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Abstract 

 
This article contributes to the development of the field of Alternating Optimization (AO) and general Mixed 

Discrete Non-Linear Programming (MDNLP) by introducing a new decomposition algorithm (AO-MDNLP) based 

on the Augmented Lagrangian Multipliers method. In the proposed algorithm, an iterative solution strategy is 

proposed by transforming the constrained MDNLP problem into two unconstrained components or units; one 

solving for the discrete variables, and another for the continuous ones. Each unit focuses on minimizing a different 

set of variables while the other type is frozen. During optimizing each unit, the penalty parameters and multipliers 

are consecutively updated until the solution moves towards the feasible region. The two units take turns in evolving 

independently for a small number of cycles. The validity, robustness and effectiveness of the proposed algorithm 

are exemplified through some well known benchmark mixed discrete optimization problems. 

 

Keywords 

 
Mixed discrete nonlinear programming; Alternating optimization; Augmented Lagrangian; Decomposition. 

 

I. Introduction 

This work addresses the mixed discrete programming problem, which seeks a global optimum to an 

optimization formulation with an objective function subject to a set of linear and nonlinear constraints 

where the decision variables are both continuous and discrete. In the last decade, there has been a 

dramatic increase in the techniques developed to solve MDNLP problems (Leyffer 2001, He et al. 2004, 
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Rao and Xiong 2005); such techniques have been applied in various domains, ranging from the process 

industry and engineering, to the financial and management sciences as well as operational research 

sectors. The challenging difficulty of MDNLP problems is their high nonlinearity and non-

differentiability due to the combinatorial nature of the associated discrete-valued variables. 

 

The categories of algorithms for solving MDNLPs can be mainly divided into stochastic and 

deterministic ones. The stochastic methods are employing randomized searches and aim to tackle the 

problem of local optimality. Examples include Simulated Annealing (Cardoso et al. 1997), Genetic 

Algorithms (Rao and Xiong 2005, Young et al. 2007), Differential Evolution (Lampinen and Zelinka 

1999), Particle Swarm Optimization (He et al. 2004, Yiqing et al. 2007), and other hybrid methods 

(Juang 2004, Zhong et al. 2004, Nema et al. 2008). The deterministic ones take a different approach and 

adopt a systematic way of approaching the optimum; popular examples include the Non-Linear Branch-

and-Bound (Borchers and Mitchell 1994, Leyffer 2001), Sequential Linearization (Loh and Papalambros 

1991, Lamberti and Pappalettere 2005), the Penalty Function approach (Shin et al. 1990, Fu et al. 1991), 

and the Lagrangian Relaxation methods (Anstreicher and Wolkowicz 2000, Dillon and O’Malley 2002). 

 

This article proposes an original method for solving MDNLP problems, based on the generic framework 

of Alternating Optimization (AO) introduced by Bezdek and Hathaway (2003). AO is a very efficient 

iterative procedure for solving large problems by alternating between restricted subsets of variables. It 

has good convergence properties, reduced development times and the ability to reduce the risk of getting 

trapped in a local minima. Its main drawback, however, is that AO cannot be adapted easily for use with 

constrained optimization problems. In this article, the AO procedure was applied to the constrained 

formulation of MDNLP by partitioning and processing each discrete and continuous subset of the mixed 

decision variables with different, and more suitable to each subset, solvers. The solvers combine a 

standard Quasi-Newton gradient-based method (Rao 1996, Nocedal and Wright 1999), with a Lagrangian 

formulation of the MDNLP, together with a Branch-and-Bound search (Borchers and Mitchell 1994, 

Gallardo et al. 2007) for the continuous and discrete variables, respectively. 

 

The rest of the article is organized as follows. Section II.A describes the MDNLP formulation with 

equality and inequality constraints, Section II.B presents the augmented Lagrangian approach for 
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constrained optimization, while Sections II.C-D briefly review the principles of the Quasi-Newton and 

the Branch-and-Bound search methods. Section III.A describes the Alternating Optimization method for 

unconstrained optimization, and the new algorithm is introduced in Section III.B. Numerical examples 

and comparisons of the new approach are provided in Section IV. Finally, conclusions and suggestions 

for further work are presented in Section V. 

II. Employed Optimization Models and Algorithms 

A. The MDNLP formulation 

An MDNLP optimization problem contains continuous, integer and discrete variables, with linear and 

nonlinear constraints, and also constraints on the value sets of the discrete variables. It can be stated as 

( )
( )
( )
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where x
r

 is the vector of cn  continuous variables and y
r

 is the vector of dn  discrete variables within the 

value set X. The problem also accounts for m  inequalities )y,x(g
rr

 and l  equalities )y,x(h
rr

. 
k

Y  is the 

discrete value set of each k
th
 discrete variable yk. The major difficulty that arises in the MDNLP problems 

is due to the combinatorial nature of the Y variables, as the number of possible solutions rises 

exponentially with the discrete variables domain. Therefore, complexity analysis characterises MDNLP 

problems as Non-Polynomial Complete (Vavasis 1991). 

B. The augmented Lagrangian multipliers method 

An effective way for solving a continuous optimisation problem with constraints using solvers for 

unconstrained problems, is to convert it to an equivalent unconstrained one by using the penalty 

approach, where all constraints ( )xg
r

 and ( )xh
r

 are converted to extra penalty terms added to the 

objective function ( )xf
r

. Such an advanced penalty method is the Augmented Lagrangian Penalty 

Function (ALPF) (Bazaraa et al. 1993, Nocedal and Wright 1999) which combines the properties of the 

quadratic penalty function and the Lagrangian formulation of the problem. The ALPF can be expressed 

as 
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where {λ1,…λm} and {λm+1,…λm+l} are the Lagrangian multipliers for the m inequalities and the l  

equalities, respectively. The ri represent the positive penalty terms for the corresponding two types of 

constraints. ( )x
i

r

β  is a used to convert the inequalities to equalities via setting 
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The optimum solution *
x
r

 is computed as a sequence of iterative unconstrained subproblems with regular 

updates of the penalties k

i
r  and the multipliers k

i
λ  at each iteration k. The optimization is initialized with 

the values of 0
0

mi

0

i
== +λλ and 1rr

0
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== +  as suggested by Rao (1996). Because the correct penalty 

factors and the Lagrangian multipliers are problem dependent and, thus, unknown, they are continually 

updated as 
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To make the procedure more efficient, instead of fixing the penalties ri, an adaptation strategy (Bean and 

Hadj-Alouane 1992) has been used to regulate the penalty decrease/increase. For instance, if a current 

point k
x
r

 violates the i
th
 inequality constraint ( )k

i
xg
r

, k

i
r  must be increased to eventually move the final 

solution to the feasible region. The following heuristic is used to update the penalty parameters 
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where ε  is the user-defined tolerance for acceptable constraint violations. The same rule applies to 

updating the equality penalty 
1+

+
k

jmr , based on the violation condition ( ) ε>xh j

r

.  

The following termination criterion has been used to examine how close the search approaches to the 

optimum solution. Firstly, the solution is obtained when the relative error between the augmented 

function in two successive iterations becomes small, according to  
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Since φ becomes a nonconvex function, it is important to check for optimality of the obtained solution *
x
r

, 

as this is the case when the corresponding multiplier vector kλ
r

 approaches the optimal one *λ
r

 (Gill et al. 

1988). The algorithm was terminated if the current feasible point *
x
r

satisfies the Karush-Kuhn-Trucker 

(KKT) conditions which are necessary for *
x
r

to be a global optimum of φ  
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C. Unconstrained optimization 

After a continuous constrained problem is transformed to a continuous unconstrained one through the 

ALPF, a standard Quasi-Newton (QN) algorithm (Bazaraa et al. 1993) can be employed to efficiently 

minimize it. Second-order gradient-based algorithms proceed towards the minimum point of a 

minimizing function ( )xf
r

 in a sequential manner by updating the current solution in each (k+1)
th
 

iteration as 

( ) ( )k1kk1k
xfxHxx
rrrr

∇⋅−=
−+

       (8) 

 

To reduce the computational load of estimating the Hessian H at point k
x
r

 in each iteration, QN builds up 

curvature information using first-order derivatives by applying the Sherman-Morrison formula (Nocedal 

1999) 

( ) ( )
( )
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where       (9) 

where 0H  is usually taken to be the identity matrix. 
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D. The Branch-and-Bound (BB) algorithm 

This is an established generic algorithm for efficiently enumerating and searching parts of optimization 

problems. The BB method for discrete problems (Nemhauser and Wolsey 1988, Floudas 1995) is based 

on the mechanisms of separation, relaxation and fathoming in a search tree. Its principle lies in 

successive decompositions of the original problem to smaller disjoint subproblems until an optimal 

solution is found. 

 

The algorithm starts by solving first the continuous relaxation problem using a Non-Linear Programming 

(NLP) solver. If all discrete variables take discrete values the search is stopped. Otherwise, a tree search 

is performed in the space of the discrete variables. Then the algorithm selects one of those discrete 

variables which take a non-discrete value and branch on it. Branching generates two new subproblems by 

adding simple bounds to the NLP relaxation. Then, one of the two new NLP problems is selected and 

solved. If the discrete variables take non-discrete values then branching is repeated, while if one of the 

fathoming rules is satisfied, then no branching is required, and the corresponding node is flagged as fully 

explored. When during the search discrete solutions are found, they can provide upper bounds on the 

optimal value of the original problem. Once a node has been fathomed the algorithm backtracks to 

another node which has not been explored until all nodes are fathomed. The general operations of the 

algorithm are shown in Table 1. 

 

Place the continuous relaxation and set upper bound to infinity. 

while there are unexamined subproblems/nodes in the tree 

 Select an unexplored node. 

 Solve the NLP problem on the discrete variable y. 

 Obtain lower bound. 

 if the solution is optimal and y value is fractional: 

  Branch on y. 

 endif 

 Solve NLP problem until: 

  - The subproblem is infeasible, or 

  - A discrete feasible solution is found (record the value of this solution as upper bound), or 

  - The lower bound is greater than the objective value of a previous discrete solution. 

 Continue branching and solving NLP subproblems. 

Endwhile 

Table 1. Main Branch-and-Bound operations. 
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III. The Proposed AO-MDNLP Framework 

A. Alternating Optimization (AO) 

AO is a generic methodology for locating the solution of an optimization problem by partitioning and 

treating independently the design variables. It has been shown that the AO method very efficiently 

converges to at least a local minimum regardless of the initialization (Hathaway and Bezdek 2001, 2003). 

The principle advantage of AO is that it replaces the optimization of the objective function with a 

sequence of easier optimizations involving the different partitions of the design variables. 

 

If we assume that we have to minimize a function ( )xf
r

 of n variables, the original problem can be 

partitioned into N autonomous subsets of variables (with ns variables in each s
th
 subset, with 

nn
N

1s s
=∑ =

) and the process of optimization alternates between these subsets until the global problem is 

completed. The flowchart in Figure 1 illustrates the operation sequencing of AO, where the strikethrough 

notation 
i

x  indicates variables that are fixed with respect to the current subproblem at index i. In later 

sections, the parameter t is used to define the number of cycles to be used during the AO optimization 

process.   

 

Figure 1. Iteration procedure of Alternating Optimization. 
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Example: Hartmann function 

A classic benchmark problem in nonlinear optimization introduced by Dixon and Szego (1978) has been 

used to demonstrate the application of AO, It minimizes the following 

( ) ( ) [ ]
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This problem has six continuous variables ( ) 6

61
x,,xx ℜ∈= K

r

. Suppose we choose N=2 arbitrary 

partitions ( ) 3

3211
x,x,xx ℜ∈=

r

, and ( ) 3

6542
x,x,xx ℜ∈=

r

 of n1=n2=3 variables each. The minimization 

can start by setting the initialization point to ( )1,1,1,1,1,1x
0      =
r

, and then minimize ( )xf
r

 by alternatively 

minimizing each subset of the partitioned variables independently. 

 

Cycle t 
t

1
x
r

 
t

2
x
r

 
1tt

xx
−−

rr

 

0 (1, 1, 1)  (1, 1, 1) ---- 

1 (0.1312, 0.2005, 0.5683)
 

(0.2718, 0.3128, 0.6595)
 

1.6428 

2 (0.2015, 0.1501, 0.4774)
 

(0.2753, 0.3117, 0.6573)
 

0.1256 

3 (0.2017, 0.1500, 0.4769)
 

(0.2753, 0.3117, 0.6573)
 

0.0005 

4 (0.2017, 0.1500, 0.4769)
 

(0.2753, 0.3117, 0.6573)
 

0.0000 

Table 2. Applying AO on the Hartmann function.  

 

Table 2 shows a possible outcome of applying AO on this example. The algorithm converges quickly to 

the optimum solution requiring only four cycles to satisfy the stopping condition 
41tt

10xx
−− ≤−

rr

. This 

simple example indicates that the AO framework can provide the means for solving many large scale 

problems that are difficult to process by existing methods, and it leads to easier subproblems with 

solution spaces much more reduced than the original n-dimensional one. 

B. The AO-MDNLP algorithm 

Based on our observation that MDNLPs have highly structured constraints with mixed variables, This 

method proposes to partition these MDNLPs by their variables into two subproblems and solve each 

subproblem as in the example before but using the Lagrangian transformation and also with different and 

appropriately efficient subsolvers for each subset. This new architecture combines the previously 
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discussed robust components, namely the AO framework, the ALPF model and the QN and BB 

algorithms. The rationale behind this variable partitioning is to allow many computationally expensive 

MDNLP problems to be solved by existing solvers more efficiently. This is possible because the 

proposed AO-MDNLP method leads to smaller and simpler structured subproblems that are easier to 

minimize, while the Lagrangian framework supports resolution of the violated constraints across the 

subproblems using an effective updating strategy. 

 

Because the original problem in Equation (1) consists of the objective function ( )y,xf
rr

 and the 

constraints ( )y,xg i

rr

 and ( )y,xh
j

rr

 the constraints (without assuming a specific problem structure) are 

always associated with both continuous and discrete variables. In order to apply AO, the problem was 

decomposed into two subproblems; one optimizing the set of x
r

 and the other the set of y
r

 variables. To 

make the handling of the constraints more uniform and also efficient, the ALPF has been used to allow 

the continuous subproblem to be converted to an unconstrained one. Overall, the proposed method 

decomposes the MDNLP problem of Equation (1) to two units, where an unconstrained problem is 

solved at each unit. Unit-A fixes all variables y
r

 and minimizes the ALPF using QN, defined as 
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After Unit-A performing the full minimization of ( )ryx
r

r
rr

,,, λφ  with respect to x
r

, some of the penalty 

parameters k

i
r  and the Lagrangian multipliers k

i
λ  are consecutively updated. The unconstrained 

optimization of ( )r,,y,x
r

r

rr

λφ  has to be carried out for a sequence of values r
r

 and λ
r

  until the solution 

moves towards the feasible region, where the Lagrangian multipliers can be estimated more accurately. 

The iterative process stops when the augmented function is not changing much between two successive 

iterations. In the mean time, a test for the satisfaction of the KKT conditions is performed before taking 

the current solution as an optimum solution. 

 

Subsequently, Unit-B takes turn in the optimization process and the continuous variables x
r

 become 
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fixed. The unit invokes a Branch-and-Bound algorithm to minimize the discrete variables y
r

 only, but 

instead of solving a constrained problem at each node of the BB tree, the augmented function 

),,,( λφ
r

rrr

ryx  is minimized for the relaxed component of y
r

 using QN. This setup is efficient, because at 

each node the subproblem has nc less dimensions that the standard unpartitioned BB. The penalty 

parameters k

i
r and the Lagrangian multipliers k

i
λ  have to be consecutively updated at each node in order 

to find the feasible continuous solution. When solving each subproblem in the BB tree, the following 

condition must be satisfied before taking the obtained point as a discrete solution 

ε≤− k
i

k
i dymax        (12) 

where k
iy  is the discrete value of the th

i discrete variable at the iteration k , and k
id  is the nearest discrete 

value for the discrete design variable k
iy . Once a node has been fully explored, the global search 

procedures of BB have to be carried out until a discrete solution has been found. The selection method 

for branching node may significantly affect the performance of BB. Our approach uses the depth-first 

with backtracking strategy (Ringertz 1988) until all the nodes have been explored. 

 

After convergence of both units, the algorithm composes the final solution by combining the partial final 

solution generated by each unit. The algorithm terminates with the current solution, if the maximum 

number of cycles is reached or if the following necessary stopping criteria is met 

( ) ( ) ε≤−++ tttt yxyx
rrrr

,, 11       (13) 

The overall implementation of the proposed AO-MDNLP is presented in Table 3. 
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Stage 1: Initialization 

Set cycle count 0=t , termination toleranceε , and maximum cycles limit maxt . 

Pick an initial iterate ( )00 , yx
rr

, and set ( ).r,r,,
0

mi

0

i

0

mi

0

i ++

rr

rr

λλ  

 

Stage2: Optimization 

while (t ≤ tmax) 

Form ),,,( ryx
r

r
rr

λφ  according to Equation (11). 

 
%Unit-A: 

while (the termination criterion in (6) and (7) is not met) 

Minimize ),,,( ryx
r

r
rr

λφ  using QN method. 

Update the parameters r
r

r

,λ according to Equation (4) and (5).  

end while 

Record the obtained solution ),( tt
yx
rr

. 

 
%Unit-B: 

while (there are unexamined nodes in the BB tree) 

Minimize ),,,( ryx
r

r
rr

λφ  at each node on the discrete variable y . 

end while 

Record the obtained solution ),( tt
yx
rr

. 

 

Stage 3: Convergence 
if (the necessary stopping condition in (13) is met) 

Terminate the algorithm with ),( **
yx
rr

as an optimum solution. 

else 
Increase cycle number as t=t+1. 

end if 

end while 

Table 3. Pseudo-Code for the AO-MDNLP algorithm.  

 

 

IV. Numerical Experimentation 

 
In this section, the performance of the proposed AO-MDNLP was investigated with a number of difficult 

real-world bench problems from mechanical engineering and chemical process synthesis, frequently 

employed in the literature. In all experiments, the constraint tolerances 
4

hg, 10ε
−=  are used for both 

equality and inequality constraints. A complete implementation of the AO-MDNLP algorithm has been 

developed in Matlab 7.4, running on a 2.0GHz Pentium 4 CPU with 1GB of RAM. 
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A. Results 

Experiment 1: 

This is a nonconvex problem from Floudas (1995), which involves a process flow sheeting problem. It 

has two continuous variables and one discrete variable with three linear and nonlinear inequality 

constraints, and is given by 

{ }














∈

−≤≤−

≤≤

≤−

−≤+

≤−−

+−+−=

10

1225542

120

20

0111

020exp

8050570

1

2

1

11

12

21

2
11

,y

x.

x.

.yx

.y.x

x).(x-

to subject

.).(xy.)y,xf(min
rr

    (14) 

The optimum results obtained by the present approach are listed in Table 4.  

Cycle 

 t 
( ) ( )121 ,,; yxxyx t

A
t
A =
rr

 ( ) ( )121 ,,; yxxyx t
B

t
B =

rr

 ( )yxf
rr

,  ( ) ( )11,, −−− tttt yxyx
rrrr

 

0 (1, 1, 1) (1, 1, 1) 1.35 ---- 

1 (0.5944, -1.4835, 0.4395) (0.5944, -1.4835, 1.00)
 

0.1446 2.5164 

2 (0.9418, -2.0998, 1.00)
 

(0.9418, -2.0998, 1.00)
 

1.0758 0.7075 

3 (0.9418, -2.0998, 1.00)
 

(0.9418, -2.0998, 1.00)
 

1.0758 0.0000 

Table 4. Alternating Optimization results of experiment 1. 

 

Experiment 2:  

 
This problem arises in the synthesis of chemical process, and it was investigated by Duran and 

Grossmann (1986). The goal is to determine the optimal solution of a chemical process system. The 

problem has three continuous variables and three discrete variables with six linear and nonlinear 

inequality constraints. The master problem can be formulated as follows 



















∈

≤≤≤≤≤≤

≤+

≤−−

≤−

≤−

−≥−−+−×++

≥−+−×++×

++−×−+×−−+++=

}1,0{,,

10,20,20

1

02

02

0

22)1log(2.1)1log(

08.0)1log(96.0)1log(8.0

10)1log(2.19)1log(18710865

321

321

21

221

12

12

33212

3212

2123132

yyy

x    x    x

yy

yxx

yx

xx

yxxxx

xxxx

to subject

xxxxxyyy)y,xf(        min 1

rr

 (15) 

The optimal solutions obtained using the AO-MDNLP algorithm, are presented in Table 5. 
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Cycle 

t 

( )=t
A

t
A yx

rr

;  

( )321221 ,,,,, yyyxxx  

( )=t
B

t
B yx

rr

;  

( )321321 ,,,,, yyyxxx  
),( yxf
rr

 ( ) ( )11,, −−− tttt yxyx
rrrr

 

0 (1, 1, 1, 1, 1, 1) (1, 1, 1, 1, 1, 1) 19.5234 ---- 

1 
(1.1542, 0.5502, 1, 

0.2751, 0.3020, 0)
 

(1.1542, 0.5502, 1, 

0, 1, 1)
 11.5790 1.1073 

2 (1.3, 0, 0.9995, 0, 1, 1)
 

(1.3, 0, 0.9995, 0, 1, 0)
 

6.0098  0.5692 

3 (1.3, 0, 0.9995, 0, 1, 1 )
 

(1.3, 0, 0.9995, 0, 1, 0)
 

6.0098  0.0000 

Table 5. Optimal design of process synthesis problem. 

 

Experiment 3: 

 

Consider the optimal design problem of a pressure vessel given in Sandgren (1990). The objective of this 

problem is to minimize the total cost of materials for forming and welding of a pressure vessel. The 

design variables of the problem are specified as: T
yyxxyx ),,,(),( 2121=

rr

, which correspond respectively to 

the sell thickness, spherical head’s thickness, shell radius, and shell length, where 1y and 2y represent 

discrete values, integer multiples of 0.0625, while 1x and 2x are continuous variables. The mathematical 

formulation of the problem is 




















≤≤

≤≤

≤≤

≤≤

≤−

≤−−

≤−

≤−

+++=

20010

20010

1875.60625.0

1875.60625.0

0240

0
3

4
000,296,1

000954.0

00193.0

84.191661.37781.16224.0),(

2

1

2

1

2

3
12

2
1

21

11

1
2
12

2
1

2
12211

x

x

y

y

x

xxx

yx

yx

to subject

xxxyxyxxyyxfmin

ππ

rr

   (16) 

The AO cycles results of the pressure vessel design problem are shown in Table 6. 

Cycle 

t 

=);( t
A

t
A yx

rr

 

),,,( 2121 yyxx  

=);( t
B

t
B yx

rr

 

),,,( 2121 yyxx  
),( yxf
rr

 

 

),(),( 11 −−− tttt yxyx
rrrr

 

0 (1, 1, 1, 1) (1, 1, 1, 1) 25.4066 ---- 

1 
(159.84, 209.1, 

 2.733, 1.625) 

(159.84, 209.1, 

 2.9375, 1.6250)
 168,004.3 261.8 

2 
(46.19, 180.4, 

 2.9375, 1.6250) 

(46.19, 180.4, 

 2.8750, 1.4375)
 32,659.5 117.2 

3 
(42.0989, 176.6305, 

 2.8750, 1.4375)
 

(42.0989, 176.6305, 

0.8125, 0.4375)
 6,059.65 6.01 

4 
(42.0989, 176.6305 

, 0.8125, 0.4375)
 

(42.0989, 176.6305, 

0.8125, 0.4375)
 6,059.65  0.000 

Table 6. Optimal design of the pressure vessel. 
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Experiment 4: 

  

This problem was studied by Duran and Grossmann (1986). It has more continuous and discrete 

variables; there are 32 possible combinations of the 5 binary variables, of which 11 are feasible as 

determined by the linear inequality constraint. There are 3 nonlinear inequality constraints and one linear 

equality constraints. The problem formulation is given below 

































∈

≤≤≤≤≤

≤≤≤≤≤

≤+

=+

≤−−

≤+−

≤−−

≤−

≤++−−−

≤++−−−

≤−+−

≤−+

≤−

≤−

≤−

≤++

+++×−++

−++−−−++++=

}1,0{

30200

02020

1

1

020

050

022

0

02750

022

01022

010

010251

1108333330exp

110exp

01log

1401log60833330expexp

20515151510610685),(

54321

654

321

54

21

54

54

643

63

64321

64321

563

454

33

22

11

54

5421

65432154321

,y,y,y,yy

x  ,  x ,  x

x  ,  x   , x

xy

yy

xx.

xx.

xxx

xx

xxx.xx

xxxxx

yxx

yxx

yx.

y)x.(

y)(x

)x(x-

to subject

  )x(x)x.()(x             

xxxxxxyyyyyyx f      min
rr

  (17) 

 

This example shows that the global solution can be obtained by the algorithm as shown in Table 7.  

Cycle 

t 

( ) ( ,,,; 321 xxxyx t
A

t
A =
rr

 

)54321654 ,,,,,,, yyyyyxxx  

( ) ( ,,,; 321 xxxyx t
B

t
B =

rr

 

)54321654 ,,,,,,, yyyyyxxx  
),( yxf
rr

 ( ) ( )11,, −−− tttt yxyx
rrrr

 

0 (1,1,1,1,1,1,1,1,1,1,1) (1,1,1,1,1,1,1,1,1,1,1) 74.1025 ---- 

1 

(1.904, 1.9995, 2.6218, 0.6264, 

0.3132, 2.6217, 0.5713, 0.4292, 

0.3277, 0.094,0) 

(1.904, 1.9995, 2.6218, 

0.6264, 0.3132, 2.6217, 

1,1,0,1,0)
 

6.4246 3.1125 

2 
(1.999, 2.121, 0, 2.761, 1.381, 0, 

1, 1, 0, 1, 0)
 

(1.999, 2.121, 0, 2.761, 

1.381, 0, 0, 1, 1, 1, 0)
 73.5040 4.4122 

3 
(0, 2, 1.0784, 0.652, 0.326, 

1.0784, 0, 1, 1, 1, 0) 

(0, 2, 1.0784, 0.652, 0.326, 

1.0784, 0, 1, 1, 1, 0)
 73.0353 3.4498 

4 
(0, 2, 1.0784, 0.652, 0.326, 

1.0784, 0, 1, 1, 1, 0)
 

(0, 2, 1.0784, 0.652, 0.326, 

1.0784, 0, 1, 1, 1, 0)
 73.0353 0.0000 

 

Table 7. Alternating optimisation of process synthesis problem. 
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Experiment 5: 

 

This problem was investigated by Kocis and Grossmann (1988), Costa and Oliviera (2001). It tackles the 

optimal design of multi-product batch plant with M serial processing stages, where fixed amounts iQ  

from N  products must be produced. This problem contains a large number of nonlinear inequality 

constraints; it also has 22 continuous variables and 24 discrete variables. The master problem formulation 

can be stated as:  






















≤≤

≤≤

≤≤

≤≤

≥

≥

≤

=

∑

∑

=

=

u
jj

l
j

u
LiLi

l
Li

u
jj

l
j

u
jj

ijLiJ

iijj

N

i i

Lii

M

j

B
jj

BBB

TTT

VVV

NN

tTN

BSV

H
B

TQ

to subject

VαN       fmin

1

1

1

        (18) 

where, the numerical parameters for the model are chosen as: 6=M , 5=N , 6000=H , 250=jα , 

6.0=jβ , ,3=u

jN  300=l

jV , and 3000=u

jV . The values of ,,,
l

j

u

Li

l

Li BTT and 
u

jB  are given by 

MN

ij

MN

ij

ij
u
j

j
i

u
j

Liil
jij

u
Liu

j

ijl
Li

2.2  3.7  3.6  4.2  2.5  2.1

3.4  2.8  3.3  3.5  3.0  3.2

6.2  5.7  11.9 5.4  6.3  1.0

3.2  2.3  4.4  6.5  6.4  6.8

 1.2  2.1  3.9  8.3  4.7  6.4

t  and

2.1  1.6  4.5  2.4  3.6  1.2

2.5  1.2  2.7  1.6  2.3  4.7

2.9  3.2  3.6  1.6  2.6  0.7

2.5  2.1  3.4  0.9  0.8  0.7

 4.2  6.1  4.9  5.2  2.0  7.9

S  where,

SVQB    ,
H

TQ
B   tT     ,

N

t
T

××






















=























=







====

,

/minmin,maxmax
*

  (19) 

Table 8 summarizes the optimal results of the batch plant problem, where the optimal solution has been 

found in four AO cycles with an optimal objective function value of 5102.8551× . 

The optimal solution ),( ** yx  

461]

[),(

×

=

0,0,0,00,0,0,0,0,0,0,0,0,1,1,1,1,0,1,0,0,0,0,1,               

544,7.7528,7.6 7.8706, 7.5882, 7.5452, 8.0064, 0, 0, 0.6931, 986,0.6931,1.0 0.6931,               

,1.3083,245,1.22381.2238,1.8 1.1632, 6.2642, 6.4588, 6.5896, 6.6468, 5.9395,yx
rr

 

Table 8. Optimal design of batch plant problem. 
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Note that, not all the AO iterations results for the batch plan problem were included because of its large 

size. However, the convergence behaviour of the proposed algorithm has been shown in Figure 2, where 

the AO search process performed in the space of the discrete and continuous variables. The convergence 

graph Figure 2(a) shows the decrease of the objective function in Unit-A while performing the full 

minimization of ( )ryx
r

r
rr

,,, λφ  with respect to x
r

. Figure 2(b) shows the development of the objective 

function in Unit-B when applying the BB method to minimize ( )ryx
r

r
rr

,,, λφ  with respect to y
r

.   
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(a)Unit 1 evaluation plot (QN method) (b)Unit 2 evaluation plot (BB method) 

 

Figure 2. Objective function evaluations during the AO process.  

 

 

B. Discussion of results 

 

The performance of the AO-MDNLP algorithm is investigated using five MDNLP problems. Problems 1 

to 4 are considered here for the purpose of comparing with the improved Particle Swarm Optimization 

(PSO) introduced by He et al. (2004) and a Hybrid Genetic Algorithm (MDHGA) proposed by Rao and 

Xiong (2005) which are the state of the art methods for solving MDNLP problems. Problem 3 has been 

chosen to evaluate the efficiency of the proposed algorithm against other stochastic methods presented in 

the literature. Problems 5 can be considered as more complex global optimization problems, where AO-

MDNLP algorithm is needed to find the optimal values of the discrete and continuous variables. Table 9 

summarizes all the obtained results using the proposed approach. 
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Experiment 

index 

No. of 

continuous 

variables 

No. of 

discrete 

variables 

No. of 

Constraints 

No. of 

AO cycles 

Optimal 

objective 

function value 

1 2 1 3 3 1.0758 

2 3 3 6 3 6.0098 

3 2 2 4 4 6,059.65 

4 6 5 14 4 73.0353 

5 22 24 73 4 285,506.5 

Table 9. Experimental results of the AO-MDNLP algorithm. 

It is important to note that, when the problem is partitioned by its variables, each subproblem is of much 

smaller scale than the original problem and can be solved in less time with more accuracy than the 

original problem. This can be exploited in a multi-processor architecture with relaxed synchronisation 

between the units to enable faster execution. The proposed AO-MDNLP algorithm for handling mixed-

variables is found to work efficiently because of using an appropriate solver for optimizing each different 

type of variables. 

For Experiment 1, the optimal solution is 1.0758 which agrees with Floudas (1995). In Experiment 2, the 

AO-MDNLP converges to the optimum solution after only three cycles; the optimal objective function 

value of 6.0098 is similar to the best known results reported by Duran and Grossmann (1986). 

 MDHGA algorithm PSO algorithm AO-MDNLP algorithm 

Experiment ),(*
yxf
rr

 Function 

evaluations 
),(*

yxf
rr

 
Function 

evaluations 
),(*

yxf
rr

 
Function 

evaluations 

1 1.077 1,221 1.076 1,802 1.0758 690 
2 6.15 10,352 6.01 11,589 6.0098 5880 
3 7284.02 26,459 6,059.71 28,187 6,059.65 9,765 
4 73.124 25,616 73.0468 26,432 73.0353 17,226 

Table 10. Comparison of the proposed algorithm performance with PSO and MDHGA. 

As shown in Table 10, a comparison is made to evaluate the performance of our approach with the 

popular PSO and a hybrid GA in terms of both solution accuracy and computational cost. The AO-

MDNLP algorithm slightly outperformed both algorithms in terms of solution accuracy. However, the 

proposed approach provides much better performance in terms of computational cost, as it requires 

significantly fewer function evaluations to solve each problem.  

 

In order to further assess the efficiency of the proposed algorithm, its results have been compared with 

those published in the literature such as Evolutionary Algorithm (EA) (Deb 1997), Evolutionary 

Programming method (EP) (Cao and Wu 1999), and Genetic Algorithm (GA) (Coello and Montes 2001). 

As shown in Table 11 for Experiment 3, the optimum value of the objective function is only found to be 
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slightly better than that of the best known solution found by He et al. (2004), but with a significant 

improvement in the number of function evaluations. The number of function evaluations needed is 

28,187 in He et al. (2004), while in our algorithm the total number of function evaluations required to 

converge is 9,765. 

Quantity MDHGA EP EA GA PSO AO-MDNLP 

1x  1.1875 1.000 0.9345 0.8125 0.8125 0.8125 

2x  0.625 0.625 0.5000 0.4375 0.4375 0.4375 

3x  61.4483 51.1958 48.3290 40.097398 42.0984456 42.0989 

4x  27.4037 90.7821 112.6790 176.65404 176.636595 176.6305 

1g  -0.0015 -0.0119 -0.00475 -0.00002 0.00000 0.00000 

2g  -0.0388 -0.1366 -0.038941 -0.035891 -0.0358808 -0.0358 

3g  -963.9357 -13584.5631 -3652.876 -27.886075 0.00000 0.00000 

4g  -212.5963 -149.2179 -127.321 -63.345953 -63.363404 -63.6948 

),( yxf
rr

 7,284.02 7,108.6160 6,410.381 6,059.946 6,059.714 6,059.654 

Table11. Optimal solution of pressure vessel design problem (Experiment 3). 

 

In Experiment 5, the batch plant problem with larger size is used to illustrate the efficiency of the 

algorithm. It was able to find the optimum solution in only four AO cycles. The optimal objective 

function obtained was 285,506.5, with 104,319 function calls. The computational time increases for this 

problem, but optimal solutions are provided at the end, where other algorithms such as outer 

approximation method (Duran and Grossmann 1988) fails to give any results as soon as the problem size 

begins to be larger. Overall, our experiments show that one advantage of the proposed approach is that it 

is more likely to find the global optimum solution, where it is difficult to achieve in practice. 

Furthermore, it can cope with problems that involve different search spaces, and makes it possible to 

solve large-scale optimization problems that may otherwise be computationally difficult and cause the 

algorithm to fail.  

V. Conclusions 

In order to improve upon existing optimization methods, this article examines the idea of modifying 

traditional alternating optimization by introducing an algorithm for solving MDNLP problems. A 

decomposition technique has been discussed and some computationally efficient procedures have been 

presented. The key to this technique is an augmented Lagrangian function which preserves separability 

without violating or using explicit constraints. The proposed approach shows robustness in a diverse 
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range of problems and that it can be beneficial for cases where the problem has many strongly interacting 

variables. It should be noted that, this technique allows the use of any method for optimizing each set of 

variables. The idea should be also extendable to other decomposition strategies; future work could 

attempt to address further decomposing or portioning subproblems in order to exploit their special 

structure, so that instead of having two units more units are used to hierarchically decompose the 

problem. For larger MDNLP problems, the performance of the AO-MDNLP algorithm is still open, 

where more numerical tests on considerably larger problems can be performed in order to get a more 

detailed picture of algorithm performance. 
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