Salam Nema
email: s.nema@liverpool.ac.uk

John Y Goulermas
email: j.y.goulermas@liverpool.ac.uk

Graham Sparrow
email: graham.sparrow@kssretail.com

Phil Cook
email: phil.cook@kssretail.com

Paul Helman
email: paul.helman@kssretail.com

An Alternating Optimization Approach for Mixed Discrete Non Linear Programming

Keywords: Mixed discrete nonlinear programming, problem decomposition, alternate optimization Mixed discrete nonlinear programming, Alternating optimization, Augmented Lagrangian, Decomposition

This article contributes to the development of the field of Alternating Optimization (AO) and general Mixed Discrete Non-Linear Programming (MDNLP) by introducing a new decomposition algorithm (AO-MDNLP) based on the Augmented Lagrangian Multipliers method. In the proposed algorithm, an iterative solution strategy is proposed by transforming the constrained MDNLP problem into two unconstrained components or units; one solving for the discrete variables, and another for the continuous ones. Each unit focuses on minimizing a different set of variables while the other type is frozen. During optimizing each unit, the penalty parameters and multipliers are consecutively updated until the solution moves towards the feasible region. The two units take turns in evolving independently for a small number of cycles. The validity, robustness and effectiveness of the proposed algorithm are exemplified through some well known benchmark mixed discrete optimization problems.

I. Introduction

This work addresses the mixed discrete programming problem, which seeks a global optimum to an optimization formulation with an objective function subject to a set of linear and nonlinear constraints where the decision variables are both continuous and discrete. In the last decade, there has been a dramatic increase in the techniques developed to solve MDNLP problems [START_REF] Leyffer | Integrating SQP and branch-and-bound for mixed integer nonlinear programming[END_REF][START_REF] He | An improved particle swarm optimizer for mechanical design optimization problems[END_REF] [START_REF] Rao | A Hybrid Genetic Algorithm for Mixed-Discrete Design Optimization[END_REF]; such techniques have been applied in various domains, ranging from the process industry and engineering, to the financial and management sciences as well as operational research sectors. The challenging difficulty of MDNLP problems is their high nonlinearity and nondifferentiability due to the combinatorial nature of the associated discrete-valued variables.

The categories of algorithms for solving MDNLPs can be mainly divided into stochastic and deterministic ones. The stochastic methods are employing randomized searches and aim to tackle the problem of local optimality. Examples include Simulated Annealing [START_REF] Cardoso | A simulated annealing approach to the solution of minlp problems[END_REF], Genetic Algorithms [START_REF] Rao | Engineering Optimization[END_REF]Xiong 2005, Young et al. 2007), Differential Evolution [START_REF] Lampinen | Mixed integer-discrete-continuous optimization by differential evolution[END_REF], Particle Swarm Optimization [START_REF] He | An improved particle swarm optimizer for mechanical design optimization problems[END_REF][START_REF] Yiqing | An improved PSO algorithm for solving non-convex NLP/MINLP problems with equality constraints[END_REF], and other hybrid methods [START_REF] Juang | A Hybrid of Genetic Algorithms and Particle Swarm Optimization for Recurrent Network Design[END_REF][START_REF] Zhong | A multiagents genetic algorithm for global numerical optimization[END_REF][START_REF] Nema | A Hybrid Particle Swarm Branch-and--21 -Bound (HPB) Optimizer for Mixed Discrete Nonlinear Programming[END_REF]. The deterministic ones take a different approach and adopt a systematic way of approaching the optimum; popular examples include the Non-Linear Branchand-Bound [START_REF] Borchers | An improved branch and bound algorithm for mixed integer nonlinear programming[END_REF]Mitchell 1994, Leyffer 2001), Sequential Linearization [START_REF] Loh | A sequential linearization approach for solving mixed-discrete nonlinear design optimization problems[END_REF]Papalambros 1991, Lamberti and[START_REF] Lamberti | An efficient sequential linear programming algorithm for engineering optimization[END_REF], the Penalty Function approach [START_REF] Shin | A penalty approach for nonlinear optimization with discrete design variables[END_REF][START_REF] Fu | A mixed integer-discrete-continuous programming method and its application to engineering design optimization[END_REF], and the Lagrangian Relaxation methods [START_REF] Anstreicher | Lagrangian relaxation of quadratic matrix constraints[END_REF]Wolkowicz 2000, Dillon and[START_REF] Dillon | A Lagrangian augmented Hopfield network for mixed integer non-linear programming problems[END_REF]. This article proposes an original method for solving MDNLP problems, based on the generic framework of Alternating Optimization (AO) introduced by [START_REF] Bezdek | Convergence of Alternating Optimization[END_REF]. AO is a very efficient iterative procedure for solving large problems by alternating between restricted subsets of variables. It has good convergence properties, reduced development times and the ability to reduce the risk of getting trapped in a local minima. Its main drawback, however, is that AO cannot be adapted easily for use with constrained optimization problems. In this article, the AO procedure was applied to the constrained formulation of MDNLP by partitioning and processing each discrete and continuous subset of the mixed decision variables with different, and more suitable to each subset, solvers. The solvers combine a standard Quasi-Newton gradient-based method (Rao 1996, Nocedal and[START_REF] Nocedal | Numerical Optimization[END_REF], with a Lagrangian formulation of the MDNLP, together with a Branch-and-Bound search [START_REF] Borchers | An improved branch and bound algorithm for mixed integer nonlinear programming[END_REF]Mitchell 1994, Gallardo et al. 2007) for the continuous and discrete variables, respectively.

The rest of the article is organized as follows. Section II.A describes the MDNLP formulation with equality and inequality constraints, Section II.B presents the augmented Lagrangian approach for

II. Employed Optimization Models and Algorithms

A. The MDNLP formulation

An MDNLP optimization problem contains continuous, integer and discrete variables, with linear and nonlinear constraints, and also constraints on the value sets of the discrete variables. It can be stated as [START_REF] Vavasis | Nonlinear Optimization: Complexity Issues[END_REF].

() () ()        × × ≡ ∈ ℜ ⊆ ∈ = = = ≤ d c n n j i y x Y Y Y y X x l j y x h m i y x g y x f K r r K r r K r r r r 1 , , , 1 , 0 , , , 1 , 0 , s.t.

B. The augmented Lagrangian multipliers method

An effective way for solving a continuous optimisation problem with constraints using solvers for unconstrained problems, is to convert it to an equivalent unconstrained one by using the penalty approach, where all constraints () x g r and ()

x h
r are converted to extra penalty terms added to the objective function ()

x f
r . Such an advanced penalty method is the Augmented Lagrangian Penalty Function (ALPF) (Bazaraa et al. 1993, Nocedal and[START_REF] Nocedal | Numerical Optimization[END_REF]

() () () () [] () () [] ∑ ∑ = = + + + ⋅ + + ⋅ + = m i l j k j k j m k j m k j k i k i k i k i k x h r x h x r x x f r x 1 1 , , r r r r r r r r λ β λ β λ φ (2)
where {λ 1 ,…λ m } and {λ m+1 ,…λ m+l } are the Lagrangian multipliers for the m inequalities and the l equalities, respectively. The r i represent the positive penalty terms for the corresponding two types of constraints. ()

x i r β
is a used to convert the inequalities to equalities via setting

() ()       - = k i k i k i i r 2 x g x λ β , max r r (3)
The optimum solution * x r is computed as a sequence of iterative unconstrained subproblems with regular updates of the penalties k i r and the multipliers k i λ at each iteration k. The optimization is initialized with the values of 0

0 m i 0 i = = + λ λ and 1 r r 0 m i 0 i = = +
as suggested by [START_REF] Rao | Engineering Optimization[END_REF]. Because the correct penalty factors and the Lagrangian multipliers are problem dependent and, thus, unknown, they are continually updated as

() () l j x h r m i x r k j k j m k j m k j m k i k i k i k i , , 1 , 2 , , 1 , 2 1 1 K r K r = ∀ ⋅ ⋅ + = = ∀ ⋅ ⋅ + = + + + + + λ λ β λ λ (4)
To make the procedure more efficient, instead of fixing the penalties r i , an adaptation strategy [START_REF] Bean | A dual genetic algorithm for bounded integer programs[END_REF] has been used to regulate the penalty decrease/increase. For instance, if a current point k x r violates the i th inequality constraint ()

k i x g r , k i
r must be increased to eventually move the final solution to the feasible region. The following heuristic is used to update the penalty parameters () ()

m i r x g r x g r r k i i k i i k i k i , , 1 otherwise if if 5 4 5 6 1 K r r = ∀      < > = + ε ε (5)
where ε is the user-defined tolerance for acceptable constraint violations. The same rule applies to updating the equality penalty

1 + + k j m r , based on the violation condition () ε > x h j r .
The following termination criterion has been used to examine how close the search approaches to the optimum solution. Firstly, the solution is obtained when the relative error between the augmented function in two successive iterations becomes small, according to -5 -Since φ becomes a nonconvex function, it is important to check for optimality of the obtained solution *

() () () ε λ φ λ φ λ φ ≤ - + + + + + + 1 1 1 1 1 1 , , , , , , k k k k k k k k k r x r x r x r r r r r r r r r (6)
x r , as this is the case when the corresponding multiplier vector k λ r approaches the optimal one * λ r [START_REF] Gill | Practical optimization[END_REF]. The algorithm was terminated if the current feasible point * x r satisfies the Karush-Kuhn-Trucker (KKT) conditions which are necessary for * x r to be a global optimum of φ () () () ()

m i x g , x h x g x f i i i m i l j j j m i i , , 1 , 0 0 * 1 1 * * * K r r r r = ∀ = ⋅ ≥ ≈ ∇ + ∇ + ∇ ∑ ∑ = = + λ λ ε λ λ (7)

C. Unconstrained optimization

After a continuous constrained problem is transformed to a continuous unconstrained one through the ALPF, a standard Quasi-Newton (QN) algorithm [START_REF] Bazaraa | Nonlinear Programming: Theory and Algorithms[END_REF]) can be employed to efficiently minimize it. Second-order gradient-based algorithms proceed towards the minimum point of a minimizing function ()

x f
r in a sequential manner by updating the current solution in each (k+1) th iteration as

() () k 1 k k 1 k x f x H x x r r r r ∇ ⋅ - = - + (8)
To reduce the computational load of estimating the Hessian H at point k x r in each iteration, QN builds up curvature information using first-order derivatives by applying the Sherman-Morrison formula [START_REF] Nocedal | Numerical Optimization[END_REF])

() () () () () () () k 1 k k k k 1 k k k T k k k T k k k k k k k 1 k x f x H s x f x f y s s H y s H y s H y H H r r r r ∇ ⋅ - = ∇ - ∇ = - - ⋅ - + = - + + where (9
)
where 0 H is usually taken to be the identity matrix. This is an established generic algorithm for efficiently enumerating and searching parts of optimization problems. The BB method for discrete problems [START_REF] Nemhauser | Integer and Combinatorial Optimization[END_REF]Wolsey 1988, Floudas 1995) is based on the mechanisms of separation, relaxation and fathoming in a search tree. Its principle lies in successive decompositions of the original problem to smaller disjoint subproblems until an optimal solution is found.

The algorithm starts by solving first the continuous relaxation problem using a Non-Linear Programming (NLP) solver. If all discrete variables take discrete values the search is stopped. Otherwise, a tree search is performed in the space of the discrete variables. Then the algorithm selects one of those discrete variables which take a non-discrete value and branch on it. Branching generates two new subproblems by adding simple bounds to the NLP relaxation. Then, one of the two new NLP problems is selected and solved. If the discrete variables take non-discrete values then branching is repeated, while if one of the fathoming rules is satisfied, then no branching is required, and the corresponding node is flagged as fully explored. When during the search discrete solutions are found, they can provide upper bounds on the optimal value of the original problem. Once a node has been fathomed the algorithm backtracks to another node which has not been explored until all nodes are fathomed. The general operations of the algorithm are shown in Table 1.

Place the continuous relaxation and set upper bound to infinity. while there are unexamined subproblems/nodes in the tree Select an unexplored node.

Solve the NLP problem on the discrete variable y. Obtain lower bound.

if the solution is optimal and y value is fractional:

Branch on y. endif Solve NLP problem until:

-The subproblem is infeasible, or -A discrete feasible solution is found (record the value of this solution as upper bound), or -The lower bound is greater than the objective value of a previous discrete solution. Continue branching and solving NLP subproblems. Endwhile Table 1. Main Branch-and-Bound operations.

III. The Proposed AO-MDNLP Framework

A. Alternating Optimization (AO)

AO is a generic methodology for locating the solution of an optimization problem by partitioning and treating independently the design variables. It has been shown that the AO method very efficiently converges to at least a local minimum regardless of the initialization (Hathaway andBezdek 2001, 2003).

The principle advantage of AO is that it replaces the optimization of the objective function with a sequence of easier optimizations involving the different partitions of the design variables.

If we assume that we have to minimize a function ()

x f
r of n variables, the original problem can be partitioned into N autonomous subsets of variables (with n s variables in each s th subset, with

n n N 1 s s = ∑ =
) and the process of optimization alternates between these subsets until the global problem is completed. The flowchart in Figure 1 illustrates the operation sequencing of AO, where the strikethrough notation i

x indicates variables that are fixed with respect to the current subproblem at index i. In later sections, the parameter t is used to define the number of cycles to be used during the AO optimization process.

Figure 1. Iteration procedure of Alternating Optimization.

Set t=0, the termination tolerance ε , maximum cycles limit t max , and the number of subsets of variables N.

Partition n x ℜ ∈ r as () N x x x x r r r r ...; ; ; 2 1 = Pick an initial iterate () 0 N 0 2 0 1 0 x ;....; x ; x x r r r r = End No 1 + = t t Yes Is ε ≤ - + t t x x r r 1 or max t t > ?
For s =1,2,…N compute: ()

() { } x ,..., x , x , x ,..., x f x t N t 1 s s 1 t 1 s 1 t 1 x 1 t s s n s
[]             × =             = ′ =       - - - = - = = ∑ ∑
2 . 3 , 3 , 2 . 1 , 1 α , Q x B exp α x f 4 4 1 i 6 1 j 2 ij j ij i r (10)
This problem has six continuous variables

() 6 6 1 x , , x x ℜ ∈ = K r . Suppose we choose N=2 arbitrary partitions () 3 3 2 1 1 x , x , x x ℜ ∈ = r
, and

() 3 6 5 4 2 x , x , x x ℜ ∈ = r
of n 1 =n 2 =3 variables each. The minimization can start by setting the initialization point to ()

1 , 1 , 1 , 1 , 1 , 1 x 0 = r
, and then minimize ()

x f
r by alternatively minimizing each subset of the partitioned variables independently.

Cycle t t 1 x r t 2
x r Table 2 shows a possible outcome of applying AO on this example. The algorithm converges quickly to the optimum solution requiring only four cycles to satisfy the stopping condition

1 t t x x - - r r 0 (1, 1, 1) (1, 1, 1) ---- 1 (0.
4 1 t t 10 x x - - ≤ - r r
. This simple example indicates that the AO framework can provide the means for solving many large scale problems that are difficult to process by existing methods, and it leads to easier subproblems with solution spaces much more reduced than the original n-dimensional one.

B. The AO-MDNLP algorithm

Based on our observation that MDNLPs have highly structured constraints with mixed variables, This method proposes to partition these MDNLPs by their variables into two subproblems and solve each subproblem as in the example before but using the Lagrangian transformation and also with different and appropriately efficient subsolvers for each subset. This new architecture combines the previously algorithms. The rationale behind this variable partitioning is to allow many computationally expensive MDNLP problems to be solved by existing solvers more efficiently. This is possible because the proposed AO-MDNLP method leads to smaller and simpler structured subproblems that are easier to minimize, while the Lagrangian framework supports resolution of the violated constraints across the subproblems using an effective updating strategy.

Because the original problem in Equation (1) consists of the objective function ()

y , x f r r
and the constraints ()

y , x g i r r
and

()

y , x h j r r
the constraints (without assuming a specific problem structure) are always associated with both continuous and discrete variables. In order to apply AO, the problem was decomposed into two subproblems; one optimizing the set of x r and the other the set of y r variables. To make the handling of the constraints more uniform and also efficient, the ALPF has been used to allow the continuous subproblem to be converted to an unconstrained one. Overall, the proposed method decomposes the MDNLP problem of Equation (1) to two units, where an unconstrained problem is solved at each unit. Unit-A fixes all variables y r and minimizes the ALPF using QN, defined as

() () () () [] () () [] () ()       - = + ⋅ + + ⋅ + = ∑ ∑ = = + + k i k i k k i i m i l j k k j k j m k j m k k j k k i k i k i k k i k k r y x g y x y x h r y x h y x r y x y x f r y x 2 , , max , , , , , , , , , 1 1 λ
ε ≤ -k i k i d y max (12
)
where k i y is the discrete value of the th i discrete variable at the iteration k , and k i d is the nearest discrete value for the discrete design variable k i y . Once a node has been fully explored, the global search procedures of BB have to be carried out until a discrete solution has been found. The selection method for branching node may significantly affect the performance of BB. Our approach uses the depth-first with backtracking strategy [START_REF] Ringertz | On methods for discrete structural optimization[END_REF]) until all the nodes have been explored.

After convergence of both units, the algorithm composes the final solution by combining the partial final solution generated by each unit. The algorithm terminates with the current solution, if the maximum number of cycles is reached or if the following necessary stopping criteria is met

() () ε ≤ - + + t t t t y x y x r r r r , , 1 1 (13)
The overall implementation of the proposed AO-MDNLP is presented in Table 3

IV. Numerical Experimentation

In this section, the performance of the proposed AO-MDNLP was investigated with a number of difficult real-world bench problems from mechanical engineering and chemical process synthesis, frequently employed in the literature. In all experiments, the constraint tolerances

A. Results

Experiment 1:

This is a nonconvex problem from [START_REF] Floudas | Nonlinear and Mixed-Integer Optimization[END_REF], which involves a process flow sheeting problem. It has two continuous variables and one discrete variable with three linear and nonlinear inequality constraints, and is given by

{ }            ∈ - ≤ ≤ - ≤ ≤ ≤ - - ≤ + ≤ - - + - + - = 1 0 1 22554 2 1 2 0 2 0 0 1 1 1 0 2 0 exp 8 0 5 0 5 7 0 1 2 1 1 1 1 2 2 1 2 1 1 , y x . x . . y x . y . x x) . (x - to subject .) . (x y .) y , x f(min r r (14)
The optimum results obtained by the present approach are listed in Table 4.

Cycle t () (

)

1 2 1 , , ; y x x y x t A t A = r r () () 1 2 1 , , ; y x x y x t B t B = r r () y x f r r , () () 1 1 , , - - - t t t t y x y x r r r r 0 (1, 1, 1) (1, 1, 1) 1.35 ---- 1 (0.

Experiment 2:

This problem arises in the synthesis of chemical process, and it was investigated by [START_REF] Duran | An Outer approximation algorithm for a class of mixed integer nonlinear programs[END_REF]. The goal is to determine the optimal solution of a chemical process system. The problem has three continuous variables and three discrete variables with six linear and nonlinear inequality constraints. The master problem can be formulated as follows

             ∈ ≤ ≤ ≤ ≤ ≤ ≤ ≤ + ≤ - - ≤ - ≤ - - ≥ - - + - × + + ≥ - + - × + + × + + - × - + × - - + + + = } 1 , 0 { , , 1 0 , 2 0 , 2 0 1 0 2 0 2 0 2 2) 1 log(2 . 1) 1 log(0 8 . 0) 1 log(96 . 0) 1 log(8 . 0 10) 1 log(2 . 19) 1 log(18 7 10 8 6 5 3 2 1 3 2 1 2 1 2 2 1 1 2 1 2 3 3 2 1 2 3 2 1 2 2 1 2 3 1 3 2 y y y x x x y y y x x y x x x y x x x x x x x x to subject x x x x x y y y) y , x f(min 1 r r (15)
The optimal solutions obtained using the AO-MDNLP algorithm, are presented in Table 5. ()

3 2 1 2 2 1 , , , , , y y y x x x ()= t B t B y x r r ;
() .1542, 0.5502, 1, 0.2751, 0.3020, 0) (1.1542, 0.5502, 1, 0, 1, 1) 11.5790 1.1073 2 (1.3, 0, 0.9995, 0, 1, 1) (1.3, 0, 0.9995, 0, 1, 0) 6.0098 0.5692 3 (1.3, 0, 0.9995, 0, 1, 1) (1.3, 0, 0.9995, 0, 1, 0) 6.0098 0.0000 Table 5. Optimal design of process synthesis problem.

3 2 1 3 2 1 , , , , , y y y x x x) , (y x f r r () () 1 1 , , - - - t t t t y x y x r r r r 0 (1, 1, 1, 1, 1, 1) (1, 1, 1, 1, 1, 1) 19.5234 ---- 1 (1

Experiment 3:

Consider the optimal design problem of a pressure vessel given in [START_REF] Sandgren | Nonlinear integer and discrete programming in mechanical design optimization[END_REF]. The objective of this problem is to minimize the total cost of materials for forming and welding of a pressure vessel. The design variables of the problem are specified as:

T y y x x y x) , , , () , (2 1 2 1 = r r
, which correspond respectively to the sell thickness, spherical head's thickness, shell radius, and shell length, where 1 y and 2 y represent discrete values, integer multiples of 0.0625, while 1

x and 2

x are continuous variables. The mathematical formulation of the problem is The AO cycles results of the pressure vessel design problem are shown in Table 6. 159.84, 209.1, 2.733, 1.625) (159.84, 209.1, 2.9375, 1.6250) 168,004.3 261.8 2 (46.19, 180.4, 2.9375, 1.6250) (46.19, 180.4, 2.8750, 1.4375) 32,659.5 117.2 3 (42.0989, 176.6305, 2.8750, 1.4375) (42.0989, 176.6305, 0.8125, 0.4375) 6,059.65 6.01 4 (42.0989, 176.6305 , 0.8125, 0.4375) (42.0989, 176.6305, 0.8125, 0.4375) 6,059.65 0.000 This problem was studied by [START_REF] Duran | An Outer approximation algorithm for a class of mixed integer nonlinear programs[END_REF]. It has more continuous and discrete variables; there are 32 possible combinations of the 5 binary variables, of which 11 are feasible as determined by the linear inequality constraint. There are 3 nonlinear inequality constraints and one linear equality constraints. The problem formulation is given below ,y ,y ,y ,y y

               ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ - ≤ - - ≤ - ≤ - + + + =
Cycle t =) ; (t A t A y x r r) , , , (2 1 2 1 y y x x =) ; (t B t B y x r r) , , , (2 1 2 1 y y x x) , (y x f r r) , () , (1 1 - - - t t t t y x y x r r r r 0 (1, 1, 1, 1) (1, 1, 1, 1) 25.4066 ---- 1 (
                           ∈ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ + = + ≤ - - ≤ + - ≤ - - ≤ - ≤ + + - - - ≤ + + - - - ≤ - + - ≤ - + ≤ - ≤ - ≤ - ≤ + + + + + × - + + - + + - - - + + + + = } 1 , 0 { 3 0 2 0 0 0 2 0 2 0 1 1 0 2 0 0 5 0 0 2 2 0 0 2
x , x , x x , x , x x y y y x x . x x . x x x x x x x x . x x x x x x x y x x y x x y x . y) x . (y) (x) x (x - to subject) x (x) x . () (x x x x x x x y y y y y y x f min r r (17)
This example shows that the global solution can be obtained by the algorithm as shown in Table 7. 904, 1.9995, 2.6218, 0.6264, 0.3132, 2.6217, 0.5713, 0.4292, 0.3277, 0.094,0) (1. 904, 1.9995, 2.6218, 0.6264, 0.3132, 2.6217, 1,1,0,1,0) 6.4246 3.1125 2 (1.999, 2.121, 0, 2.761, 1.381, 0, 1, 1, 0, 1, 0) (1. 999, 2.121, 0, 2.761, 1.381, 0, 0, This problem was investigated by [START_REF] Kocis | Global optimization of nonconvex mixed-integer nonlinear programming (MINLP) problems in process synthesis[END_REF], [START_REF] Costa | Evolutionary algorithms approach to the solution of mixed integer nonlinear programming problems[END_REF]. It tackles the optimal design of multi-product batch plant with M serial processing stages, where fixed amounts i Q

Cycle t () (, , , ; 3 2 1 x x x y x t A t A = r r) 5 4 3 2 1 6 5 4 , , , , , , , y y y y y x x x () (, , , ; 3 2 1 x x x y x t B t B = r r) 5 4 3 2 1 6 5 4 , , , , , , , y y y y y x x x) , (y x f r r () () 1 1 , , - - - t t t t y x y x r r r r 0 (1,1,1,1,1,1,1,1,1,1,1) (1,1,1,1,1,1,1,1,1,1,1) 74.1025 ---- 1 (1.
from N products must be produced. This problem contains a large number of nonlinear inequality constraints; it also has 22 continuous variables and 24 discrete variables. The master problem formulation can be stated as:

                 ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≥ ≥ ≤ = ∑ ∑ = = u j j l j u Li Li l Li u j j l j u j j ij Li J i ij j N i i Li i M j B j j B B B T T T V V V N N t T N B S V H B T Q to subject V αN f min
M N ij M N ij ij u j j i u j Li i l j ij u Li u j ij l
S V Q B , H T Q B t T , N t T × ×                 =                 =       = = = = , / min min , max max * (19)
Table 8 summarizes the optimal results of the batch plant problem, where the optimal solution has been found in four AO cycles with an optimal objective function value of 5 10 2.8551× .

The optimal solution) , (* * y x 46 1] [) , (× = 0,0,0,0 0,0,0,0,0, 0,0,0,0,1, 1,1,1,0,1, 0,0,0,0,1, 544, 7.7528,7.6 7.8706, 7.5882, 7.5452, 8.0064, 0, 0, 0.6931, 986, 0.6931,1.0 0.6931, ,1.3083, 245,1.2238 1.2238,1.8 1.1632, 6.2642, 6.4588, 6.5896, 6.6468, 5.9395

B. Discussion of results

The performance of the AO-MDNLP algorithm is investigated using five MDNLP problems. Problems 1 to 4 are considered here for the purpose of comparing with the improved Particle Swarm Optimization It is important to note that, when the problem is partitioned by its variables, each subproblem is of much smaller scale than the original problem and can be solved in less time with more accuracy than the original problem. This can be exploited in a multi-processor architecture with relaxed synchronisation between the units to enable faster execution. The proposed AO-MDNLP algorithm for handling mixedvariables is found to work efficiently because of using an appropriate solver for optimizing each different type of variables.

For Experiment 1, the optimal solution is 1.0758 which agrees with [START_REF] Floudas | Nonlinear and Mixed-Integer Optimization[END_REF]. In Experiment 2, the AO-MDNLP converges to the optimum solution after only three cycles; the optimal objective function value of 6.0098 is similar to the best known results reported by [START_REF] Duran | An Outer approximation algorithm for a class of mixed integer nonlinear programs[END_REF]. As shown in Table 10, a comparison is made to evaluate the performance of our approach with the popular PSO and a hybrid GA in terms of both solution accuracy and computational cost. The AO-MDNLP algorithm slightly outperformed both algorithms in terms of solution accuracy. However, the proposed approach provides much better performance in terms of computational cost, as it requires significantly fewer function evaluations to solve each problem.

MDHGA algorithm PSO algorithm AO-MDNLP algorithm

In order to further assess the efficiency of the proposed algorithm, its results have been compared with those published in the literature such as Evolutionary Algorithm (EA) [START_REF] Deb | A robust optimal design technique for mechanical component design[END_REF], Evolutionary

Programming method (EP) [START_REF] Cao | A mixed variable evolutionary programming for optimization of mechanical design[END_REF], and Genetic Algorithm (GA) [START_REF] Coello | Use of dominance-based tournament selection to handle constraints in genetic algorithms[END_REF]. Table11. Optimal solution of pressure vessel design problem (Experiment 3).

As shown in

In Experiment 5, the batch plant problem with larger size is used to illustrate the efficiency of the algorithm. It was able to find the optimum solution in only four AO cycles. The optimal objective function obtained was 285,506.5, with 104,319 function calls. The computational time increases for this problem, but optimal solutions are provided at the end, where other algorithms such as outer approximation method (Duran and Grossmann 1988) fails to give any results as soon as the problem size begins to be larger. Overall, our experiments show that one advantage of the proposed approach is that it is more likely to find the global optimum solution, where it is difficult to achieve in practice.

Furthermore, it can cope with problems that involve different search spaces, and makes it possible to solve large-scale optimization problems that may otherwise be computationally difficult and cause the algorithm to fail.

V. Conclusions

In order to improve upon existing optimization methods, this article examines the idea of modifying traditional alternating optimization by introducing an algorithm for solving MDNLP problems. A decomposition technique has been discussed and some computationally efficient procedures have been presented. The key to this technique is an augmented Lagrangian function which preserves separability without violating or using explicit constraints. The proposed approach shows robustness in a diverse

 while Sections II.C-D briefly review the principles of the Quasi-Newton and the Branch-and-Bound search methods. Section III.A describes the Alternating Optimization method for unconstrained optimization, and the new algorithm is introduced in Section III.B. Numerical examples and comparisons of the new approach are provided in Section IV. Finally, conclusions and suggestions for further work are presented in Section V.

 Branch-and-Bound (BB) algorithm

 :/mc.manuscriptcentral.com/geno Email: A.B.Templeman@liverpool.ac.Hartmann function A classic benchmark problem in nonlinear optimization introduced by Dixon and Szego (1978) has been used to demonstrate the application of AO, It minimizes the following ()

 components, namely the AO framework, the ALPF model and the QN and BB

 carried out for a sequence of values r r and λ r until the solution moves towards the feasible region, where the Lagrangian multipliers can be estimated more accurately.The iterative process stops when the augmented function is not changing much between two successive iterations. In the mean time, a test for the satisfaction of the KKT conditions is performed before taking the current solution as an optimum solution.Subsequently, Unit-B takes turn in the optimization process and the continuous variables x r become unit invokes a Branch-and-Bound algorithm to minimize the discrete variables y r only, but instead of solving a constrained problem at each node of the BB tree, the augmented function the relaxed component of y r using QN. This setup is efficient, because at each node the subproblem has n c less dimensions that the standard unpartitioned BB. The penalty parameters k i r and the Lagrangian multipliers k i λ have to be consecutively updated at each node in order to find the feasible continuous solution. When solving each subproblem in the BB tree, the following condition must be satisfied before taking the obtained point as a discrete solution

 constraints. A complete implementation of the AO-MDNLP algorithm has been developed in Matlab 7.4, running on a 2.0GHz Pentium 4 CPU with 1GB of RAM.

 not all the AO iterations results for the batch plan problem were included because of its large size. However, the convergence behaviour of the proposed algorithm has been shown in Figure2, where the AO search process performed in the space of the discrete and continuous variables. The convergence graph Figure2(a) shows the decrease of the objective function in Unit-A while performing the full minimization of () x r . Figure 2(b) shows the development of the objective function in Unit-B when applying the BB method to minimize ()

Figure 2 .

 2 Figure 2. Objective function evaluations during the AO process.

(

 PSO) introduced by[START_REF] He | An improved particle swarm optimizer for mechanical design optimization problems[END_REF] and a Hybrid Genetic Algorithm (MDHGA) proposed by[START_REF] Rao | A Hybrid Genetic Algorithm for Mixed-Discrete Design Optimization[END_REF] which are the state of the art methods for solving MDNLP problems. Problem 3 has been chosen to evaluate the efficiency of the proposed algorithm against other stochastic methods presented in the literature. Problems 5 can be considered as more complex global optimization problems, where AO-MDNLP algorithm is needed to find the optimal values of the discrete and continuous variables.

 and that it can be beneficial for cases where the problem has many strongly interacting variables. It should be noted that, this technique allows the use of any method for optimizing each set of variables. The idea should be also extendable to other decomposition strategies; future work could attempt to address further decomposing or portioning subproblems in order to exploit their special structure, so that instead of having two units more units are used to hierarchically decompose the problem. For larger MDNLP problems, the performance of the AO-MDNLP algorithm is still open, where more numerical tests on considerably larger problems can be performed in order to get a more detailed picture of algorithm performance.

 ,

	F o r
	P
	e
	e r
	R
	e
	v i e
	w
	O n l
	y
	-2 -

Table 2 .

 2 Applying AO on the Hartmann function.

		1312, 0.2005, 0.5683) (0.2718, 0.3128, 0.6595)	1.6428
	2	(0.2015, 0.1501, 0.4774) (0.2753, 0.3117, 0.6573)	0.1256
	3	(0.2017, 0.1500, 0.4769) (0.2753, 0.3117, 0.6573)	0.0005
	4	(0.2017, 0.1500, 0.4769) (0.2753, 0.3117, 0.6573)	0.0000

Table 3 .

 3 . Pseudo-Code for the AO-MDNLP algorithm.

	Stage 1: Initialization		
	Set cycle count 0 = t Pick an initial iterate () , termination tolerance ε , and maximum cycles limit max t . 0 0 , y x r r , and set (). r , r , , 0 m i 0 i 0 m i 0 i + + r r r r λ λ
	Stage2: Optimization		
	while (t ≤ t max)				
	Form	φ	(, r λ , y x r r	,	r r)	according to Equation (11).
	%Unit-A:						
	while (the termination criterion in (6) and (7) is not met)
	Minimize F φ Update the parameters r) , , , (r y x r r r r λ using QN method. r r , λ according to Equation (4) and (5). end while o r Record the obtained solution) , (t t y x r r .
	%Unit-B: while (there are unexamined nodes in the BB tree) P e Minimize) , , , (r y x r r r r λ φ at each node on the discrete variable y .
	end while Record the obtained solution e r) , (t t y x r r	.
	Stage 3: Convergence if (the necessary stopping condition in (13) is met) R Terminate the algorithm with) , (* * y x r r as an optimum solution. e else
	Increase cycle number as t=t+1. end if end while	v i e
									w
									O n l
									y
									-11 -

Table 4 .

 4 Alternating Optimization results of experiment 1.

		5944, -1.4835, 0.4395)	(0.5944, -1.4835, 1.00)	0.1446	2.5164
	2	(0.9418, -2.0998, 1.00)	(0.9418, -2.0998, 1.00)	1.0758	0.7075
	3	(0.9418, -2.0998, 1.00)	(0.9418, -2.0998, 1.00)	1.0758	0.0000

Table 6 .

 6 Optimal design of the pressure vessel.

Table 7 .

 7 Alternating optimisation of process synthesis problem.

	1, 1, 1, 0)	73.5040	4.4122

Table 8 .

 8 Optimal design of batch plant problem.

	x r	y r	,

Table 9

 9 summarizes all the obtained results using the proposed approach.

	Experiment index	No. of continuous variables	No. of discrete variables	No. of Constraints	No. of AO cycles	Optimal objective function value
	1	2	1	3	3	1.0758
	2	3	3	6	3	6.0098
	3	2	2	4	4	6,059.65
	4	6	5	14	4	73.0353
	5	22	24	73	4	285,506.5
	F o r				
		P				
		e			
		e r			
			R		
			e		
			v i e	
				w	
					O n l
						y
			-17 -			

Table 9 .

 9 Experimental results of the AO-MDNLP algorithm.

Table 10 .

 10 Comparison of the proposed algorithm performance with PSO and MDHGA.

	Experiment	f	*	(x r	,	y r)	Function evaluations	f	*	(x r	,	y r)	Function evaluations	f	*	(x r	,	y r)	Function evaluations
	1		1.077		1,221		1.076		1,802	1.0758		690
	2		6.15			10,352		6.01			11,589	6.0098		5880
	3	7284.02	26,459	6,059.71	28,187	6,059.65	9,765
	4	73.124		25,616	73.0468	26,432	73.0353	17,226

 Table11for Experiment 3, the optimum value of the objective function is only found to be better than that of the best known solution found by[START_REF] He | An improved particle swarm optimizer for mechanical design optimization problems[END_REF], but with a significant improvement in the number of function evaluations. The number of function evaluations needed is 28,187 in[START_REF] He | An improved particle swarm optimizer for mechanical design optimization problems[END_REF], while in our algorithm the total number of function evaluations required to converge is 9,765.

	Quantity MDHGA	EP	EA	GA	PSO	AO-MDNLP
		1 x			1.1875	1.000	0.9345	0.8125	0.8125	0.8125
		2 x			0.625	0.625	0.5000	0.4375	0.4375	0.4375
		x 3 4 x 1 g g 2 3 g	61.4483 27.4037 F -0.0015 o -0.0388 r -963.9357 -13584.5631 -3652.876 -27.886075 51.1958 48.3290 40.097398 42.0984456 90.7821 112.6790 176.65404 176.636595 -0.0119 -0.00475 -0.00002 0.00000 -0.1366 -0.038941 -0.035891 -0.0358808 0.00000	42.0989 176.6305 0.00000 -0.0358 0.00000
	f	4 , (y g x r r)	-212.5963 P -149.2179 7,284.02 7,108.6160 6,410.381 6,059.946 -127.321 -63.345953 -63.363404 6,059.714	-63.6948 6,059.654
						e	
						e r
							R
							e
							v i e
								w
								O n l
								y
							-18 -

slightly

URL: http:/mc.manuscriptcentral.com/geno Email: A.B.Templeman@liverpool.ac.uk Engineering Optimization