dealing with extensions of the core problems are considered. Note that the first three variants only imply modifications on the greedy heuristics, i.e., exactly the same neighbourhood structures can be used. The last three can be seen as pre-processing or post-processing steps.

First, the extension where it is possible to rotate the items by 90 degrees is considered. In this case, when evaluating the different locations for placing an item, the two possible orientations are considered. When rotation is allowed, the worst-case time complexity of the greedy heuristics remains $O\left(n^{2}\right)$.

The second extension is related with having a constraint on the maximum number of item types per bin. This constraint was pointed out by the furniture companies as relevant for two reasons: it may lead to more simple cutting patterns (thus requiring less cutting time) and it may have an impact on the production process in which the cutting operations are embedded (since items of the same type can be grouped more easily). In fact, the proposed approaches were integrated in a software prototype where the problem of minimizing the maximum number of open stacks (MOSP) is also addressed taking the solution of the bin packing problem as input (De Giovanni et al. 2008). Constraining the maximum number of types per bin can provide bin packing solutions with more waste but may lead to better MOSP solutions. For a description of
the MOSP problem, see, for example, Yanasse (1997).The proposed greedy heuristics deal with the limit on the maximum number of item types per bin by keeping record of the types present in each bin in the solution being constructed. When packing a new item, the only locations allowed are those in bins where the type is already present or where the limit on the maximum number of item types was not reached.

The third extension is related with the use of a head-cut. A head-cut is a single cut applied in the vertical direction (assuming the first stage is made of horizontal cuts) before the first stage. An example of a packing with a head-cut is given in Figure 8. When a head-cut is performed, the bin is divided into two parts, where, in each of the parts, two or three-stage patterns, with or without trimming, are constructed according to the core problem. The proposed greedy heuristics deal with the head-cut by setting its coordinate to the width of the first item that is packed in a new bin. After the head-cut is done, a location to place a new item is characterized not only by a bin, but also by the part, left or right of the head cut.

Figure 8 here,
Three more aspects were taken into account in the proposed methods in order to make their use more flexible to possible different practical settings. The first one is the possibility of deciding the orientation of the cuts in the first stage. If vertical cuts are desired in the first stage, before using the heuristics, the widths and the heights of the bins and those of all items are swapped. The second one is the possibility of overproduction. In this case, after the final solution with no overproduction is obtained, an attempt is made to pack items (in decreasing order of areas) in the available locations. Finally, the third aspect is related with the side objective of reducing the number of cutting operations when using head-cuts. If the solution remains feasible for the core problem in the left part of the bin when the coordinate of the head-cut is moved to
the right, then the coordinate is changed, because the number of cutting operations may be reduced. One of these situations is illustrated in Figure 9, where 16 cuts are needed in the left solution, while the right solution only has 13 cuts.

Figure 9 here.

7. Computational results

The proposed approaches were coded in C++ in the Microsoft Visual Studio IDE 2008. The computational tests were divided into three groups. In the first group of tests, each of six heuristics (two sets of greedy heuristics, the three local search and VND) was tested for each of the four core problems in 528 instances from the literature and 128 "real-world" instances. The values obtained by the different solution approaches were compared with known optimal values, and with the values from five (meta)heuristics from the literature. The aim of the second group of tests was to measure (empirically) the impact of the extensions on the quality of the solutions obtained. A subset of 27 real-world instances from one company and 42 from the other were used. The aim of the third group of tests was to compare the quality of the solutions from the proposed approach with those given by the software applications in use at the two companies. Those tests were conducted in the same sets of instances used in the second group of tests.

7.1. Core problems

The computational tests of the approaches for the core problems were conducted in a desktop computer equipped with an Intel Core 2, 2.13 GHz processor, 2 GB RAM, and running Windows XP Professional Edition. For the core problems, the proposed approaches were tested in the following sets of instances:

- cgcut, gcut, and ngcut introduced by Christofides and Whitlock (1977), Beasley (1985a), and Beasley (1985b);
- six classes of instances from Berkey and Wang (1987) (denoted by BW);
- four classes from Martello and Vigo (1998) (denoted by MV);
- five classes of "real-world" instances from a furniture company (denoted by A);
- five classes of "real-world" instances from another furniture company (denoted by B).

An overview of all the sets of instances is given in Table 4.

It is noteworthy that although the proposed approaches were conceived for bin packing instances, they were also tested in cutting stock instances, as can be seen by the (very) large demand of some item types in some instance sets, in particular the B instances. (Note that, in the proposed approaches, the concept of pattern, which is omnipresent in approaches for cutting stock problems, is not even present.)

In order to evaluate the quality of the solutions obtained by the different approaches proposed in this article, they were compared with the solutions obtained by an exact method

Deleted: paper

Deleted: et al which consisted in solving the pseudo-polynomial integer programming model from Silva et al. (2008) with Cplex 11. The measure used is the relative gap between the value of a heuristic $\left(Z_{H}\right)$ and the optimal value $\left(Z_{O p t}\right)$, given by $\left(Z_{H}-Z_{O p t}\right) / Z_{O p t}$.

In Tables 5 to 8, computational results are presented for the four core problems. In particular, the total number of used bins and the relative gap of the six approaches are given. In those tables, for each core problem, instances where the exact method could not find the optimal solution within the time limit of two hours were excluded. The number of instances effectively being compared is given in the second column. Two different sets of greedy heuristics were used (columns SG1 and SG2). The first set consisted in only 3 greedy heuristics and the second one in $6,8,12$, and 12 greedy heuristics for the two-stage without trimming, two-stage with trimming, three-stage without trimming and three-stage with trimming core problems, respectively. The criteria defining each particular greedy heuristic were chosen empirically through a set of
preliminary computational tests. The next four columns are for the number of used bins of the three local search heuristics and VND. The optimal number of used bins is given in the column Optimal. The last column is the relative gap, $\left(Z_{V N D}-Z_{O p t}\right) / Z_{O p t}$, between the number of used bins of VND and optimal the number of used bins. In the last line of each table, the relative gap of each approach is given.

The quality of the solutions decreases when the number of feasible cutting operations increases (from two-stage without trimming to three-stage with trimming) as can be seen by the gaps for VND which are $2.3 \%, 3.0 \%, 3.3 \%$, and 3.5% for the four problems in the same order as they are displayed in the tables. As the combinatorial structure of the problem becomes more relevant (since the items can be packed in more different ways), it is expected that the quality of the heuristic solutions decreases. In terms of quality, the solutions of the first set of heuristics (SG1) are almost as good as the ones obtained by the second set of heuristics (SG2). The only core problem where the difference between the relative gaps of the heuristics is greater than 0.1% is the two-stage problem without trimming. When comparing the three different local search heuristics, in general, SAS provides slightly better solutions than SR. The SAIT heuristic provides significantly worse solutions than the other two. As shown below, the computational times of the different approaches vary significantly, and clearly there is a trade-off between the quality of the solutions obtained and the time spent in obtaining them. In general, VND improves the results from the best local search heuristic. There are some exceptions for the sets B4 and B5, which have instances with a very large number of items (more than four thousands on average). A possible reason lies in having a time limit which is reached for some of those very large instances. In that case, the amount of time spent in a single neighbourhood is more effective than the same amount of time spent in other neighbourhoods that may not be as effective.

For several sets of instances the relative gap is 0.0% indicating that the optimal solutions were obtained in all of the instances of the set. In general, better results are obtained in the instances from the literature than in the "real-world" instances. Also, in general, better results are obtained in the instances from company A than in the ones from company B. The latter instances are clearly cutting stock instances (the average demand of the item types ranges from 31 to 695). If the B instances are excluded from the gap calculations, i.e., if only instances closer to the bin packing "extreme" are considered, the relative gaps given by VND are $0.3 \%, 1.2 \%, 1.5 \%$, and 1.9% for the four core problems in the same order they appear in the tables. If only the bin packing instances from the literature are considered the relative gaps are even smaller: 0.2%, $0.9 \%, 1.2 \%$, and 1.6%, for the four core problems in the same order they appear in the tables.

The average computational time for each set of instances was, in most cases 0.0 or 0.1 seconds for each approach. Only for sets with very large instances, the LS-SAS, LS-RS and VND approaches took seconds or tens of seconds (sets of "real-world" instances A4, A5, B2, and B3), or was even close to the time limit imposed of 600 seconds (sets of "real-world" instances B4 and B5) In Table 9, the average percentage of waste (total area of the items divided by the number of used bins times the area of a single bin) for the four core problems is given. As expected, in general, the percentage of waste decreases from the core problems on the left to the ones of the right. A significant decrease is obtained from the two-stage problems without trimming to the two-stage problems with trimming. The difference between the waste for the other problems (in particular, for three-stage without and with trimming) is not so significant.

In Table 10 and Table 11 the results of the VND metaheuristic and of other three heuristics and two metaheuristics for the two-stage with trimming problem are presented. The

Deleted: In Table 9, the average time spent by each approach in each set of instances is given for the three-stage with trimming problem. The results on the other three core problems are not shown since they are similar. As mentioned before, a time limit of 600 seconds was imposed on running all the approaches.It should be noted that only for large instances (roughly speaking, more than 150 items) is the computational time longer than one second. As expected, greedy heuristics are able to provide solutions very quickly, even for very large instances.

Deleted: $\mathbb{\|}$
Deleted: Table 10

Deleted: i.e.
first three heuristics are the finite first fit (FFF) and the finite best strip (FBS) heuristics proposed in (Berkey and Wang 1987) and the knapsack packing (KP) proposed in (Lodi et al. 1999). The two metaheuristics are the tabu search approaches from (Lodi et al. 1999) using FBS and KP as inner algorithms. All values but the ones in the last two columns are taken from (Lodi et al. 1999). The values presented are the average of the ten instances with the same number of items of each class and, for each class, their average. As in (Lodi et al. 1999), the column z/LB gives the value of the heuristic solution divided by the lower bound presented in (Martello and Vigo 1998). The last column gives the computational time of the proposed VND approach. In (Lodi et al. 1999) the computational times for the FFF, FBS and KP heuristics are not reported, but the authors mention that it is always less than 0.5 seconds. For the tabu search heuristics, the average time for the ten classes is 33 seconds, with a minimum of 4 seconds and a maximum of 55 seconds. Since the computers are different (and they are not included in SPEC2000 or in SPEC2006) it is difficult to make a direct comparison between the computational times.

The solutions given by the proposed VND approach are clearly better than the ones of the FFF, FBS, and KP heuristics. For eight of the ten classes, VND has a better average than KP (the best of the three mentioned very fast heuristics). Analysing with more detail, for the 50 groups of instances, VND produces better solutions in 27 and worst solutions only in 6 (the values are the same in 17 groups).The results of VND are very similar to those of TS - KP. For half of the ten classes VND has a better average than TS - KP. Analysing with more detail, for the 50 groups of instances, VND produces better solutions in 14 and worst solutions in 19 (the values are the same in 17 groups).The results of VND are slightly worse than those of TS - FBS. For four of the ten classes VND has a better average than TS - FBS. Analysing with more detail, for the 50

Deleted: et al

Deleted: et al

Deleted: et al

Deleted: et al

Deleted: et al
groups of instances, VND produces better solutions in 15 and worst solutions in 21 (the values are the same in 14 groups).

7.2. Extensions

For measuring the impact of the extensions in the quality of the solutions obtained, a subset of 27 real-world instances from company A and 42 from company B were used. The selection of these instances was based on the availability of the solutions obtained with the software at use in the companies. The core problem was the three-stage without trimming._The computational tests of the VND approach for the extensions were conducted in a laptop equipped with an Intel Core 2, 1.83 GHz processor, 2 GB RAM, and running Windows Vista Home Premium.

Deleted: es

[^1]Deleted: In Table 16, the quality of the solutions in terms of number of used bins and waste is given for the cases where a head-cut is done or not. Rotation and overproduction were considered. For company A, the number of used bins is only slightly improved but, for company B , it is significantly reduced. The waste percentage has a reduction of 0.5% and 0.2% for companies A and B, respectively.

Deleted: Table 17
waste is not affected by the constraint with the limit of 5 item types per bin while, for the A instances, that only happens for a limit of 10 item types per bin.

7.3. Comparison with "real-world" solutions

In Table 13, the type of cutting problems faced by the companies is detailed Company A can use two different types of patterns in the same instance as denoted by A1 and A2, The proposed approach was run for exactly the same three specific problems and the results obtained were compared with the ones the companies made available to us obtained using two different commercial softwares (one in each company). The comparison is summarized in Table 14.

For company A, for the small set of instances tested, the improvement is impressive: in 70% of the instances, the number of used bins was reduced by the proposed approach. Both the two types of problems of company A (A1 and A2 as detailed in Table 13) were solved and the best solution was chosen. For problem A1, the number of used bins was 650 and for problem A2, the number of used bins was 652 . Even when using a single type of pattern, the results of the proposed approach are impressive. For company B, for the small set of instances tested, the proposed approach also gave better results, but, in this case, only slightly better. In 43% of the instances, the number of used bins was reduced, in 36% it was increased and it was equal in the remaining 21% instances.

Abstract

\section*{8. Conclusions}

In this article, a set of different approaches for solving several variants of two-dimensional bin packing problems was proposed. The approaches are based on packing the items into their best

Formatted: First paragraph style
Deleted: Table 18
Deleted: according to the extensions of the core problems.

Deleted: \mathbb{T}

The extensive computational tests revealed that the proposed approaches are able to find good-quality solutions within reasonable amounts of time for instances from the literature and for "real-world" instances. This conclusion is supported by the gaps of the proposed VND metaheuristic to the optimal values (the average gap is less than 2% for bin packing instances of the four problem variants considered) and by the comparison with five (meta)heuristics from the literature.

The motivation for this work was the wood cutting in small and medium-sized furniture companies. For the small set of instances tested, the proposed VND metaheuristic reduced significantly (from 738 to 648) the number of used bins for instances of one of the companies and slightly (from 3943 to 3926) the number of used bins for instances of another company. These reductions in the number of used bins translate in the reduction of waste of 8% and 1%, respectively.

Three of the proposed approaches (one based on selecting the best solution from a set of solutions given by greedy heuristics, a local search one, and a sequential VND) are now integrated in a software prototype for small- and medium-sized furniture companies, along with a visual interface, a database, and algorithms for related problems, as the minimization of the maximum number of open stacks.

Acknowledgements

This work was supported by project SCOOP - Sheet cutting and process optimization for furniture enterprises (Contract NoCOOP-CT-2006-032998), financed by the European Commission, 6th Framework Programme on Research, Technological Development and Dissemination, specific actions for SMEs, Cooperative Research Projects. The fifth author was also supported by Grant SFRH/BD/42259/2007 from Fundação para a Ciência e Tecnologia, Portugal.

References

Beasley, J. E., 1985a. Algorithms for unconstrained two-dimensional guillotine cutting. Journal of the Operational Research Society, 36, 297-306.
Beasley, J. E., 1985b. An exact two-dimensional non-guillotine cutting tree search procedure. Operations Research, 33 (1), 49-64.
Berkey, J. O. and Wang, P. Y., 1987. Two-dimensional finite bin-packing algorithms. Journal of the Operational Research Society, 38 (5), 423-429.
Boschetti, M. A. and Mingozzi, A., 2003. The two-dimensional finite bin packing problem. Part II: New lower and upper bounds. 4OR, 2, 135-147.
Christofides, N. and Whitlock, C., 1977. An algorithm for two-dimensional cutting problems. Operations Research, 25 (1), 30-44.
Chung, F. K., Garey, M. R. and Johnson, D. S., 1982. On packing two-dimensional bins. SIAM Journal of Algebraic and Discrete Methods, 3, 66-76.
De Giovanni, L., Pezzella, F., Massi, G., "An adaptive genetic algorithm for the pattern sequencing
| problem", article presented at 5th ESICUP Meeting, L'Aquila, Italy, April 20-22, 2008.

Deleted: paper

Dyckhoff, H., Scheithauer, G. and Terno, J., 1997. Cutting and packing. IN Dell'Amico, M., Maffioli, F. and Martello, S. (Eds.) Annotated Bibliographies in Combinatorial Optimization. John Wiley and Sons.
Gilmore, P. C. and Gomory, R. E., 1965. Multistage cutting stock problems of two and more dimensions. Operations Research, 13, 94-120.
Faroe, O., Pisinger, D. and Zachariasen, M., 2003. Guided local search for the three-dimensional binpacking problem. INFORMS Journal on Computing, 15, 267-283.
Fekete, S. P., Schepers, J. and Veen, J. C. V. D., 2007. An exact algorithm for higher-dimensional orthogonal packing. Operations Research, 55, 569-587.
Hansen, P., Mladenovic, N. and Pérez, J. A. M. (2008) Variable neighborhood search: methods and applications. Montreal, HEC Montreal and GERAD
Lodi, A., Martello, S. and Monaci, M., 2002. Two dimensional packing problems: A survey. European Journal of Operational Research, 141, 241-252.
Lodi, A., Martello, S. and Vigo, D., 1999. Heuristic and metaheuristic approaches for a class of twodimensional bin packing problems. INFORMS Journal on Computing, 11 (4), 345-357.
Lodi, A., Martello, S. and Vigo, D., 2004. Models and bounds for two-dimensional level packing problems. Journal of Combinatorial Optimization, 8, 363-379.
Martello, S. and Vigo, D., 1998. Exact solution of the two-dimensional finite bin packing problem. Management Science, 44 (3), 388-399.
Monaci, M. and Toth, P., 2006. A set-covering-based heuristic approach for bin-packing problems. INFORMS Journal on Computing, 18 (1), 71-85.
Morabito, R. and Belluzzo, L., 2007. Optimising the cutting of wood fibre plates in the hardboard industry. European Journal of Operational Research, 183 (3), 1405-1420.
Parreño, F., Alvarez-Valdes, R., Oliveira, J. F. and Tamarit, J. M., 2008. A hybrid GRASP/VND algorithm for two- and three-dimensional bin packing. To be published in Annals of Operations Research.
Pisinger, D. and Sigurd, M., 2007. Using decomposition techiniques and constraint programming for solving the two-dimensional bin-packing problem. INFORMS Journal on Computing, 19 (1), 3651.

Puchinger, J. and Raidl, G. R., 2007. Models and algorithms for three-stage two-dimensional bin packing. European Journal of Operational Research, 183 (3), 1304-1327.
Silva, E., Alvelos, F. and Carvalho, J. M. V. D., 2008. An integer programming model for two-staged and three-staged two dimensional cutting stock problems. Submitted.

21

22
23

Vanderbeck, F., 2001. A nested decomposition approach to a three-strage, two-dimensional cutting-stock problem. Management Science, 47 (6), 864-879.
Wäscher, G., Haussner, H. and Schumann, H., 2007. An improved typology of cutting and packing problems. European Journal of Operational Research, 183 (3), 1109-1130.
Yagiura, M. and Ibaraki, T., 2002. Local Search. IN Pardalos, P. M. and Resende, M. G. C. (Eds.) Handbook of Applied Optimization. Oxford University Press.
Yanasse, H. H., 1997. On a pattern sequencing problem to minimize the maximum number of open stacks. European Journal of Operational Research, 100 (3), 454-463

Table 1. Illustration of the "swapping adjacent item types" neighbourhood.

Current sequence		1	2	2	2	3	3	1	2
Neighbour sequence obtained by swapping the	first and second item types	$\mathbf{2}$	$\mathbf{2}$	$\mathbf{2}$	$\mathbf{1}$	3	3	1	2
	second and third item types	1	$\mathbf{3}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{2}$	$\mathbf{2}$	1	2
	third and fourth item types	1	2	2	2	$\mathbf{1}$	$\mathbf{3}$	$\mathbf{3}$	2
	fourth and fifth item types	1	2	2	2	3	3	$\mathbf{2}$	$\mathbf{1}$

Table 2. Illustration of the "swapping adjacent sub-sequences" neighbourhood for size two.
Deleted: subsequences

Current sequence		1	2	2	2	3	3	1	2	Deleted: subsequences
Neighbour sequence obtained by swapping the	first and second item sub-sequences of size two	2	2	1	2	3	3	1	2	
	second and third item sub-sequences of size two	1	2	3	3	2	2	1	2	Deleted: subsequences
	third and fourth item sub-sequences of size two	1	2	2	2	1	2	3	3	Deleted: subsequences

Table 3. Illustration of the "reversing sub-sequences" neighbourhood.

Current sequence		1	2	2	2	3	3	1	2	
Neighbour sequence obtained by reversing the	first sub-sequence of size two	2	1	2	2	3	3	1	2	
	second sub-sequence of size two									
	third sub-sequence of size two	-								
	fourth sub-sequence of size two	1	2	2	2	3	3	2	1	

Deleted: subsequences

Deleted: subsequence
Deleted: subsequence
Deleted: subsequence
Deleted: subsequence

Table 4. Sets of instances tested.

Instance set	Total number of instances	Number of types			Number of items			$\begin{gathered} \text { Avg } \\ \text { demand } \end{gathered}$
		Min	Avg	Max	Min	Avg	Max	
cgcut	3	7	12.3	20	16	33.7	62	2.7
gcut	13	10	27.8	50	10	27.8	50	1
ngcut	12	5	7.3	10	7	13.5	22	1.8
BW1-BW6 ${ }^{\text {a }}$	300	20	60	100	20	60	100	1
MV1-MV4 ${ }^{\text {a }}$	200	20	60	100	20	60	100	1
A1	7	8	18.3	32	13	37.9	71	2.2
A2	13	1	3.4	8	16	49.9	138	17.3
A3	12	34	57.5	98	61	130.3	184	1.9
A4	11	8	19.5	31	215	515.4	809	26.1
A5	4	82	108.3	134	217	250.3	309	2.3
B1	25	1	4.9	9	32	151.8	394	31.1
B2	36	1	4.6	9	156	619.1	1575	134.3
B3	23	10	14.3	24	169	948.4	1456	66.5
B4	22	1	6.3	9	1734	4360.4	10710	695.1
B5	15	10	24.5	60	2013	4286.4	9090	175.2

${ }^{\mathrm{a}}$ Each instance set has 50 instances.

Table 5. Comparison of the quality of the solutions for the two-stage without trimming core problem.

Instance set	Number of instances solved exactly	SG1	SG2	LS- SAIT	LS- SAS	LS- RS	VND	Optimal	VND Gap
cgcut	3	31	30	30	30	30	30	30	0.0%
gcut	13	189	186	186	186	186	185	185	0.0%
ngcut	12	44	44	44	44	44	44	44	0.0%
BW1	50	1141	1137	1135	1134	1134	1134	1134	0.0%
BW2	50	167	167	167	167	167	167	167	0.0%
BW3	50	1021	1003	1001	999	999	999	998	0.1%
BW4	49	265	264	264	263	263	263	263	0.0%
BW5	50	1413	1386	1386	1386	1386	1386	1385	0.1%
BW6	48	364	363	362	362	362	362	362	0.0%
MV1	50	1082	1061	1061	1061	1061	1061	1057	0.4%
MV2	50	1566	1557	1557	1556	1556	1556	1556	0.0%
MV3	50	2324	2320	2320	2320	2320	2320	2320	0.0%
MV4	50	918	892	892	892	892	892	889	0.3%
A1	7	68	66	65	65	65	65	65	0.0%
A2	13	120	120	120	118	118	118	118	0.0%
A3	12	258	257	257	256	256	256	249	2.8%
A4	11	574	571	571	563	563	562	550	2.2%
A5	4	175	175	175	173	174	173	172	0.6%
B1	25	398	396	396	393	394	392	386	1.6%
B2	36	1640	1638	1638	1626	1628	1619	1575	2.8%
B3	20	1523	1520	1520	1512	1512	1511	1465	3.1%
B4	22	6621	6620	6620	6594	6638	6623	6400	3.5%
B5	12	3119	3117	3117	3101	3098	3101	2888	7.4%
Total	687	25021	24890	24884	24801	24846	24819	24258	-
Gap	-	3.2%	2.6%	2.6%	2.2%	2.4%	2.3%	-	-

Table 6. Comparison of the quality of the solutions for the two-stage with trimming core problem.

Instance set	Number of instances solved exactly	SG1	SG2	LS- SAIT	LS- SAS	LS- RS	VND	Optimal	VND Gap
cgcut	3	28	28	28	28	28	28	28	0.0%
gcut	12	109	109	109	109	109	109	106	2.8%
ngcut	12	37	37	37	37	37	37	37	0.0%
BW1	50	1042	1041	1034	1030	1032	1029	1015	1.4%
BW2	48	124	124	124	124	124	124	124	0.0%
BW3	50	744	744	735	732	733	731	717	2.0%
BW4	19	29	29	29	29	29	29	29	0.0%
BW5	50	938	938	932	926	927	925	911	1.5%
BW6	11	12	12	12	12	12	12	12	0.0%
MV1	50	859	859	854	852	849	848	842	0.7%
MV2	50	878	878	873	868	869	867	857	1.2%
MV3	50	2137	2136	2135	2134	2131	2131	2130	0.0%
MV4	42	420	419	413	413	413	412	410	0.5%
A1	7	59	59	59	58	58	57	57	0.0%
A2	13	116	116	116	114	114	114	112	1.8%
A3	12	215	215	213	210	211	210	204	2.9%
A4	11	531	531	531	525	525	525	502	4.6%
A5	4	147	147	146	145	144	144	144	0.0%
B1	25	376	376	376	371	373	370	361	2.5%
B2	36	1583	1583	1583	1570	1570	1564	1521	2.8%
B3	22	1548	1548	1548	1533	1536	1525	1478	3.2%
B4	22	6553	6553	6553	6529	6535	6524	6314	3.3%
B5	14	3371	3371	3371	3348	3347	3348	3126	7.1%
Total	613	21856	21853	21811	21697	21706	21663	21037	-
Gap	-	3.9%	3.9%	3.7%	3.1%	3.2%	3.0%	-	-

Table 7. Comparison of the quality of the solutions for the three-stage without trimming core problem.

Instance set	Number of instances solved exactly	SG1	SG2	LS- SAIT	LS- SAS	LS- RS	VND	Optimal	VND Gap
cgcut	3	27	27	27	27	27	27	27	0.0%
gcut	13	112	112	112	111	112	111	110	0.9%
ngcut	12	36	36	36	36	36	36	34	5.9%
BW1	50	1037	1036	1031	1023	1024	1021	1003	1.8%
BW2	50	132	132	129	129	129	128	126	1.6%
BW3	50	744	744	734	731	731	731	713	2.5%
BW4	19	28	28	28	28	28	28	28	0.0%
BW5	49	912	912	906	901	902	900	885	1.7%
BW6	5	5	5	5	5	5	5	5	0.0%
MV1	50	859	859	853	848	847	846	837	1.1%
MV2	47	801	801	797	791	793	791	774	2.2%
MV3	50	2137	2136	2135	2134	2131	2131	2130	0.0%
MV4	29	229	229	229	228	229	228	228	0.0%
A1	7	59	59	59	58	58	58	56	3.6%
A2	13	113	113	113	112	112	112	111	0.9%
A3	11	191	191	190	188	188	187	182	2.7%
A4	11	525	525	525	520	519	519	495	4.8%
A5	4	146	146	145	144	144	144	141	2.1%
B1	25	375	375	375	369	372	368	358	2.8%
B2	36	1582	1582	1582	1568	1569	1561	1517	2.9%
B3	22	1546	1545	1545	1531	1533	1525	1471	3.7%
B4	22	6553	6553	6553	6538	6538	6538	6314	3.5%
B5	14	3370	3370	3370	3358	3357	3358	3122	7.6%
Total	592	21519	21516	21479	21378	21384	21353	20667	-
Gap	-	4.1%	4.1%	3.9%	3.4%	3.5%	3.3%	-	-

Table 8. Comparison of the quality of the solutions for the three-stage with trimming core problem.

Instance set	Number of instances solved exactly	SG1	SG2	LS- SAIT	LS- SAS	LS- RS	VND	Optimal	VND Gap
cgcut	3	27	27	27	27	27	27	27	0.0%
gcut	13	111	111	111	110	110	109	109	0.0%
ngcut	12	36	36	35	35	36	35	33	6.1%
BW1	50	1036	1034	1027	1021	1024	1019	1001	1.8%
BW2	50	131	131	129	129	129	128	126	1.6%
BW3	50	746	744	734	731	732	731	710	3.0%
BW4	13	16	16	16	16	16	16	16	0.0%
BW5	48	886	884	877	872	875	872	849	2.7%
BW6	6	6	6	6	6	6	6	6	0.0%
MV1	50	856	856	850	845	845	844	830	1.7%
MV2	44	709	708	700	698	698	698	675	3.4%
MV3	50	2136	2135	2131	2131	2130	2130	2130	0.0%
MV4	24	170	170	170	169	170	169	166	1.8%
A1	7	58	58	58	58	58	58	56	3.6%
A2	13	113	113	113	112	112	112	111	0.9%
A3	11	193	192	191	190	190	189	182	3.8%
A4	11	524	524	524	519	519	519	495	4.8%
A5	3	109	109	109	108	108	108	106	1.9%
B1	25	375	375	375	369	372	368	358	2.8%
B2	36	1582	1582	1582	1567	1568	1560	1516	2.9%
B3	23	1733	1733	1733	1716	1718	1710	1649	3.7%
B4	22	6553	6553	6553	6537	6535	6537	6314	3.5%
B5	14	3372	3370	3370	3356	3358	3356	3122	7.5%
Total	578	21478	21467	21421	21322	21336	21301	20587	-
Gap	-	4.3%	4.3%	4.1%	3.6%	3.6%	3.5%	-	-

Instance set	Two-stage without trimming	Two-stage with trimming	Three-stage without trimming	Three-stage with trimming
cgcut	44.02\%	34.44\%	26.11\%	26.11\%
gcut	58.89\%	31.36\%	30.52\%	29.02\%
ngcut	45.92\%	37.89\%	35.61\%	33.97\%
BW1	23.69\%	14.13\%	13.33\%	13.13\%
BW2	43.71\%	27.13\%	24.53\%	24.53\%
BW3	42.75\%	19.75\%	19.76\%	19.76\%
BW4	66.95\%	39.53\%	37.84\%	38.74\%
BW5	47.06\%	19.97\%	20.20\%	20.05\%
BW6	79.28\%	45.37\%	49.63\%	51.41\%
MV1	36.09\%	19.42\%	19.27\%	18.91\%
MV2	57.73\%	21.20\%	21.56\%	21.38\%
MV3	42.44\%	36.77\%	36.77\%	36.75\%
MV4	50.90\%	17.89\%	19.98\%	20.51\%
A1	37.90\%	29.11\%	30.14\%	30.14\%
A2	35.68\%	33.63\%	30.80\%	30.80\%
A3	30.54\%	15.20\%	14.39\%	14.29\%
A4	19.98\%	13.92\%	13.00\%	13.00\%
A5	27.26\%	12.75\%	12.75\%	13.89\%
B1	23.97\%	21.14\%	20.88\%	20.88\%
B2	17.77\%	15.07\%	15.01\%	14.86\%
B3	18.10\%	12.69\%	12.67\%	12.15\%
B4	18.20\%	17.49\%	17.73\%	17.67\%
B5	16.56\%	12.09\%	12.30\%	12.25\%
Average	38.50\%	23.82\%	23.25\%	23.23\%

Table 10. Comparison of VND with other heuristics for the Berkey and Wang
Deleted: Table 11 instances.

		FFF	FBS	KP	TS -	TS -	VND	
Class of instances	Number of items	z/LB	z/LB	z/LB	z/LB	z/LB	z/LB	time
BW1	20	1.17	1.14	1.13	1.09	1.11	1.10	0.01
	40	1.12	1.09	1.10	1.08	1.08	1.10	0.06
	60	1.10	1.07	1.07	1.05	1.05	1.07	0.16
	80	1.08	1.06	1.06	1.04	1.04	1.04	0.31
	100	1.07	1.06	1.05	1.04	1.05	1.05	0.57
	Average	1.108	1.084	1.082	1.060	1.066	1.072	0.223
BW2	20	1.10	1.10	1.00	1.10	1.00	1.00	0.01
	40	1.10	1.10	1.10	1.10	1.10	1.05	0.05
	60	1.15	1.15	1.15	1.15	1.15	1.12	0.13
	80	1.07	1.07	1.07	1.07	1.07	1.06	0.27
	100	1.06	1.06	1.03	1.06	1.03	1.03	0.46
	Average	1.096	1.096	1.070	1.096	1.070	1.053	0.18
BW3	20	1.20	1.18	1.18	1.18	1.18	1.20	0.01
	40	1.18	1.14	1.15	1.12	1.12	1.13	0.05
	60	1.14	1.11	1.12	1.08	1.07	1.10	0.15
	80	1.13	1.10	1.10	1.07	1.08	1.09	0.37
	100	1.12	1.09	1.09	1.09	1.09	1.08	0.74
	Average	1.154	1.124	1.128	1.108	1.108	1.118	0.27
BW4	20	1.0	1.0	1.0	1.0	1.0	1.0	0.01
	40	1.1	1.1	1.1	1.1	1.1	1.1	0.04
	60	1.2	1.2	1.2	1.2	1.2	1.2	0.13
	80	1.1	1.1	1.1	1.1	1.1	1.1	0.28
	100	1.1	1.1	1.1	1.1	1.1	1.1	0.57
	Average	1.100	1.100	1.106	1.100	1.100	1.082	0.20
BW5	20	1.14	1.14	1.13	1.13	1.13	1.15	0.01
	40	1.11	1.11	1.09	1.09	1.09	1.12	0.06
	60	1.11	1.10	1.10	1.06	1.07	1.09	0.15
	80	1.12	1.09	1.09	1.06	1.08	1.09	0.33
	100	1.12	1.09	1.09	1.08	1.09	1.09	0.66
	Average	1.120	1.106	1.100	1.084	1.092	1.108	0.24
BW6	20	1.0	1.0	1.0	1.0	1.0	1.0	0.01
	40	1.4	1.4	1.5	1.4	1.5	1.3	0.04
	60	1.1	1.1	1.1	1.1	1.1	1.1	0.14
	80	1.0	1.0	1.0	1.0	1.0	1.0	0.29
	100	1.1	1.1	1.1	1.1	1.1	1.1	0.52

| Table 11. Comparison of VND with other heuristics for the Martello and Vigo
Deleted: Table 12 instances.

		FFF	FBS	KP	TS -	TS -		
Class of instances	Number of items	z/LB	z/LB	z/LB	z/LB	z/LB	z/LB	time
MV1	20	1.10	1.10	1.10	1.08	1.08	1.08	0.01
	40	1.11	1.11	1.07	1.07	1.07	1.06	0.07
	60	1.08	1.08	1.06	1.05	1.05	1.06	0.20
	80	1.07	1.06	1.06	1.05	1.05	1.05	0.47
	100	1.04	1.04	1.04	1.03	1.04	1.03	1.08
	Average	1.080	1.078	1.066	1.056	1.058	1.057	0.37
MV2	20	1.17	1.16	1.12	1.12	1.12	1.13	0.01
	40	1.09	1.08	1.07	1.04	1.04	1.07	0.05
	60	1.06	1.06	1.06	1.03	1.03	1.05	0.20
	80	1.07	1.06	1.05	1.03	1.03	1.05	0.37
	100	1.06	1.06	1.04	1.04	1.04	1.05	0.60
	Average	1.090	1.084	1.068	1.052	1.052	1.069	0.24
MV3	20	1.01	1.01	1.01	1.00	1.00	1.00	0.01
	40	1.02	1.02	1.02	1.01	1.01	1.03	0.06
	60	1.02	1.02	1.01	1.01	1.01	1.01	0.17
	80	1.02	1.02	1.02	1.02	1.01	1.02	0.32
	100	1.02	1.01	1.01	1.01	1.01	1.01	0.65
	Average	1.018	1.016	1.014	1.010	1.008	1.012	0.24
MV4	20	1.14	1.14	1.16	1.14	1.14	1.13	0.01
	40	1.14	1.09	1.10	1.09	1.09	1.08	0.06
	60	1.15	1.12	1.10	1.08	1.08	1.08	0.20
	80	1.15	1.13	1.12	1.10	1.10	1.11	0.45
	100	1.14	1.10	1.08	1.08	1.07	1.07	0.77
	Average	1.144	1.116	1.112	1.098	1.096	1.094	0.30

Table 12. Impact of the maximum number of item types per bin on the waste percentage.
Deleted: Table 17

Maximum number of item types per bin	1	2	3	4	5	6	7	8	9	10	999
Company A	25.8%	16.3%	12.4%	11.1%	9.7%	9.1%	8.9%	8.8%	8.7%	8.6%	8.6%
Company B	19.0%	10.1%	8.7%	8.4%	8.3%	8.3%	8.3%	8.3%	8.3%	8.3%	8.3%

Table 13. Problems considered by the two companies.

	Core problem	Rotation of items	First cut Direction	Limit on the number of item types per plate	Over- production	Head-cut
A1	3 stages without trimming	Allowed	Horizontal	No limit	Not allowed	No
A2	2 stages with trimming	Allowed	Horizontal	No limit	Not allowed	Yes
B	2 stages without trimming	Allowed	Horizontal	No limit	Allowed	Yes

Table 14. Comparison between VND and the solutions obtained by the companies.

		Solutions from the Company	VND	Improvement
Company A	Number of used bins	736	648	$88(12.0 \%)$
	Average waste	24.2%	16.0%	8.2
	0	19	-	
	Number of used bins	3943	3926	$17(0.4 \%)$
	Average waste	11.9%	10.7%	1.2
	Number of better solutions (42 instances)	15	18	-

Figure 1. A two-stage without trimming packing in a single bin.
Figure 2. A three-stage without trimming packing in a single bin.
Figure 3. A two-stage with trimming packing in a single bin.
Figure 4. A three-stage with trimming packing in a single bin.
Figure 5. Example of locations where an item can be packed.
Figure 6. Example of two possible locations in a shelf where one item can be packed.
Figure 7. Algorithm of the proposed sequential VND approach.
Figure 8. Illustration of a head-cut (represented by the bold vertical line).
Figure 9. Illustration of the reduction on the number of cuts by changing the coordinate of the head-cut.

Page 33: [1] Deleted
Templeman
2/16/2009 10:25:00 PM
Table 9. Average computational times (in seconds) for the three-stage with trimming core problem (all instances).

Instance set	SG1	SG2	LS-SAIT	LS-SAS	LS-RS	VND
cgcut	0.0	0.0	0.0	0.0	0.0	0.1
gcut	0.0	0.0	0.0	0.0	0.0	0.1
ngcut	0.0	0.0	0.0	0.0	0.0	0.0
BW1	0.0	0.0	0.0	0.1	0.1	0.3
BW2	0.0	0.0	0.0	0.1	0.1	0.2
BW3	0.0	0.0	0.0	0.1	0.1	0.3
BW4	0.0	0.0	0.0	0.0	0.0	0.0
BW5	0.0	0.0	0.0	0.1	0.1	0.3
BW6	0.0	0.0	0.0	0.0	0.0	0.0
MV1	0.0	0.0	0.1	0.1	0.1	0.5
MV2	0.0	0.0	0.0	0.1	0.1	0.3
MV3	0.0	0.0	0.0	0.1	0.1	0.3
MV4	0.0	0.0	0.0	0.1	0.0	0.1
A1	0.0	0.0	0.0	0.0	0.0	0.1
A2	0.0	0.0	0.0	0.0	0.0	0.1
A3	0.0	0.0	0.1	0.4	0.4	2.1
A4	0.0	0.0	0.2	13.6	14.2	84.4
A5	0.0	0.0	0.3	3.2	2.8	14.3
B1	0.0	0.0	0.0	0.4	0.5	3.1
B2	0.0	0.1	0.1	12.3	14.0	71.0
B3	0.0	0.1	0.3	50.6	54.2	284.1
B4	0.7	2.0	4.6	491.5	498.8	573.2
B5	0.5	1.5	6.8	566.3	570.7	603.2

Page 37: [2] Deleted
Filipe Pereira e Alvelos
2/12/2009 11:40:00 AM
Table 13. Impact of allowing rotation in the quality of the solutions and in the computational times - company A.

	No rotation			Rotation		
	SG2	LS-SAS	VND	SG2	LS-SAS	VND
Number of used bins		679	673	671	658	654
Waste		19.0%	18.5%	18.4%	16.7%	16.4%
Time (secs)	Total	1	59	294	1	64
	Min	0	0	0	0	0
	Median	0	0	1	0	0
	Avg	0	2	11	0	2

Table 14. Impact of allowing rotation in the quality of the solutions and in the computational times - company B.

	No rotation			Rotation		
	SG2	LS-SAS	VND	SG2	LS-SAS	VND
Number of used bins		4142	4106	4094	3981	3965
Waste		14.8%	14.4%	14.2%	11.0%	10.6%
Time (secs)	Total	5	2284	8410	10	2156
	Min	0	0	0	0	0
	Median	0	19	85	0	16
	Avg	0	54	200	0	51

\qquad
Table 15. Impact of allowing overproduction on the average waste.

	No overproduction	Overproduction
Company A	16.0%	9.1%
Company B	10.0%	8.5%

Page Break

Table 16. Impact on the quality of the solutions of the head-cut.

		No head-cut	Head-cut
Company A	Number of used bins	650	648
	Waste	9.1%	8.6%
Company B	Number of used bins	3956	3899
	Waste	8.5%	8.3%

Page 41: [3] Deleted
Filipe Pereira e Alvelos
2/12/2009 11:42:00 AM
Table 20. Detailed results for the instances of company A.

URL: http:/mc.manuscriptcentral.com/geno Email: A.B.Templeman@liverpool.ac.uk

Instance	Company		VND				Improvement	
			A1		A2			
	NUB	Waste	NUB	Waste	NUB	Waste	NUB	Waste
a01	66	17.1\%	61	10.3\%	61	10.3\%	5	6.8
a02	73	19.1\%	67	11.9\%	67	11.9\%	6	7.2
a03	71	28.3\%	55	7.4\%	55	7.4\%	16	20.9
a04	29	22.7\%	25	10.3\%	25	10.3\%	4	12.4
a05	36	29.6\%	28	9.5\%	28	9.5\%	8	20.1
a06	16	26.2\%	14	15.7\%	14	15.7\%	2	10.5
a07	3	38.5\%	2	7.8\%	2	7.8\%	1	30.7
a08	54	19.8\%	48	9.7\%	49	11.6\%	6	10.0
a09	14	22.4\%	14	22.4\%	14	22.4\%	0	0.0
a10	16	25.9\%	14	15.3\%	14	15.3\%	2	10.6
a11	80	21.2\%	68	7.2\%	69	8.6\%	12	13.9
a12	42	16.5\%	38	7.7\%	39	10.1\%	4	8.8
a13	96	18.8\%	84	7.2\%	85	8.3\%	12	11.6
a14	6	25.7\%	5	10.8\%	5	10.8\%	1	14.9
a15	8	15.0\%	8	15.0\%	8	15.0\%	0	0.0
a16	6	23.4\%	6	23.4\%	6	23.4\%	0	0.0
a17	8	20.1\%	8	20.1\%	8	20.1\%	0	0.0
a18	12	17.4\%	12	17.4\%	12	17.4\%	0	0.0
a19	4	17.8\%	4	17.8\%	4	17.8\%	0	0.0
a20	10	35.1\%	8	18.9\%	8	18.9\%	2	16.2
a21	5	17.2\%	5	17.2\%	5	17.2\%	0	0.0
a22	24	16.0\%	23	12.3\%	23	12.3\%	1	3.7
a23	4	31.7\%	4	31.7\%	4	31.7\%	0	0.0
a24	18	20.4\%	16	10.4\%	16	10.4\%	2	9.9
a25	20	29.5\%	19	25.7\%	18	21.6\%	2	7.8
a26	8	44.8\%	7	37.0\%	7	37.0\%	1	7.9
a27	7	32.3\%	7	32.3\%	6	21.0\%	1	11.3

Page Break
Table 21. Detailed results for the instances of company B.

Instance	Company		VND		Improvement	
	NUB	Waste	NUB	Waste	NUB	Waste
b01	73	6.6%	73	6.6%	0	0.0
b02	10	11.1%	9	1.2%	1	9.9
b03	91	10.3%	88	7.2%	3	3.1
b04	85	13.7%	80	8.4%	5	5.4
b05	177	4.6%	180	6.2%	-3	-1.6
b06	189	6.3%	184	3.8%	5	2.5
b07	124	6.1%	131	11.1%	-7	-5.0
b08	221	10.3%	215	7.8%	6	2.5
b09	33	18.5%	35	23.2%	-2	-4.7

b10	17	14.7%	16	9.4%	1	5.3
b11	23	30.6%	19	16.0%	4	14.6
b12	3	21.7%	3	21.7%	0	0.0
b13	12	9.0%	13	16.0%	-1	-7.0
b14	225	9.5%	226	9.9%	-1	-0.4
b15	11	17.1%	11	17.1%	0	0.0
b16	6	21.9%	6	21.9%	0	0.0
b17	19	14.2%	19	14.2%	0	0.0
b18	22	17.0%	20	8.7%	2	8.3
b19	109	6.7%	106	4.1%	3	2.6
b20	127	9.8%	129	11.2%	-2	-1.4
b21	221	10.3%	215	7.8%	6	2.5
b22	74	10.5%	76	12.8%	-2	-2.4
b23	415	10.4%	418	11.1%	-3	-0.6
b24	104	12.1%	107	14.6%	-3	-2.5
b25	98	8.8%	98	8.8%	0	0.0
b26	102	7.4%	105	10.0%	-3	-2.6
b27	108	5.9%	106	4.1%	2	1.8
b28	107	5.0%	106	4.1%	1	0.9
b29	123	5.3%	132	11.8%	-9	-6.5
b30	221	7.3%	222	7.7%	-1	-0.4
b31	172	3.5%	174	4.6%	-2	-1.1
b32	60	12.8%	57	8.2%	3	4.6
b33	61	10.3%	63	13.1%	-2	-2.8
b34	62	7.5%	65	11.8%	-3	-4.3
b35	60	13.5%	55	5.6%	5	7.9
b36	49	12.0%	46	6.3%	3	5.7
b37	34	12.0%	34	12.0%	0	0.0
b38	75	13.8%	70	7.6%	5	6.2
b39	185	8.5%	183	7.5%	2	1.0
b40	28	24.7%	24	12.1%	4	12.6
b41	5	16.6%	5	16.6%	0	0.0
b42	2	23.5%	2	23.5%	0	0.0

Figure 1. A two-stage without trimming packing in a single bin. $55 \times 30 \mathrm{~mm}(600 \times 600$ DPI)

Figure 3. A two-stage with trimming packing in a single bin. $55 \times 30 \mathrm{~mm}$ (600×600 DPI)

Figure 5. Example of locations where an item can be packed. $55 \times 30 \mathrm{~mm}$ (600×600 DPI)

Apply a set of greedy heuristics with different parameters CritSequence, CritStack, CritShelf and CritBin
Let BestCritSequence, BestCritStack, BestCritShelf and BestCritBin be the criteria of the best solution obtained according to the evaluation function $V(s)$
Consider the current sequence as the one given by BestCritSequence and the corresponding current solution s^{*}
Let NS be the current neighbourhood structure, initialized by NS=SAIT While TimeLimit is not reached and there was an improvement of the current solution in one of the three last neighbourhood structures applied \{
For each neighbour sequence of the current sequence according to NS \{
Obtain a solution s^{\prime} by the greedy heuristic with the neighbour sequence and BestCritStack, BestCritShelf and BestCritBin criteria
If $\mathrm{V}\left(\mathrm{s}^{\prime}\right)<\mathrm{V}\left(\mathrm{s}^{*}\right)\{$
$s^{*}=s^{\prime}$
Update current sequence
Improvement=true
\}
\}

If $\mathrm{NS}=$ SAIT then $\mathrm{NS}=\mathrm{SAS}$
If $\mathrm{NS}=\mathrm{SAS}$ then $\mathrm{NS}=\mathrm{RS}$
If $N S=$ RS then $N S=$ SAIT
\}

Figure 7. Algorithm of the proposed sequential VND approach. $130 \times 132 \mathrm{~mm}(600 \times 600$ DPI)

Figure 9. Illustration of the reduction on the number of cuts by changing the coordinate of the headcut.
$118 \times 36 \mathrm{~mm}$ (600×600 DPI)

[^0]: *Corresponding author. Email: falvelos@dps.uminho.pt. Department of Production and Systems, University of Minho, 4710-057 Braga, Portugal. Tel. +351253604751. Fax: +351253604741 .

[^1]: Deleted: In Table 13 and Table 14, results on allowing rotation or not for the three-stage problem without trimming are given for the instances of companies A and B, respectively. Three approaches (a greedy one, a local search one and VND) were tested.For both companies, the impact of allowing rotation is significant in terms of the quality of the solutions without compromising the computational times. The decrease in the percentage waste ranges from 2.1 to 2.4 for company A and from 3.8 to 4.2 for company B, depending on the approach.
 In Table 15, the percentages of waste obtained by VND, with and without overproduction, are compared for the two companies when rotation is allowed. The percentage waste decreases significantly in particular for the instances of the A company. Since, in general, the bin packing instances have more waste than the cutting stock instances, it is natural that they can accommodate more "extra" items.

