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Abstract 
 

 In this article the design of Water Distribution Networks (WDN) is addressed by using a 

variant of the so-called PSO (Particle Swarm Optimization) algorithm. This variant, which makes 

use of a discrete version of PSO already considered by the authors, overcomes one of the PSO’s 

main drawbacks, namely its difficulty to maintain acceptable levels of population diversity and to 

balance local and global searches. The performance of the variant herein proposed is investigated 

by applying the model to solve two already traditional benchmark problems in the literature, the 

Hanoi new water distribution network and the New York Tunnel water supply system. The 

obtained results show considerable improvements regarding both convergence characteristics and 

the quality of the final solutions, and near optimal results are shown to be consistently achieved at 

reduced computational cost. 

 

Keywords: Particle Swarm Optimization, Water Distribution Networks, Optimal Design, 

Evolutionary Algorithm 

 

 

1. Introduction 
 

 Optimal design of new WDN (Water Distribution Networks) can be defined by the best 

possible combination of reducing costs for its components, such that all water demands are met, 

given design constraints, including the occurrence of particular system failures. Nevertheless, even 

though the design of new systems is important in itself, in practice, situations in which the interest 

focuses in expansion, rehabilitation and/or just optimum operation design of existing systems are 

much more frequent. Due to the sundry factors influencing the design, in practice, this 

optimization can be highly complex. 

 For one thing, the objective function which will enter the optimization problem can take 

numerous forms depending on the nature of the problem (system expansion, rehabilitation, new 

design, operation, etc). Obviously, there exists no unique set of such main factors, even for various 

approaches to one and the same specific problem. This implies that the most effective techniques 

of such optimization have to adapt themselves easily to whatever objective function. Traditionally, 

decision variables have been in first place the diameters of the pipelines, more specifically, the 

diameters of new pipes and/or the diameters of additional, duplicated pipelines, which must be 

selected from a discrete set of commercially available pipe diameters. The inclusion of reservoirs 

and pumps into the optimization process requires that both the design and the operation of the 

network in extended period simulation should also be considered. 

 For the other, typically, the design constraints are given by minimal pressure head 

requirements at each demand node and the physical laws which govern the flow dynamics. 

Considering multiple demand conditions, the possibility of staging of construction over the 

lifetime of the project, reliability and redundancy of the network, adequate water quantity and 
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good water quality, optimum design capacity and hydraulic requirements add additional 

constraints, resulting in a highly complex optimization problem. 

 All in all, a general strategy to solve such optimization problems of WDN can be defined in 

terms of a balanced combination of least cost for the layout and sizing using new components, the 

reuse or substitution of existing components, and a working system configuration which fulfils all 

water demands and the design constraints, guaranteeing of course a certain degree of reliability for 

the system (Goulter and Bouchart, 1986, 1990). 

 For the last decade, many researchers in the field have shifted direction, leaving aside 

traditional optimization techniques based on linear and nonlinear programming and embarking on 

the implementation of Evolutionary Algorithms: Genetic Algorithms (Savic and Walters, 1995; 

Wu and Simpson, 2001; Matías, 2003; Wu and Walski, 2005); Ant Colony Optimization (Maier et 

al., 2003; Zecchin et al., 2005); Simulated Annealing (Cunha and Sousa, 1999); Shuffled Complex 

Evolution (Liong and Atiquzzaman, 2004); and Harmony Search (Geem, 2006), amongst others. 

 As a result of the iterative nature of the generation of solutions using aforementioned 

algorithms, these can be intuitively interpreted as algorithms which continually search through the 

solution space. This process takes full advantage of all solutions found up to the moment and helps 

to guide the search. Evolutionary Algorithms are characterized by two fundamental ingredients 

(Colorni et al., 1996): exploration, which is the capability of an algorithm to pursue a broad search 

within the solution space, and exploitation, which is the capability of an algorithm to search more 

specifically in a local subset of the solution space close to where previously good solutions have 

been found. 

 One of the evolutionary algorithms, which has shown its potential and good perspectives 

for the solution of various optimization problems (Dong et al., 2005; Jin et al., 2007, Liao et al., 

2007), is Particle Swarm Optimization (PSO). The PSO algorithm was developed by (Kennedy and 

Eberhart, 1995) and inspired by the social behaviour of a group of migrating birds trying to reach 

an unknown destination. A discrete version of this algorithm has been used recently by the authors 

(Montalvo et al., 2007) to address WDN design and another mixed continuous-discrete one to 

tackle the design of wastewater systems (Izquierdo et al., 2007). In the current article, the discrete 

version for WDN is extended with a new feature that provides the algorithm with increased 

population diversity, thus improving both convergence characteristics and the quality of the final 

solutions. 

 The rest of this article is organized as follows. First a description of the WDN optimal 

design problem will be given. Next a discrete version of PSO endowed with the new feature will 

be presented. Then, the results of its application to two standard benchmarking problems in the 

field, including a comparison with the results obtained by other authors, will be presented. The 

advantages of using the new feature will be stressed. Finally, a number of conclusions and 

recommendations will be raised. 

 

2. Optimal design of WDN setting 
 

 The problem of designing economically and optimally a WDN amounts to determining the 

values of all involved variables in such a way that the investment and maintenance costs of the 

system are minimal, subject to a number of constraints (Izquierdo et al., 2004). 

 Apart from the basic variables of the problem, which are the diameters of the new pipes, 

one may require additional variables that depend on the design characteristics of the system: 

storage volumes, pump head, the type of rehabilitation to be carried out for various parts of the 

network, etc. The estimation of individual costs will always depend on these variables. The correct 

approach to assess the costs for each element becomes important when defining the objective 

function, which has to be fully adapted to the problem under consideration: design, enlargement, 

rehabilitation, operation design, etc. On the other hand, it is important that the objective function 
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reflects to the utmost reliability the total cost of the system during its entire lifetime. Various 

authors have used in their optimization an objective function which only considers the costs of the 

pipelines (Maier et al., 2003; Zecchin et al., 2005), and others have taken into account some other 

costs involved (Matías, 2003; Dandy and Engelhardt, 2006). One very interesting approach to the 

objective function is presented in (Martínez, 2007). 

 In this work, due to the nature of the two case studies we have chosen, use is made of an 

objective function which only takes into account pipeline costs. Nevertheless, a generalization to 

broader classes of objective functions is straightforward. The examples we address have 

traditionally been used in the literature and provide a standardized and simplified environment to 

carry out a wide range of tests and analyses. Hence, in order to facilitate the comparison with 

results obtained by other authors, we employ the following objective function to estimate the costs: 

 

∑
=

⋅=
N

i
ii LDCDF

1

)()( ,         (1) 

  

where N is the number of pipes in the network, D = (Di) is the vector of pipes’ diameters, which is 

N-dimensional, C(Di) is the unit cost of commercially available pipe of diameter Di, and Li the 

length of the i-th pipe. It has to be noted that C is a non-linear function of diameter. 

 Obviously, some combinations of pipe diameters can violate the system constraints 

resulting in infeasible solutions. The evaluation of illegal solutions in optimization problems with 

constraints is crucial, especially for non-linear programming problems, as the one herein 

considered. Therefore, the handling of system constraints, particularly the energy equations, which 

are nonlinear, and the assessment of infeasible solutions are of research interest. Currently, several 

methods have been developed to deal with system constraints. These methods mainly consider 

preserving feasibility of solutions, penalty strategies and searching for feasible solutions, and they 

have several drawbacks. Among them, the penalty function methods are particularly promising, as 

evidenced by recent developments (Fung et al.; 2002, amongst others), and this is the approach 

used here. Even though there are more sophisticated methods for constraint handling (Farmani and 

Wright, 2003; Afshar, 2007), use is made of a simple approach that works in the same way for all 

heuristics under investigation. 

 Also, in order to restrict ourselves to the same rules used in the literature to deal with the 

benchmark problems, only three kinds of constraints are considered here: continuity and energy 

equations, which are enforced by the use of EPANET2 (Rossman, 2000), and lack of satisfaction 

of minimum pressures at demand nodes, which are added as penalty costs to the cost (1) of the 

network. As a consequence, the total cost of the network is defined as 
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where K is the number of constraints, vj is the j-th constraint violation and pj represents the penalty 

parameter corresponding to constraint j with a large value to ensure that infeasible solutions will 

have a cost greater than any feasible solution. 

 One therefore deals with determining the values which minimize the total cost of the 

pipelines while complying with the minimal pressure requirements of the network. 

The problems faced in the optimal design of WDNs are huge. Furthermore, this simple 

variant for the design of a water supply system belongs to a class of problems known as NP-hard 

problems, which are intractable and it is not practical to perform a full enumeration using any 

rigorous algorithm, due to the huge amount of computational time required. For instance, one of 
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the networks considered in this article with 34 pipes and 6 potential pipe diameters has 6
34
 possible 

pipe diameter combinations, which constitute the search space of the problem. This (really) modest 

network would require a considerable amount of time for an exhaustive search algorithm to 

navigate the entire search space of almost 2.87·10
26
 potential solutions. 

 

3. Description of PSO and the proposed variant 

 
Particle Swarm Optimization is an evolutionary computation technique that was first 

developed by (Kennedy and Eberhart, 1995). Their first original idea was to simulate the social 

behaviour of a flock of birds in their endeavour to reach, when flying through the field (search 

space), their unknown destination (fitness function), e.g. the location of food resources. In PSO, 

each bird of the flock is a potential solution and is referred to as a particle. Initially a number of 

particles are randomly generated. Then, particles evolve in terms of their individual and social 

behaviour and mutually coordinate their movement towards their destination (Shi and Eberhart, 

1998). 

The i-th particle represents a solution of the hydraulic problem and is characterized by its 

location in an N-dimensional space, where N corresponds to the number of variables of the 

problem. Any set of values of the N variables, determining a particle’s locations, represents a 

candidate solution for the optimization problem. 

During the process each particle i is associated with three vectors: 

• its current location 

( )t21 ,...,, iNiii xxxX =           (3) 

• the better location it has reached so far,  

( )t21 ,...,, iNiii pppP =           (4) 

• and its velocity, which enables it to evolve to a new location, 

( )t21 ,...,, iNiii vvvV = .           (5) 

Also, in each cycle (iteration) the particle that best fits the objective function is obtained; its 

location, Pg, plays an important role in the calculation of the movement evolution of every other 

bird. 

In a coordinated way each bird evolves by changing its location 

newXi = currentXi + newVi,                    (6) 

with updated new velocity 

newVi = fix(ω·currentVi + c1·rand( )·(Pi – currentXi) + c2·rand( )·(Pg – currentXi)), (7) 

so that it accelerates towards both its best position, Pi, and the best position obtained so far by any 

bird in the flock (best global position), Pg. 

This enables each bird to explore in the search space from its new location. The process is 

repeated until the best bird reaches certain desired location. It is worth noting here that, according 

to the description, the process involves not only intelligent behaviour but also social interaction. 

This way, birds learn both from their own experience (local search) and from the group experience 

(global search). 

 The new elements in equation (7) are as follows. 
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• fix(·) is a function that takes the integer part of its argument, so that the new velocity vector 

will be an integer vector and, as a consequence, the new updated positions will share this 

characteristic since the initial population, in its turn, must also have been generated by using 

only integer numbers. 

• c1 and c2 are the acceleration constants and represent the weighting of the stochastic 

acceleration terms that pull each particle simultaneously towards its best position and the best 

global position. These constants are also sometimes referred to as learning rates or factors. 

•  rand( ) is a function generating uniform pseudo-random numbers between 0 and 1. Note that 

both rand( ) numbers in (7) are independently generated. 

• ω is an inertia term, proposed by (Shi and Eberhart, 1998), that controls the impact of the 
velocities history into the new velocity, provides improved performance in a number of 

applications and can be suitably adapted during the calculation process. This operator allows 

a balance between local and global search and typically decreases with time, so that initially 

global search is favoured, but this trend is shifted towards local search as the solution process 

evolves, and results in less iteration on average to find an optimal solution. 

A more complete description of this discrete version of PSO applied to WDN design can be 

found in (Montalvo et al., 2007). 

 Particles’ velocities on each dimension are confined to minimum and maximum velocities, 
which are user defined parameters. 

Vmin ≤ Vi ≤ Vmax          (8) 

If the sum of accelerations causes the velocity on a specific dimension to fall out of the 

accepted range, then this velocity is sensibly limited to either Vmin or Vmax. These are very 

important parameters. They determine the resolution with which regions between the present 

position and the target (best so far) positions are searched. If Vmax is too high, particles might fly 

through good solutions. If Vmax is too small, on the other hand, particles may not explore 

sufficiently beyond locally good regions. In fact, in this case, they could easily be trapped in local 

optima and unable to move far enough to reach a better position in the problem space. 

 PSO shares with other evolutionary techniques that it does not guarantee the global 

optimum. But, on the other hand, PSO does not need specific operators (such as crossover and 

mutation in the case of Genetic Algorithms, or pheromone updating in Ant Colony Optimization, 

amongst others), since particles update themselves with internal velocity. They also have memory 

and receive information only from the best particle in history, which is a simpler mechanism of 

information transmission than those used in Genetic Algorithms, for example. Particles try to 

converge to the best solution quickly, but PSO’s main drawback is that it is difficult to keep good 

levels of population diversity and to balance local and global search, so that suboptimal solutions 

are prematurely obtained (Dong et al., 2005). Some evolutionary techniques maintain population 

diversity by using certain more or less sophisticated operators or parameters, as the mutation 

parameter in the case of Genetic Algorithms. Several other mechanisms forcing diversity can be 

found in the literature. For instance, the artificial immune systems especially designed to maintain 

diversity in optimization modal problems (Forrest et al., 1990; Smith et al., 1993) and afterwards 

extended to solve optimization problems with constraints (Hajela and Lee, 1996; Yoo and Hajela, 

1999). In general, the random character typical of evolutionary algorithm’s features adds, without 

doubt, some degree of diversity to their genotypes, phenotypes or individuals integrating the 

manipulated populations. Nevertheless, in discrete PSO those random components are unable to 

add, in general, sufficient amount of diversity. In effect, after conducting a specific study on the 

discrete PSO performance, the authors have detected frequent superpositions of birds in the search 

space, especially onto the leader. This, in fact, causes the effective population size to be lower and, 
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as a consequence, the algorithm effectiveness impaired. This led us to try to devise some kind of 

affordable action to effectively limit bird’s superposition. To check all the birds for possible 

superpositions was deemed unaffordable (and unnecessary). After a number of trials a decision 

was made to check only superposition with the best bird in the flock and to re-generate completely 

at random a new bird if superposition occurred. This random re-generation of the many birds that 

tend to occupy the leader’s position has shown to avoid premature convergence since it prevents 

clone populations from dominating the search. The inclusion of this procedure into the discrete 

PSO produces greatly increased diversity and, according to the results shown in the next 

paragraph, improved convergence characteristics and quality of the final solutions. 

The modified algorithm can be given by the next pseudo code. 

 

• Generate a random population of M particles (hydraulic solutions) 

• Select the best particle 

• Repeat the next block until fulfilment of termination condition 

� Determine the value of the inertia parameter ω 
� Begin cycle from 1 to number of particles 

• Start 
o Calculate fitness function for particle i 

o If particle i has better fitness value than the fitness value of 

the best particle in history then set particle i as the new best 

particle in history 

o If particle i is not currently the best particle but coincides 

with the best particle then re-generate particle i randomly 

o Calculate new velocity for particle i according to (7) 

o Update position of particle i according to (6) 

• End 

� Show the solution given by the best particle 

 

The termination condition may be stated either in terms of a maximum number of iterations 

or in the event that certain value of the fitness function has been achieved (Shi et al., 2007). In this 

work, the algorithm will stop if after a number of a priori defined iterations the best found solution 

has not changed. 

The performance of the approach herein introduced to avoid particles’ superposition with the 

best particle can be observed from the results obtained for the two benchmark problems studied in 

the next paragraph. 

 

4. Testing benchmark problems 

The first case is the Hanoi pipe network (Figure 1), which has been considered several times 

in the literature (Savic and Walters, 1995; Cunha and Sousa, 1999; Matías, 2003; Zecchin, 2003; 

Zecchin et al., 2005; Iglesias et al., 2006). The complete setting can be found in (Wu and Simpson, 

2001). The second case is the New York Tunnel water supply network (Figure 2), which similarly 

to the Hanoi water distribution problem, has been studied extensively by various researchers 

(Savic and Walters, 1995; Maier et al., 2003; Matías, 2003). Also, a complete detailed description 

can be seen in (Dandy et al., 1996). Both cases are very well-known benchmark problems in the 

literature. 
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The parameters used by this algorithm have been selected after preliminary tuning 

experiments following a number of suggestions (Shi and Eberhart, 1998; Jin et al., 2007; Liao et 

al., 2007; Shi et al., 2007): 

 

• 1c  = 3,       2c  = 2;            

• 
( )( )1ln2

1
5.0

+
+=ω

k
,  where k is the iteration number; 

• Vmax = 50% of variable range, which is problem dependent (for example, for one of the 

problems addressed in the next paragraph the number of commercially available pipes is 6, 

for the other is 15 plus the ‘do nothing’ option); 

• Vmin = - Vmax; 

• Number of particles (population size) = 100. 

The termination condition stopped the process if after 800 iterations no improvement in the 

solution had been obtained. Both designs were optimized 100 times initially. The obtained results 

and comparisons with other methods are presented now. It is worth observing that only solutions 

assessed as being feasible by EPANET2, which is the benchmark hydraulic analysis tool used in 

this research, are considered. 

 

4.1 Hanoi water supply system 

This network consists of a single fixed head source at elevation of 100m, 34 pipes and 31 

demand nodes organized in three loops and two ramified branches. One has to find the diameters 

(from a set of six commercially available diameters) for the 34 pipes such that the total cost of the 

network is minimal and the pressure at each node of consumption is at least 30m. 

Figure 3 shows the best costs obtained by the 100 runs performed when using the proposed 

algorithm. These results can be compared, Figure 4, with the ones obtained in (Montalvo et al., 

2007) by standard discrete PSO, that is to say, without performing the re-generation-on-

superposition option herein described. It can be observed that the inclusion of the re-generation 

option clearly outperforms standard PSO. Besides observing the difference between the scales in 

the two figures, it is worth to state that while the average for the 100 runs in Figure 4 was 6.487 

million dollars, the one for Figure 3 is 6.297 million dollars, which can be viewed as a substantial 

improvement. 

Furthermore, the best solution found after the inclusion of the re-generation option is 

shown in Table 1, together with other best solutions found in the literature. 

 

4.2 New York Tunnel supply system 

The system has a fixed head reservoir, 21 tunnels and 19 nodes. The objective of the New 

York Tunnel (NYT) problem was to determine the most economically effective design for addition 

to the existing system of tunnels that constituted the primary water distribution system of the city 

of New York. Because of age and increased demands, the existing gravity flow tunnels were found 

to be inadequate to meet the pressure requirements for the projected consumption level. In fact, 

minimum pressures at nodes 16 to 20 were not guaranteed. The construction of additional gravity 

flow tunnels parallel to the existing ones was considered. All 21 tunnels are considered for 
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duplication. There are 15 available discrete diameters and one extra possible decision which is the 

“do nothing” option. 

Figure 5 shows the best costs obtained by the 100 runs performed when using the proposed 

algorithm. These results can be compared with the ones obtained in (Montalvo et al., 2007) by 

standard discrete PSO, that is to say, without performing the re-generation-on-superposition option 

herein described, given in Figure 6. It can also be observed that the inclusion of the re-generation 

option clearly outperforms standard PSO. Also, observe the different scales in both figures, and 

that the average for the 100 runs in Figure 6 was 48.039 million dollars, while the one for Figure 5 

is 39.761 million dollars, which can be viewed as a substantial improvement, since it is a mere 

2.9% higher than the best to date known and published solution. 

Furthermore, the best solution found after the inclusion of the re-generation option is 

shown in Table 2, together with other best solutions found in the literature. 

 

4.3 Probability of first-run ‘good’ solution 

 Many ‘best’ solutions found in the literature regarding these two problems have been 

obtained after never-ending computer dedication and, as a consequence, with huge computational 

effort. This is an important drawback for the application of evolutionary algorithms to the solution 

of ‘real-world’ problems where cost and time constraints prohibit repeated runs of the algorithm 

and evaluations of the network. In order to study the performance of the proposed algorithm the 

following experiment was carried out. First a set of 1000 runs were performed for both benchmark 

cases. Then, using the obtained results, the probability for a single run of obtaining a solution 

differing by less than a certain per cent from the best known solution was obtained. These 

probabilities have been plotted in Figure 7. In order to confirm this study a second set of 2000 

independent runs was performed again for both problems. Also, Figure 7 shows the obtained 

curves. It can be easily seen from the outset that the curves for 1000 and for 2000 runs are almost 

identical for both problems. As a consequence, it could be thought that those probability values 

seem to be independent of the used sample of runs. One can, then, say, for example, that by 

running only once the re-generation PSO algorithm described in this article, the probability of 

obtaining the best known solution is almost 30% for the NYT system and 5% for the Hanoi 

system. But, from a practical point of view, where ‘early’ almost optimal solutions are much better 

than ‘too late’ best solutions, this chart gives very important information. For example, one single 

run of our algorithm guarantees a solution not more expensive than 5.5% of the best known 

solution with a probability of 86%, for both studied problems. And there is almost complete 

guarantee of obtaining a solution with cost under 1.1 times the best known solution cost by only 

one single run of the algorithm. 

 It is also worth to observe that the average cost of the 1000 solutions was 6.299 million 

dollars, only 3.59% higher than the best known solution, for the Hanoi system. The average cost of 

the 2000 solutions, for this same system, was 6.295 million dollars, 3.51% over the best solution. 

In the case of the NYT system these figures are 39.738 for the 1000-run set or 2.8% over the best 

known solution and 39.688 for the 2000-run set or 2.7% above the cost of the best solution. These 

figures do not need further explanation regarding the quality of the algorithm described in this 

article. 

 On the other hand, the average number of generations to obtain the best solutions for the 

Hanoi systems is 700, 105 being the minimum number of generations to obtain the best solution. 

Regarding the NYT problem these figures are 230 generations for the best solutions and 16 the 

minimum number of generations to obtain the best solution. These figures make it clear that the 

algorithm is really inexpensive. For example, the solution for the NYT system obtained in (Lippai 
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et al., 1999) of 45.73 million dollars was found after 80,000 evaluation trials. (Savic and Walters, 

1997) reported two sets of solutions based on different hydraulic coefficients. The number of 

generations allowed for their Genetic Algorithm was 10,000. (Farmani et al., 2005) used also 

Genetic Algorithms, where the population size was 20 and the maximum number of generations 

was set to 2,000. This improvement in the efficiency is mainly due to the self-adaptive fitness 

formulation for evolutionary constraint optimization they propose. As an indication, one execution 

of the variant proposed here with the Hanoi problem last on average 1 minute 5 seconds in a PC 

with a processor Intel Core 2 Duo T5500, 1.66 GHz. Thus, running the algorithm 20 times for the 

Hanoi problem, which virtually guarantees the optimum according to Figure 7, takes around 20 

minutes. Times are shorter for the lower dimensional NYT problem. 

 By observing the curves in Figure 7 it can be clearly inferred that they are strongly problem 

dependent. As a consequence, these results cannot be directly extrapolated to other problems. But, 

again, it is seen that the algorithm presented in this article was able to find the optimum or near-

optimum solution with considerably low computational effort. 

 

5. Conclusions 

 Several modifications have been devised to adapt PSO to discrete problems. In (Montalvo 

et al., 2007) the excellent behaviour of one of these modifications when applied to the design of 

WDN has been shown, specifically by studying two benchmark problems, e. g. the Hanoi and the 

NYT systems. The results obtained in (Montalvo et al., 2007) are in the same order of other 

published results obtained using different methodologies. 

This article introduces a re-generation-on-superposition formulation for PSO of water 

systems, which improves further the performance of standard discrete PSO. The performance of 

the algorithm introduced in this article has been illustrated by application to the same two 

benchmark networks and the results have been compared with those obtained using other 

evolutionary algorithms. Comparison of the results shows that this formulation is able to find 

optimum or near-optimum solutions much more efficiently and with considerably less 

computational effort. The improved performance of the algorithm described here is due to the 

richer population diversity it introduces. The main advantages of the method are that it does not 

require sophisticated operators or parameters, thus being simpler than other evolutionary 

techniques; it does not need initial feasible particles, nor the re-generated particles need to be 

feasible; and it is robust in handling of diverse fitness functions and different constraints, as well. 

Furthermore, having a low number of generations is a major advantage in real water distribution 

systems, where cost and time constraints prohibit repeated runs of the algorithm and hydraulic 

evaluation. From the studied benchmark problems it can be inferred that obtaining ‘good’ solutions 

with the proposed algorithm is really inexpensive. It can be concluded that the algorithm 

developed has better performance in solving highly constrained water distribution problems. 

The results provided by the proposed method are really good for the networks we have 

herein studied. Nevertheless, other theoretical and real problems should also be considered in order 

to consolidate the proposed re-generation-on-superposition PSO algorithm. For one thing, 

checking superpositions not only with the leader but with other good birds from the swarm or with 

the leaders of several subwarms will certainly improve the proposed algorithm. For the other, even 

though the number of parameters used by PSO is really very reduced, their influence in the 

algorithm’s performance should be studied. Also, more sophisticated treatment of the constraints 

should be tried. These aspects should be included in the future work to be developed regarding the 

application of PSO in general and to the design of WDN in particular. 
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Figure 1. Hanoi network  
264x232mm (96 x 96 DPI)  

 

Page 13 of 21

URL: http:/mc.manuscriptcentral.com/geno  Email: A.B.Templeman@liverpool.ac.uk

Engineering Optimization

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

 
  

 

 

Figure 2. Existing New York City water supply tunnels  
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Figure 3. Best solutions for Hanoi's network with the proposed re-generation option (100 runs)  
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Figure 4. Best solutions for Hanoi's network with standard discrete PSO (100 runs)  
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Figure 5. Best solutions for NYT's network with the proposed re-generation option (100 runs)  
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Figure 6. Best solutions for NYT's network with standard discrete PSO (100 runs)  
256x159mm (96 x 96 DPI)  
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Figure 7. Probability of one-run 'good' solution for Hanoi and NYT systems  
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Table 1. Optimal design cost for Hanoi’s network according to several researchers 

Reference Used method Cost ××××10
6
$ 

Matías, 2003 Genetic Algorithms 6.093 

Wu et al., 2001 Genetic Algorithms 6.182 

Savic and Walters, 1997 Genetic Algorithms 6.195 

Zecchin et al., 2005 ASi-best
a
 6.367 

Iglesias et al., 2006 Genetic Algorithms 6.081 

Montalvo et al., 2007 Particle Swarm Optimization 6.133 

This work PSO + re-generation 6.081 

a
ASi-best is an ACO-based algorithm that uses a different scheme for pheromone 

updating. 
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Table 2. Optimal design cost for NYT’s network according to several researchers 

Referente Used method Cost ×××× 10
6
$ 

Matías 2003 Genetic Algorithms 38.64 

Dandy et al., 1996 Genetic Algorithms 38.80 

Maier et al., 2003 Ant Colony Optimization 38.64 

Savic and Walters, 1997 Genetic Algorithms 40.42 

Montalvo et al., 2007 Particle Swarm Optimization 38.64 

This work PSO + re-generation 38.64 
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