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Computational fluid dynamics and
interactive multiobjective optimization in
development of low-emission industrial boilers

A. Saario®, A. Oksanen

Institute of Energy and Process Engineering, Tampere University of Technology,

Korkeakoulunkatu 6, P.O.Box 589, 33101 Tampere, Finland

Abstract

A CFD-based model is applied to study emission formation in a bubbling fluidized
bed boiler burning biomass. After the model is validated to a certain extent, it is
used for optimization. There are nine design variables (nine distinct NHj injections
in the selective noncatalytic reduction process) and two objective functions
(minimize NO and NHj emissions in flue gas). The multiobjective optimization
problem is solved using the reference-point method involving an achievement
scalarizing function. The interactive reference-point method is applied to generate
Pareto optimal solutions. Two inherently different optimization algorithms, viz.
a genetic algorithm and Powell’s conjugate direction method, are applied in the
solution of the resulting optimization problem. It is shown that optimization
connected with CFD is a promising design tool for combustion optimization. The
strengths and weaknesses of the proposed approach and of the methods applied
are discussed from the point of view of a complex real-world optimization problem.

Keywords: CFD, multiobjective optimization, interactive reference-point method,
SNCR, NO emission.
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1 Introduction

The combination of computational fluid dynamics (CFD) and optimization has
been commonly applied in some fields of engineering, such as in the development
of aircraft (see e.g. Giannakoglou 2001) and of other means of transport (see
e.g. Poloni et al. 2000), and to some extent e.g. in papermaking (see e.g.
Hémaldinen et al. 1999). In contrast, the development of stationary combustion
systems with CFD has typically not been based on a systematic search for the
optimum. Rather, CFD has been used to calculate only few predefined cases
chosen intuitively (or randomly) by the CFD user, after which the best result
found has been frequently referred to as the "optimum solution”.

Some examples of single-objective optimization (SOO) without CFD in the
combustion-related problems follow. Zhou et al. (2001) minimized the NO
emission of a coal-fired boiler. Homma and Chen (2000) minimized NOy emission
in postflame processes. Kalogirou (2003) and Ward et al. (2006) provided a
review of artificial intelligence techniques (including optimization) in combustion
engineering. The application of both SOO and CFD in combustion-related
problems is less common. Johnson et al. (2001) minimized the CO emission of
a burner and Saario et al. (2006) minimized the NO emission of a fluidized bed
boiler.

In most practical problems there are more than just one criterion to be
optimized, and often these criteria conflict with each other. The simultaneous
minimization of bubbling fluidized bed boiler NO and NHj emissions in the
present study is a good example of such a multiobjective optimization (MOO)
problem.  Studies dealing with MOO without CFD in combustion-related
problems are reviewed briefly. Chu et al. (2003) minimized the NO and
CO emissions and maximized the thermal efficiency of a coal-fired boiler.
Zhou et al. (2005) minimized the NO and unburned carbon emissions of a coal-
fired boiler. Chen et al. (2003) minimized the NO emission and maximized the
thermal efficiency of an engine. Also the optimization of simplified chemical
reaction mechanisms can be considered as an MOO problem (Elliot et al. 2004,
Montgomery et al. 2006, Polifke et al. 1998). There are only few examples of the
application of both MOO and CFD in combustion-related problems (excluding
aerospace applications). Risio et al. (2005) minimized the NO and unburned
carbon emissions of two coal-fired boilers and Tan et al. (2006) minimized
the NO, CO and unburned carbon emissions from the co-combustion of coal
and biomass in a pilot-scale combustion rig. Again, also the optimization of
temperature distribution in a burner (Catalano et al. 2006) or on a cooking surface
(Bryden et al. 2003) can be considered as an MOO problem.

The decision maker is a person who is supposed to have better insight into
the problem and who can express preference relations between different solutions
(Miettinen 1999 p. 14). Usually, the decision maker is responsible for the
final solution. In interactive multiobjective optimization methods, preferences
of a decision maker are taken into account during the optimization process. It
seems that interactive MOO methods have never been used in combustion-related
problems previously.

2
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2 Case description

The emission formation is studied in a bubbling fluidized bed (BFB) boiler which
applies the selective noncatalytic reduction (SNCR) process to reduce the NO
emission in flue gas.

2.1 Bubbling fluidized bed (BFB) boiler

Fluidized bed combustion is an advanced technology suitable for burning difficult
(high moisture and ash content) fuels and fuel mixtures with low emissions (see
e.g. Basu 2006). In a BFB boiler the velocity of fluidization air is low enough to
keep the bed particles and other solids mainly in the bottom area of the boiler
(out of the freeboard area). Today, modern BFB boilers in the pulp and paper
industry have typical capacities of 40-300 MWy,. The air-staging may consist of
up to three air injection levels, and the cross-sectional area and the height of the
boiler may be up to 140 m? and 40 m, respectively.

A sketch of the BFB boiler studied here is shown in figure 1. The mixture
burned in the boiler consists mainly of biomass sludge originating from the de-
inking process and the effluent treatment plant of the newsprint mill. In addition,
a moderate amount of plastic reject is mixed with the biomass sludge, and some
natural gas (CH,) is added into the boiler as supporting fuel. The boiler has a
capacity of 40 MWy,. For the information on the chemical properties of the sludge
and on the operating conditions of the boiler, see Saario and Oksanen (2008a).

2.2 Selective noncatalytic reduction (SNCR)

The SNCR process (NHj injection) is a low-cost, effective and retrofittable NO
control strategy. The injected NHj initiates a sequence of reactions that converts
NO formed in the lower part of the boiler into harmless Ny. The efficiency of
NO reduction, the operating temperature and the NH3/NO molar ratio in the
SNCR process vary typically in the range 30-80%, 1073-1373 K, and 0.8-2.5,
respectively (Radojevic 1998). The principal chemical reactions taking place in
the SNCR process can be found in Miller and Bowman (1989).

The NO reduction efficiencies in practical combustion devices are primarily
dependent on the following factors: absolute temperature level and nonisothermal
temperature profile, local flue gas conditions, mixing of NH3 and NO, NH3/NO
molar ratio and NHj residence time. The reduction of NO is achieved only inside
a relatively narrow temperature window centred approximately at 1250 K. The
presence of additives, such as CO, shifts the optimal temperature window towards
lower temperatures. At too-high temperatures, NH3 oxidizes to NO, while at
too-low temperatures, NH3 passes unreacted through the reaction zone, causing
NHj emission (ammonia slip) in flue gas. The presence of Oy is necessary for NO
reduction by NHs. Typically, industrial boilers have large cross-sectional areas over
which the injection system must disperse NH3 and mix it with NO. Moreover, these
boilers may have to operate with different loads, which may change the spatial
location of the optimal temperature window.

In the present study a mixture of NH3 and air (the bulk of the mixture consists
of air) is injected from two separate levels at heights of 6.5 m and 7.5 m (see
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figure 1). There are eight injections at a height of 7.5 m (see figure 2) and one
injection at a height of 6.5 m on the rear wall.

3 Mathematical modelling

A commercial finite-volume-based CFD solver Fluent (2005) is used to model
boiler operation. Assuming variable-density steady-state flow, the Favre-averaged
(see e.g. Poinsot and Veynante 2005) continuity and momentum equations can be
written as

g ,_.
~ )
Ox; (pi) =0 (1)
o . op o (0w ou 2. 0w\l _ . 0 [ —
a—xj (pujuz) o ox; + axj lu (81‘] + o 361] 8I1>:| +pgi + al‘j < pu; uj)

(2)
where p is density, u; is the i*" component of the velocity vector, p is pressure,

d;; is the Kronecker delta, g; is the i component of the gravitational vector and

—puju; is the component of the Reynolds stress tensor. The overbar denotes

time-averaging, the tilde denotes Favre-averaging and the double prime denotes

the Favre-averaged fluctuating part. Here, the Reynolds stresses, —puju}, are

modelled using a modification of the widely applied standard k- model (Shih et al.
1995).

The boiler CFD modelling requires a conservation equation also for energy
and equations for the species transport. The reactions of hydrocarbon species
are modelled using the global mechanism of Jones and Lindstedt (1988). The
turbulence-chemistry interaction of the hydrocarbon species is modelled using
the simple eddy dissipation combustion model of Magnussen and Hjertager
(1976) supplemented with an additional term to take into account the finite-
rate chemistry. The reactions of the nitrogen-containing species (NHjz, NO) are
modelled using a combination of the global mechanisms of Duo et al. (1992)
and Brink et al. (2001). The turbulence-chemistry interaction of the nitrogen-
containing species is modelled using the advanced eddy dissipation concept of
Magnussen (Ertesvag and Magnussen 2000). The low concentrations of NO
and NHj are assumed not to affect significantly the distributions of velocity,
density, temperature and other species (those not containing nitrogen). Hence,
the postprocessing technique is applied to solve the transport equations of NO and
NHj, which speeds up the solution and is consequently a great advantage in the
optimization stage. The radiative heat transfer equation is solved using the finite-
volume method (Raithby and Chui 1990) and the gas-phase absorption coefficient
is determined using the weighted-sum-of-grey-gases model of Smith et al. (1982).
The boundary conditions on the bed surface are obtained on the basis of
element and energy balances of the known fuel composition. These balances are
supplemented by laboratory experiments and by reasonable assumptions regarding
fuel supply and bed processes.

On the basis of a thorough grid-refinement study, here a structured grid
consisting of 348 709 computational cells is built. The grid is refined locally twice

4
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in the vicinity of the NHj injections using velocity gradients as the refinement
criterion. In both refinement steps the number of cells is increased on average
by 3444 per each NHj injection. The number of cells at the NHj3 injection inlets
varies between 40 and 52.

A detailed description of the grid-refinement study, numerical solution
procedure and turbulence modeling, and of the issues related to the reactive-flow
modeling and to the definition of bed boundary conditions in the present study
can be found in Saario and Oksanen (2008b, 2008a).

4 Optimization

In an earlier study (Saario et al. 2006) it was shown that the boiler NO emission
can be decreased significantly using the optimization. However, the same study
revealed that single-objective optimization (SOO) is not sufficient in the SNCR
process optimization, since a low NO emission was achieved at the expense of a
high NHj3 emission. In the present study, multiobjective optimization (MOO),
where the number of objectives is greater than one, must be applied if results of
practical use are desired.

4.1 Optimaization problem

Here, the aim is to minimize both NO and NHj concentrations in flue gas.
There are altogether nine independent design variables, each corresponding to
the NH3z mole fraction of a distinct injection. In other words, the distribution
of NH3 between the injections, as well as the total amount of NHj injected
into the boiler, are varied in the optimization. The maximum total amount of
NHj available for the injections is limited by the capacity of the NHj feeding
system. The resulting inequality constraint is incorporated into the optimization
problem using a penalty function method. Furthermore, the limits inside which
the design variables are allowed to vary (design variable bounds) are specified.
A mathematical formulation of the present optimization problem is given in the
following section 4.2.

4.2 Multiobjective optimization

The general definition of multiobjective optimization problem is

minimize f (2) = (fi (), fa (), ... [ (2))" (3)

cesS

where f (z) is an objective function vector and m (> 2) is the number of objective
functions f;: R™ — R for all i € {1,...,m}. The design variable vector, x, is given
by

T = (;El,xg,...,xn)T (4)

where n is the number of design variables. Design variable vector  belongs to the
feasible set, S, defined as

S={zeR"|z'<z<z" g(x)<0, h(z)=0} (5)
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where 2! and " denote lower and upper design variable bounds, respectively, g (z)
is a vector of inequality constraints, and h (z) is a vector of equality constraints.
For any design variable vector £ € R™, a corresponding image vector f (z) € R™
in the objective space is obtained using mapping f: R” — R™.

The design variable vector £* € S is Pareto optimal if and only if there does not
exist another vector & € S which satisfies the conditions (minimization problem
assumed):

fi(z) < fi(z*) forallie {1,...,m} and
fi(z) < fi (z¥) for at least one 7 € {1,...,m}

(6)

A feasible vector is weakly Pareto optimal if there is no other feasible vector that
decreases all of the objective functions simultaneously.
Objective function vector f (z) is given in the present study by

f(z)=(fi(z), f2(2))" (7)
where f (z) and f; (z) measure the concentrations of NO and NHj3 (ppmy,) in
flue gas, respectively. The design variable vector, x, is given by

T = (X17X27“‘7X9)T (8)

where X; stands for the concentration of NHjz (vol-%) in the i*" injection port.
The feasible set, S, is defined as

S:{J:ER"]OSXZ-§6.60f0rall7)€{1,2,...,9},

9

M
pre Z Xi — MNH;max < 0} (9)

g(z)= mﬂ‘”m

i=1
The upper design variable bounds are set at 6.60 vol-% for all i € {1,2,...,9}.
This value is based on the preliminary optimization studies and engineering
intuition. If design variable bounds were too large, much of the search time would
be wasted in exploring regions far from the feasible set, whereas too tight bounds
might not allow finding the optimum. In the preliminary studies, where the upper
design variable bounds were set at values smaller than 6.60, some design variables
reached the upper bounds at the optimum solution. Hence, here the upper bounds
were increased to 6.60, which correspond to the values at the current operating
point multiplied by ten (X; = 0.66 vol-% for all i € {1,2,...,9} at the current
operating point). Constraint g(z) is an inequality constraint, M is the molar
mass (Mynz = 17.03 kg kmol™! and My,,, = 28.77 kg kmol™') and g, stands
for the total mass flow of the mixture of NH3 and air from a single injection
(Taew = 0.1313 kg s71). Symbol rinm, max stands for the maximum total amount
of NHj that can be injected into the boiler. Tt is set at 0.0093 kgnp, s~*, which
corresponds to double the total NH3 mass flow injected into the boiler at the
current operating point.

The weighting method, where a weighted sum of the objective functions is
optimized, is one of the oldest approaches to the solution of MOO problems (Cohon
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1978) and it has been by far the most popular approach in combustion-related
MOO studies (Bryden et al. 2003, Catalano et al. 2006, Chen et al. 2003, Chu et al.
2003, Elliot et al. 2004, Montgomery et al. 2006, Poliftke et al. 1998, Risio et al.
2005, Tan et al. 2006), probably because it is intuitive to the user. However,
in some of the studies the weighting method has been applied probably without
actually realizing that an MOO problem is being dealt with. In the weighting
method it is impossible to obtain points in a nonconvex portion of the Pareto set
in the objective space (Das and Dennis 1997, Koski 1985, Marler and Arora 2004,
Miettinen 1999). Moreover, specifying the weights is not straightforward. An even
spread of weights does not guarantee an even spread of points in the Pareto set in
the objective space (Cohon 1978, Das and Dennis 1997).

Instead of the weighting method, here the MOO problem is converted into a
single-objective optimization problem using the achievement scalarizing function
introduced by Wierzbicki (see Miettinen (1999 pp. 107-112) and Wierzbicki
(1982)), which overcomes the typical disadvantages of the weighting method
discussed above. An achievement scalarizing function (in the following shortened
to achievement function) is a function satisfying certain requirements and the
form applied here is closely related to the Tchebycheff distance metric (min-max
formulation).

A few definitions are needed at this point. A vector (or ”"point” or "solution”)
consisting of the objective function values that are desirable or reasonable to the
decision maker is called a reference point z*f. An ideal objective vector z'¢ is
obtained by minimizing each of the objective functions individually subject to
constraints (see figure 3). A vector consisting of the maximum objective function
values in the Pareto set is called a nadir objective vector z" (see figure 3).
Vectors 2! and 2"* are used here to normalize the objective functions so that
their objective values are approximately of the same order of magnitude. Here,
the optimization problem is formulated as

L (x) — et 2 (x) — et
minimize <£n?>2< (f;;ad)j) + p; (f;;awd)i_’z;i) + 7 [max (0, g (-’B))]2>
(10)
The first term in equation (10) is the achievement function which projects the
reference point vector z™f onto the Pareto optimal set. The second term is the
normalized augmentation term, which prevents from generating solutions that are
only weakly Pareto optimal (for details see Miettinen (1999 pp. 100-102)). The
third term is the quadratic exterior penalty function, which penalizes infeasible
solutions and becomes more severe with increasing distance from feasibility. The
augmentation coefficient, p, is set at 0.0001, and the penalty parameter, r, is set
at 20 000. Feasible set S” includes the upper and lower design variable bounds but
not inequality constraint ¢g(z) which is included in the function to be minimized.
The solution of the optimization problem in equation (10), i.e. the solution of the

achievement function including an augmentation term, is properly Pareto optimal
(Miettinen 1999, Wierzbicki 1982).
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4.3 Interactive multiobjective optimization

Let us define two concepts following Miettinen (1999 p. 14). A decision maker
(DM) is a person who is supposed to have better insight into the problem and
who can express preference relations between different solutions. An analyst is a
person or computer program responsible for the mathematical side of the solution
process. The analyst generates information for the DM and the solution is sought
and selected according to the preferences of the DM. In interactive methods the
DM and the analyst communicate and analyze the obtained solutions and their
interactions during the optimization. Only some of the Pareto optimal solutions
are generated, which is a considerable advantage considering the great amount of
computing time required in CFD modeling.

Here, Pareto optimal solutions are generated using the interactive reference-
point method of Wierzbicki (see Miettinen (1999 pp. 164-170) and Wierzbicki
(1982)) utilizing an achievement-function-based problem. The DM expresses
his/her preferences in the form of a reference point, which is a point desirable
or reasonable to him/her. The reference point can be a feasible or infeasible point
in the objective space. When the objective function values (reference points) are
used, problems can be dealt with naturally on their own terms and there is no
necessity to artificially specify e.g. monetary values or weighting coefficients for
all the objectives.

The interactive algorithm works as follows. To start, some initial information
may be given to the DM (here, 2! and 2" were given), after which the DM
sets the first reference point. Then, the analyst generates the Pareto-optimal
solution(s) corresponding to the reference point (in other words the analyst
projects the reference point(s) onto the Pareto set) and shows the solution to
the DM. If the DM is satisfied with the solution obtained, the algorithm stops;
otherwise, the DM sets a new reference point and the interactive procedure is
repeated. Due to the great amount of computing time required in generating
Pareto optimal solutions, here only one Pareto optimal solution is generated for
the DM in each interactive step (a new step begins after the specification of a
new reference point). The original method suggests generating several Pareto
optimal solutions for the DM in each interactive step, using the so-called perturbed
reference points (Wierzbicki 1982 pp. 402-403).

4.4 Optimaization algorithms

Two fundamentally different optimization algorithms, viz. a genetic algorithm and
Powell’s conjugate direction method, are applied in the present study to solve the
optimization problem given in equation (10). Both of them are zero-order methods,
indicating that information on gradients is not required. Here, a hybrid optimizer
is used to exploit the benefits of the two different algorithms; a GA run consisting
of 600 CFD evaluations is performed first (global search), after which the search
is continued from the solution found, using Powell’s conjugate direction method
(local search).
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4.4.1 Genetic algorithm

Genetic algorithms (GA) are based on the concepts of natural selection and the
survival of the fittest. GAs converge towards the global solution rather than
towards a local solution, and they are robust and easy to use. GAs use a stochastic
population-based approach, in which several search points exist simultaneously.

Several possible variations of a GA exist. Hence, when defining a GA, one needs
to choose its components, such as representation, selection mechanism, crossover
and mutation operators and an initial population. These components may have
parameters, such as the tournament size in tournament selection, the probabilities
of crossover and mutation and the population size.

The principle of the GA and the main parameters applied in the present study
are shown in figure 4. The effects of population size and mutation probability
on the GA convergence rate were studied. In these studies, each GA run with a
certain parameter set was repeated five times using different random seeds and
the average performance of these five runs was used to evaluate the convergence
rate. It was observed that the population size 10 converges clearly at a faster
rate than the population size 50. In contrast, the convergence rate between the
mutation probabilities 0.01 and 0.10 does not differ significantly. On the basis of
these findings, the population size is set at 10 and the mutation probability is set
at 0.10.

Each continuous design variable X; is represented using the binary
representation of six digits and applying Gray binary coding. The resulting set of
64 discrete search points has an accuracy of 0.1 vol-% in the design space. A GA
of commercial software for evolutionary optimization EASY (Giannakoglou and
Giotis 2007) is applied. For a more detailed description of GAs, see e.g. Osyczka
(2002).

4.4.2 Powell’s conjugate direction method

Powell’s conjugate direction method (Powell 1964) (in the following shortened to
Powell’s method) is an effective and widely used method and it is described in
detail e.g. in Belegundu and Chandrupatla (1999). Unlike a GA, Powell’s method
improves a single search point in an iterative manner by employing deterministic
rules. Deterministic methods are effective in finding a local optimum, but are not
well suited for global optimization because the final solution may depend on the
starting point.

Figure 5 shows the principle of Powell’s method. First, the objective function f
is minimized along each of the n (number of design variables) coordinate directions
in turn, followed by another minimization along the first direction (minimization
problem assumed). Every minimization is started from the best point found so far.
In each search direction, the minimum is bracketed inside a certain interval, after
which a quadratic-fit golden-section algorithm (Chandrupatla 1998) is applied for
the one-dimensional step length optimization. Second, a linearly independent
conjugate direction, which lies in the general direction of the minimum, is
generated. The conjugate direction, s;, is defined as

§; =T; — Li—n (11)
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where x; is the point obtained at the end of n one-dimensional minimization steps
and x;_, is the point before taking the n steps. Then, one of the n coordinate
directions is discarded in favour of the generated conjugate direction. After that,
the minimization is repeated along each of the remaining n directions, using
the generated conjugate direction as the first direction. Then, a new conjugate
direction is generated and the loop is repeated, until the minimization has been
performed along all n conjugate directions. Finally, unless the stopping criterion
(the change in f less than a specified amount with respect to the starting values)
is met, the whole algorithm re-starts from the beginning by minimizing along the
coordinate directions.

Here, the computational cost related to Powell’s method is relatively low.
In general, the most significant progress is made during the first 20 CFD
evaluations and after 90 CFD evaluations only negligible improvements are
obtained. Although not shown here, the performance of Powell’s method proves
to be strongly dependent on the starting point if applied as the only optimization
algorithm in the present case. Hence, the objective space in the present study is
not simple but contains several local optima.

5 Results and discussion

First, the model validation carried out before the optimization is described briefly.
Then, the Pareto optimal solutions and the interactive reference-point method
used to generate them are discussed. After this, the final solution is selected
and some observations are made on the consistency between the Pareto optimal
solutions and the known physical behaviour of the SNCR process. Finally,
the optimization results are evaluated by comparing them with the available
experimental data.

Computations were performed using a 2.2 GHz AMD Opteron processor. A
single function evaluation took one hour. Approximately 700 function evaluations
were required to obtain a single Pareto optimal solution. In other words,
approximately one month was required for generating each Pareto optimal
solution.

5.1 Model validation

Today, a CFD-based study of a real-world combustion device contains necessarily
significant uncertainties. = The computational grid and numerical solution
procedure, as well as several submodels, affect the accuracy of CFD modelling.
It is obvious that the capability of CFD to give qualitatively correct predictions
is a prerequisite for the application of optimization.

The overall CED model is validated using the experimental data and sensitivity
studies (see Saario and Oksanen 2008a, 2008b). First, a thorough grid-refinement
study was carried out before creating the computational grid applied here.
Then, several global ammonia chemistry mechanisms were compared and suitable
mechanisms were identified for the conditions in the present study. Finally, the
model predictions were validated to a certain extent against the experimental data
obtained in the full-scale bubbling fluidized bed boiler.
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5.2 Pareto optimal points

The optimization problem in equation (10) is solved by applying the hybrid
optimizer. First, five GA runs are performed using different random seeds (each
GA run consists of 600 function evaluations), after which Powell’s method is
started from the best GA solution found. The interactive reference-point method
is used to generate the Pareto optimal solutions. Strictly speaking, some points
termed here "Pareto optimal” may not be exactly such, since the number of
function evaluations available was limited. When discussing Pareto optima, the
terms "point” and “solution” will be used interchangeably.

Figure 6 shows the predicted current design point, four predicted points
from the Pareto optimal set and two reference points in the objective space.
The point "Current design” refers to the currently used operating point, in
which X; = 0.66 vol-% for all ¢ € {1,2,...,9} in the design space. As
shown in figure 6, the corresponding prediction in the objective space is
f(z) = (fyo(z), fxus(x)) = (75.4, 7.7). The current design seems relatively good,
which is not surprising when one considers that it is the result of the experience
and years of work of engineers.

The point "SOO NO” is obtained from the solution of a single-objective
optimization problem. The point "SOO NH3” is obtained by solving a single
case (all NH3 injections turned off), which was specified by applying reasoning
and knowledge of the process. After solving the end points of the Pareto set in the
objective space, z'¢ can be determined as z'¢ = (280, 2,) = (53.1, 0.0). Then,
2" i5 obtained from the payoff table (see Miettinen (1999, pp. 16-18)), which
yields 2" — (25, 2841,) = (108.2, 47.5). Points "MOO I" and "MOO II” refer to
the solutions of the MOO problem using reference points (2™ in equation (10))
"Reference point I” and "Reference point I1”, respectively.

As mentioned earlier, the minimum NHj3 emission is obtained by turning off
all the NHj injections. Figure 7 shows the design variables corresponding to the
other three Pareto optima shown in figure 6. As expected, to minimize the NO
emission only, plenty of NHj should be injected (see figure 7(a)). The inequality
constraint limiting the maximum total amount of NHs that can be injected (see
equation (9)) is violated only in the solution of the "SOO NO” case. In general, the
design variables are far from the upper design variable bounds. However, injection
"Side left C” in the "SOO NO” case hits the upper design variable bound, and hence
still greater values of the upper bounds than 6.60 set in equation (9) could have
been used. Figure 7 shows also that when both objectives are considered, NHj is
more evenly distributed between the injections than in the "SOO NO” case.

In order to make sure that the algorithm found at least a local optimum,
additional calculations were performed in the surroundings of points "SOO NO7”,
"MOO TI”, and "MOO II”. These calculations were performed by increasing and
decreasing each design variable, one at a time, using a small step size AX;. On
the basis of additional calculations, all the points seem to be (locally) optimal
inside AX; = £0.2 vol-% for all i € {1,2,...,9} in the design space.

5.3 Interactive reference-point method

The interactive reference-point method is applied to generate Pareto optimal
solutions. In the present study the role of decision maker (DM) is undertaken
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by two research engineers from a boiler manufacturing company. After some
negotiations and exchange of views, the DMs reached unanimous decisions easily.
Thus, we have a unanimous group of two DMs. It is probable that some persons
involved in the real decision-making process are left out here because they are not
easily accessible, or perhaps because they have not been identified at all. One
should note that other decision makers would probably have somewhat different
preferences, or perhaps even different objectives, but this is characteristic of MOO,
where typically no absolute optima exist.

In general, interactive methods make it possible to obtain a satisfactory
solution with a reasonable number of function evaluations, which is important
in the present study due to the great amount of computing time required in
generating Pareto optimal points. The interactive reference-point method is found
to be a good method. It is easy to understand for the DMs, since the DMs are
required to supply information only in terms of the reference points. In the present
study the reference points are the concentrations of NO and NHjy in flue gas, which
are concepts familiar to the DMs. When requesting reference-point information
from the DMs, it was found important to use units that the DMs are accustomed to
use. In the decision-making meetings the objective function values were presented
to the DMs in mgno2 Nm ™ at 11% O, (dry) and in mgxps Nm ™ at 11% O, (dry),
although here the results are presented in ppmy,,.

The end points of the Pareto set in the objective space ("SOO NO” and
"SOO NH3”) provide important information for the DMs. All the information
was presented to the DMs both in the objective and design space. The DMs
appreciated seeing all the information available before specifying a reference point.
They appreciated also having received the information available already a few days
before the actual decision-making meeting. The interest and commitment of the
DMs, and possibly also their understanding of the problem, are increased when
the interactive method is applied.

Negative features of interactive methods include the extra time required for
the decision-making meetings. Moreover, some interactive methods found in the
literature are probably too demanding for real-world DMs. Here, the time between
the successive decision-making meetings was more than one month due to the great
amount of computing time, which makes the application of interactive methods less
attractive. Also, the specification of a reference point was found to be somewhat
confusing at a certain stage, since the known experimental points did not always
agree well enough with the results of the mathematical model (especially with
very high or low ammonia injection settings). This issue is related to the model
validation and it is discussed further in section 5.6. The interactive methods would
show their strength probably more clearly if the number of objectives were greater
than two, although the possibilities to visualize the results for the DMs would be
significantly weakened.

To start, the analyst generated ideal and nadir points, after which "Reference
point I” was set to correspond to the ideal point as 2™ = (25, 2351,) = (53.1, 0.0).
Then, the analyst generated Pareto point "MOO I”, after which the DMs set
"Reference point IT7 at 2z = (28!, 25[1) = (56.9, 15.4). The two reference
points are shown in figure 6. Here, a satisfactory solution was found after two
interactive steps.

During the search for Pareto optimal solutions, a great number of function
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evaluations is performed. Every function evaluation produces one point, many of
which are not guaranteed to be Pareto optimal, but can nevertheless be useful.
Hence, these points should not be discarded, as they may provide important
information to the DMs or possibly include even the final solution. Here, altogether
about 10 000 function evaluations were performed during cases "SOO NO”,
"MOO I”, and "MOO II". Of these points, figure 8 shows all the feasible ones and the
ones which exceed M, max at maximum by 5% (1ixm, max = 0.0093 kgnms s71, see
g(zx) in equation (9)). The violation of 5% can be considered acceptable because
g(x) is a so-called soft constraint. Interestingly, after the second interactive step,
the DMs were able to picture the whole Pareto set in the objective space in their
mind quite reliably after having seen all the calculated points (see figure 8). In
other words, it is found that the interactive MOO method applied may produce a
reasonable approximation of the Pareto set in a computationally efficient manner.

It is pointed out that there exists another somewhat related approach, in which
GAs are tailored to generate an approximation of the whole Pareto set within a
single run of the algorithm (see e.g. Deb 2001, Fonseca and Fleming 2000 or Marler
and Arora 2004). In this approach, individuals are ranked on the basis of whether
or not they are dominated by other individuals. Then, the objective function
value is assigned on the basis of the individuals’ rank. To foster an even spread
of points in the objective space, the value of the objective function of individuals
in crowded areas is reduced, thus reducing the probability of their survival to the
next generation.

Here, the reference-point method involving an achievement scalarizing function
is applied to solve the MOO problem. However, since in the present study a
suitable scaling has been used for the objective functions and the form of the
approximated Pareto set is "non-surprising” (not a concave curve and not an
excessively flat convex curve, as shown in figure 8), it is probable that also the
weighting method would have yielded reasonable solutions here and that setting
the weights would have been relatively easy.

5.4 Selection of final solution

Mathematically, every Pareto optimal point is an equally acceptable solution to
an MOO problem. The selection of the final solution (also called best-compromise
solution (Cohon 1978)) from among the obtained solutions is up to the decision
makers (DMs), for whom some Pareto optimal solutions are preferable to some
others. The approximated Pareto set in the objective space shown in figure 8
seems regular (almost convex) and there does not seem to be any “knees”, which
would obviously be preferable to the DMs.

Figure 9 shows an enlargement of the region between points "MOO I” and
"MOO II” in the objective space, again including also the points which exceed
MNHsmax b maximum by 5%. This is the region the DMs found most attractive.
In this region, the DMs’ selection of the final solution is based on the guaranteed
emission limit of NHz (foguar (£8) = 15 ppmy,), which cannot be exceeded.
The three white circles and the white star in figure 9 show four points which
do not exceed the guaranteed limit and which the DMs find attractive. The
solution to be implemented in the plant is selected from among these four options.
The corresponding solutions in the design space are shown in figure 10. All
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these solutions are far from the upper design variable bounds and the inequality
constraint is not active or violated in any of them. It can be observed that
the solutions which are close to each other in the objective space may differ
significantly from each other in the design space.

Solution "a” in figure 9 is the best available choice which satisfies the guaranteed
emission limit. However, the DMs prefer to have some safety margin to the
guaranteed limit (from this point of view the solution marked with the star is
the most tempting option). On the other hand, although the inequality constraint
is not active or violated in any of the optional solutions, a lower 7y, is preferred
to a higher 7xmg, by the DMs (from this point of view solution ”¢” is the most
tempting option). After these considerations, the solution marked with the star in
figure 9 is selected by the DMs as the final solution of the optimization problem.

In figure 11 the robustness of the final solution is evaluated to some extent
by varying Xy from the lower to the upper bound. Figure 11 illustrates also the
functioning of the achievement function applied, which aims at reducing the NO
emission when X < 0.21 vol-%, otherwise it aims at reducing the NH3 emission
(see also equation (10)). Constraint g(z) is violated when Xg > 3.14 vol-%. The
effect of penalty function can be seen as an increase in the slope of achievement
function. Note also that the function to be minimized is nondifferentiable in the
optimum.

With respect to the current operating point, the final solution yields
approximately a 12% decrease in the NO emission while maintaining the NHj
emission at an acceptable level. Finally, it must be emphasized here that in
reality the implementation of the final solution requires care due to the significant
uncertainties related to the mathematical modelling and the changing conditions
in the real boiler.

5.5 Consistency between Pareto optimal solutions and
known physical behaviour of SNCR process

Two common principles can be identified in the design variables of all the optional
good solutions shown in figure 10. First, the amount of NHs injected from injection
"Side left C” should be increased to 3-4 vol-%. Second, "Front left” injection should
be turned almost off.

In the vicinity of injection ”Side left C” the temperature is indeed suitable for
NO reduction (see figure 12(a)). In contrast, in the vicinity of injection "Front left”
there is a high temperature region which is known to enhance NO formation.
Moreover, there is a considerable amount of CO (see figure 12(b)) and H, in
the vicinity of injection "Front left”, which is known to shift the optimal NO
reduction temperature to a lower level. These findings suggest that NHjz from
injection "Front left” may form more NO instead of reducing it. On the other
hand, figure 12(c) shows that there is little Oy available (in a large region below
0.5 vol-%) in the vicinity of injection "Front left”, which may partly limit NO
formation regardless of the high temperature and the presence of CO and H,.

It is difficult to specify with much certainty any general principles for the other
injections. However, perhaps the amount of NH3 from injections "Side left A” and
"Side right B” should be decreased, and injections "Side right A” and "Side right C”
should be kept unchanged.
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In general, when comparing the "SOO NO” case in figure 7(a) with MOO cases
in figures 7(b), 7(c) and 10, the findings suggest that the NHj injected should
be more evenly distributed when both objectives are taken into account. Five
injections are completely turned off in the solution of the "SOO NO” case shown in
figure 7(a), which is probably due to the inequality constraint. Moreover, the great
amount of NHj in injections ”Side left C” and "Side right C” in the "SOO NO” case
decreases in the MOO cases, because some of the NHj is likely to pass unreacted
into flue gas due to the relatively low temperature in the vicinity of the rear wall.

Figure 12(d) shows the predicted NO concentration in the current design.
The NO concentration is highest in the rear side of the cross-section. This
supports the finding that more NHj should be injected from injection "Side left C”.
NHj is relatively well dispersed over the cross-section with the current injection
arrangement (see figure 12(e)). The dispersion of NHj3 seems better in the right
side of the cross-section. This effect is due to a strong downward flow in the
vicinity of the right side wall injections, as shown in figure 12(f). A downward
flow, although weaker, can be observed also in the vicinity of the left side wall
injections. All in all, different injections encounter clearly different conditions
inside the boiler. It may be difficult to identify the effect of interactions between
the injections on the emissions in flue gas.

5.6 Comparison with experimental data

Some experimental data obtained from the bubbling fluidized bed boiler are
available. The concentrations of NO and NHj in the flue-gas channel are measured
with three different NHj injection settings (50%, 100% and 150% injection of NHj
with respect to current operating point). The three experimental points and the
corresponding CFD predictions are shown in figure 13. In addition, Pareto optimal
solutions "SOO NO”, ”SOO NH3”, "MOO I” and "MOO II” are included in figure 13.

The experimental data and predictions are in good agreement in the cases
”50% injection” and "100% injection”, whereas in the case "150% injection” there is
a significant discrepancy. In fact, point "150% injection exp.” in figure 13 suggests
that predicted Pareto optimal solutions "SOO NO”, "MOO I” and "MOO 1II”
are not Pareto optimal in the actual practice. Although this inconsistency can
be attributed partially to the significant experimental uncertainty, probably the
deficiencies in the mathematical model are mainly responsible for it. In fact, it was
found in Saario and Oksanen (2008a) that although the model predicts qualitative
trends correctly, it is not capable of yielding correct quantitative results. In
general, these findings show that it is important to validate any model at least to
a certain extent before it can be used for optimization. Frequently, the application
of modelling and optimization becomes an iterative loop.

6 Conclusions

A combination of computational fluid dynamics (CFD) and interactive
multiobjective optimization is applied to find the optimal settings of nine NHj
injections in order to minimize NO and NHj3 emissions from a real-world industrial
boiler. With respect to the current design, approximately 12% decrease in the NO
emission is obtained while maintaining the NH3 emission at an acceptable level. In
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the optimum solution, the amount of NHj3 varies strongly between NHj injections.
In the present case, it is observed that the amount of NHj should be significantly
increased from injection "Side left C” and decreased from injection "Front left”.

The achievement scalarizing function is applied to convert the multiobjective
optimization problem into a single-objective optimization problem. The converted
single-objective optimization problem is solved using first a genetic algorithm for
the exploration of design space and then Powell’s conjugate direction method for
local refinement near the optimum. This hybrid method is found to be an effective
approach.

The interactive reference-point method is used to generate a satisfactory Pareto
optimal solution at a relatively low computational cost. Interestingly, here an
approximation of the Pareto optimal set is obtained as a "by-product” during
interactive optimization. It is found important to apply an interactive method
that requires information in a form easily understandable to the decision makers
(DMs). Also, it is important to use units that the DMs are accustomed to use.
The interest and commitment of the DMs, and possibly also their understanding of
the problem, are increased when the interactive method is applied. The additional
time required for the meetings between the DMs and the analyst can be considered
as a disadvantage of interactive methods.

The experimental data obtained from the boiler emphasizes the fact that a
model must be validated before it can be applied in optimization. In reality,
the implementation of the optimal solution obtained here requires care due
to the significant uncertainties related to the mathematical modelling and the
changing conditions in the real boiler. Frequently, the application of modelling
and optimization becomes an iterative loop.

In the near future, fast-growing computing capacity will enable wide-spread
application of CFD-based optimization that typically requires a great number
of expensive function evaluations. This efficient and scientific approach is easily
applicable to many types of design and retrofit problems in combustion devices.
Possible objectives include e.g. the minimization of various emissions, number of
inlets, boiler corrosion, slagging and fouling, boiler size, temperature and velocity
gradients, or costs, or they include the maximization of thermal efficiency or heat
transfer. Possible design variables include e.g. the geometry, fuel feed, fuel quality,
particle size distribution of fuel, air distribution system, swirl angle, injection of
additives, or flue gas recirculation.
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Figure captions

Figure 1. Boiler sketch.

Figure 2. Location and numbering of NH3 injections at height of 7.5 m (contours
correspond to NHj concentration (ppmy)). View from boiler roof.

Figure 3. Ideal and nadir objective vectors. Symbol Z is image of feasible set S
in objective space.

Figure 4. Principle of genetic algorithm. Particular details related to present
study are indicated in square brackets.

Figure 5. Principle of Powell’s conjugate direction method. Particular details
related to present study are indicated in square brackets.

Figure 6. Predicted current operating point ("Current design”), four predicted
solutions from Pareto optimal set, and two reference points in objective space.

Figure 7. Predicted Pareto optimal solutions in design space. The dashed
line indicates injection settings of current operating point. Design variables
i €41, 2,...,9} are denoted by ¢ € {Rear, Front left, Side left A, Side left B,
Side left C, Front right, Side right A, Side right B, Side right C}, respectively.

Figure 7(a). Minimize only NO emission ("SOO NO” in figure 6). Solid line
indicates upper design variable bounds. f; (z) = 53.1 ppmy,y, fo (z) = 47.5 ppmy,,
and g(z) = 0.0005 kgyg, s~ (violated).

Figure 7(b). Minimize both NO and NHj emission ("MOO I” in figure 6).
fi(xz) = 66.8 ppmyy, fo(z) = 11.8 ppmyy, and g(z) = —0.0021 kgyg, s~
(inactive).

Figure 7(c). Minimize both NO and NHj emission ("MOO II” in figure 6).
fi(z) = 61.9 ppmyy, fo(z) = 19.7 ppmyy, and g(z) = —0.0008 kgyy, s~
(inactive).

Figure 8. Predicted points in objective space. All feasible points and points which
exceed 1MNH; max ab maximum by 5% are shown.

Figure 9. Enlargement of Pareto set in objective space. All predicted points which
exceed 1N, max at maximum by 5% are shown. The final solution is selected from
among four solutions indicated by white markers. The selection criterion of DMs
is based on the guaranteed emission limit of NHj ( f2guar () = 15 ppmyo).
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Figure 10. Predicted optional good solutions in design space. The dashed line
indicates injection settings of current operating point. The limiting objective,
i.e. the objective which has a greater normalized distance to the reference point
according to the achievement function (see first term in equation (10)), is marked
with an asterisk *.

Figure 10(a). Optional solution "a” in figure 9. Found with "Reference point I”.

fi(xz) = 64.0 ppmyy, *fo(x) = 14.3 ppmy, and g(xz) = —0.0017 kgyg, s
(inactive).

Figure 10(b). Optional solution "b” in figure 9. Found with "Reference point II”.

*fi(x) = 64.9 ppmyy, fo(x) = 12.7 ppmy, and g(z) = —0.0018 kgyg, s
(inactive).

Figure 10(c). Optional solution "¢” in figure 9. Found with "Reference point I”.

fi(xz) = 66.0 ppmyy, *fo(z) = 11.9 ppmy, and g(z) = —0.0030 kgnp, s !
(inactive).

Figure 10(d). Final solution in figure 9. Found with "Reference point II”.
*fi(z) = 66.8 ppmyol, fo(xz) = 10.9 ppmy, and g(z) = —0.0003 kgng, s *
(inactive).

Figure 11. Robustness of final solution. Injection "Side right C”, Xg, is varied
from the lower to the upper bound. The achievement function method applied
aims at reducing the NO emission when Xy < 0.21 vol-%, otherwise it aims at
reducing the NHj3 emission (see also equation (10)). Constraint g(x) is violated
when X > 3.14 vol-%.

Figure 12. CFD predictions of current operating point at height of 7.5 m.
Figure 12(a). Contours of temperature (K)
Figure 12(b). Contours of CO (vol-%)

(
(
Figure 12(c). Contours of Oy (vol-%)
Figure 12(d). Contours of NO (ppmy,))
(
(

Figure 12(e). Contours of NH3 (ppmy,)

)
Figure 12(f). Contours of vertical velocity u, (m s™')

Figure 13. Three experimental points, CFD predictions corresponding to three
experimental points and four points obtained from Pareto set in objective space.
”100% injection” corresponds to current operating point and “exp.” denotes
experimental.

21
URL: http:/mc.manuscriptcentral.com/geno Email: A.B.Templeman@Iliverpool.ac.uk

Page 22 of 44



Page 23 of 44 En]aﬁégrmyoﬂsqh)ization
1 3

©CoO~NOUTA,WNPE

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

Rael mixture + air W

37
38
39
40
41
42
43
44
45
46
47
48

5

% % -

SUPERHEATERS

—

\

T~
N

BULL-NOSE
\

FRONT WALL

T NH, INJECTION

LEVELS

NH; + air —

FREEBOARD

Secondary air _,.

SPLASH ZONE

< T DENSE BOTTOM BED
—

Prrrrttd

R =
+ 17
+15

&
)
>3
29 +13
S | Outlet
+ 11

|
T
\O

7
T5
\
REAR WALL
T3
1

URK: http:/mc.mpf?ffﬂéﬁtralﬁorCﬂelﬁtheaﬂm?an @liverpool.ac.uk

supporting fuel

(w) LTHOIAH



Engineeri pterMR WALL Page 24 of 44
RIGHT

WALL WALL
\3 4/
ide « O Side
. 4
42 Side v,a < 3.-Side
lé.?f'[ B = 3 I‘i.ght B
a,
18 A 2
39 Side <« /-Side
X
i W d h ( )
1dth (m
FRONT WAIFﬂl‘http :I/mc.manuscript entral com/geno Email: A.B.Templeman@Iliverpool.ac. uky

2. Front left 6. Front right



©CoO~NOUTA,WNPE

gineering Optimization

URL: http:/mc.manuscriptcentral.com/geno Email: A.B.Templeman@Iliverpool.ac.uk

/i



START Engineering Optimization STagE 26 of 44
L
2 g = 1 YES
3
L
5
6 e e . .
7 GeneraFe initial EvaluaFe f.ltl’.leSS . Replace J worst Stopping
g population P(g) | | ofeachindividual | ,lindividuals in P(g) by »  criterion met?
1yith s individuals n P(g) j best individuals in [g>597]
11 [s =10] [using CFD] P(g-1) [j=1]
1Z
13 NO
14 v
15 =
1 g=8+1
17
18 v
19
20 Apply mutation Apply crossover Apply selection
1 . 1 ith probabilit «
22 URL: htt)/Wé%REggﬂhgémlreym n,geno Emjal ﬂWI 1prn?p 2m1ar11 I|verpool.ac.uk [toumament of
23 [p,=0.1] unitorm CBO;’O et two individuals]
24 =0.




PageST ARA

'

|

— ||

Define
Starting point

11GA solution]
12

P OO~~N®MDOTAWNPRE

13
14
15
16

g

Engineering Optimization

Evaluate

I objective

function f(x)
[using CFD]

Find search

(coordinate or
pattern direction)

URL: http:/mc.manuscriptcentral.com/ger% Email: A.B.Templeman@Iliverpool.ac.uk

STOP

| directiond; |

Minimize f(x)
in direction d;
[CFD, quadratic-
fit golden-section]

YES

Stopping
criterion met?
[no significant
improvement]

NO

i=1i+1 =




o)
-

VOP

120
N
-

ABNHGHEHE CoRERTABSIT (P
(')
-)

(\®)
-

[
-

----Engineering Optimization - -

ODb4dmpeo®

AR Page 28 of-44
SOONO ‘
SOO NH3

MOO 1

MOO II

Current design
Reference point I
Reference point IT

N

4@RL: http:/ﬁ()nanu.scri.[@@ntra.l.comﬂ@o Email: 8.@..Templemg@liverpool@@,< 1 10
Nitric oxide concentration (ppmvol)



Page 29 67<L4 Engineering OptS\idetion ]
left C

%)

w

Side
right C

N W A L N

right B

P\T”Hég@(?ﬁééﬁfrﬁ%fﬁﬁ Vol
[

32 Rear Front Side Side Front Side

27 | e left left A left B right right A

28 URL: http:/mc.manuscriptcentral.com/geno Email: A.B.Templeman@liverpool.ac.uk
29

30 Injection



7 - Engineering Optimization Page 30 of 44

6 - i

5 - i

4+ Side ]
left C

3

2

URL: http:/mc.manuscriptcentral.com/geno Email: A.B.Templeman@liverpool.ac.uk

Injection



Page 31 ’0744 Engineering Optimization ]

VN

N

g_l* i _
5O

8 Side

;? left C

28 URL: http:/mc.manuscriptcentral.com/geno Email: A.B.Templeman@liverpool.ac.uk
29 . .
30 Injection



vo

SR 8BRY Y YANIRGEHS ConcenatGt (fp

)
-
|

N
-
I

o
-
T

(\®)
-
T

p—
-
I

E.eenngOptlmlzatlon R - Page 32

. SOO NO

A MOOI

of 44

¢ SOONH3

. m Mool

"‘ ““

4 QRL: http: /50nanuscr|[6@ntral com@@o Email: S@Templemg(@llverpool(g@

Nitric oxide concentration (ppmvo )

110



Page 33 of 44

p—
\O
T

/\

Moo Il

[
Q|
|

[
OV
I

2 Final solution
O Optional final solution |

BB %mmm:mwmmiﬂbﬁ(pﬁmmr
—_ —_
— ()

27

29 URL: hti§fnc.manuscripto§iral.com/geno EfI: A.B.Templen@gifdliverpool.ac.u§Q
30 Nitric oxide concentration (ppmvol)




7 - Engineering Optimization Page 34 of 44
6 - i
5 - i
Rear
4r Side |
left C
3 - _
2 - _

Side
Front
right

ek
T

Front Side Side
left left A left B

URL: http:/mc.manuscriptcentral.com/geno Email: A.B.Templeman@liverpool.ac.uk

Injection




Page 35 ’0744 Engineering Optimization ]

6
5
g 4r Side )
left C
3
2

gg URL: http:/mc.manuscriptcentral.com/geno Email: A.B.Templeman@liverpool.ac.uk
30 Injection



7 - Engineering Optimization Page 36 of 44|

6 - i

5 - i

4+ Side ]
left C

3 - _

2 - _

Side

Side giq
fLE Side right C

Rear Front left A et B

URL: http:/mc.manuscriptcentral.com/geno Email: A.B.Templeman@liverpool.ac.uk

Injection



Page 37 ’0744 Engineering Optimization ]

left ¢ Front
right

Side
right A Side Side

right B right C

URL: http:/mc.manuscriptcentral.com/geno Email: A.B.Templeman@liverpool.ac.uk

Injection



~]
-

(J'l-b)ol\)H
)
-

h

oo (bphl |
AN )
-} o

I

(oY)
-

[
a1

(O
-

NO%E);

Engineering Optinfizati Page 38 of 44
. NOt)

~ -
NN
- .
~
~
= -
---
_______

I
-

=)
o
ONJBA UONOUN] JUSWIDAIYIY

0.4

Achievement
function
s 10.2
\ 10.0
I thimuml | | | . 1-0.2

() URL: httgf/mc.manusciPtcentral.confBieno Email: 4B.Templemafy@liverpool.auk

X9 (vol-%)



Wldth (m)

29 URL: http:/mc.manuscriptcentral.com/geno Email: A.B.Templeman@Iliverpool.ac. uly

s Front left Front right



Page 40 of 44

Side
right C

< Side
right B

Side
right A

)
27 T Wldth (m)

29 URL: http:/mc.manuscriptcentral.com/geno Email: A.B.Templeman@liverpool.ac. uly

s Front left Front right



Page 41 of 44 6 EngmMmeering Optimization

—P
1
. X
2 1
21 t Wldth (m)

28
gg URL: http:/mc.manuscriptcentral.com/geno Email: A.B.Templeman@Iliverpool.ac. uly
3 Front left Front right



ieering Optimization Page 42 of 44

= o0 Side
d 0 = « Olde
% ioht B

B
‘% ;
?.

Side
right A

t Wldth (m)

URL: http:/mc.manuscriptcentral.com/geno Email: A.B.Templeman@liverpool.ac. uly

Front left Front right



Page 43 of 44 6 Engineering Optimization

Side
right C

<« Olde
right B
<« Olde
right A
x

% 1 Wldth (m)

URL: http:/mc.manuscriptcentral.com/geno Email: A. Btempleman@llverpool ac. uly

8L
o a
()

s Front left Front right



Page 44 of 44

Side
right C

<« Olide
right B

Side
right A

| | X
27 T Wldth (m) J

29 URL: http:/mc.manuscriptcentral.com/geno Email: A.B.Templeman@liverpool.ac. uly

s Front left Front right



Page 456)

-~ "Engineering Optimization -

SOO NO

o
b 4 SOO NH3
3§ 40+ A MOOI

| MOOII

<l 50% injection exp.
= VYV 100% injection exp.
& 30f > 150% injection exp.
g < 50% injection
@ Vv 100% injection
5 0f = B> 150% injection
2 | |
B
o) A [>
g 101 R
=4 v ‘

\YAR ‘ ‘

20 -« |
27 Or SRR e B
28 | | | | | | |
ég 4@RL: http:lﬁﬁnanuscri@@ntral.com@@o Email: 8.@Templem9@liverpoo}@@< 1 10
31 Nitric oxide concentration (ppmvol)



