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REMARKS ON SYMMETRIES OF 2

D-QUASICRYSTALS
(SI - CMMSE - 2006)

V.ARTAMONOV, S.SÀNCHEZ

Abstract. The paper presents a strict mathematical proof of the
classifications of finite groups of symmetries of 2-dimensional qua-
sicrystals given in [4].

Introduction

There are various approaches to a construction of mathematical mod-
els of quasicrystals and a definition of their symmetries, see for example
[1], [2, Chapter 6], [4], [5], [9]. We shall adopt the following model which
is usually call cut and project scheme [9]. Nowadays the common defi-
nition of this method is the following one. Let V be an additive locally
compact topological Abelian group, U an additive group of a real phys-
ical or internal vector space of dimension d and M a discrete subgroup
in E = U ⊕ V such that E/M is compact and M ∩ V consists only
of zero vector. The group E is often called a hyperspace or embedding
space. Consider the diagram of projections of groups

U E = U ⊕ Vπ
oo ρ // V⋃

M

Since the intersection of V and M consists only of zero element the
projection π is injective on M . It is assumed that ρ(M) is dense is in
V .

Let us take a convex compact subset W in V called a window. Let
us put Q = ρ−1(W ) ∩M . Then the set π(Q) is called a model set or
a cut and project set. Note that the set Q under the projection π is
mapping injectively into U .

It is necessary to mention [8, Chapter 2, §3.2] that any locally com-
pact Abelian group V is an inverse limit of direct product of additive
groups Rm × Ts × D where T is a one-dimensional torus and D is a
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2 V.ARTAMONOV, S.SÀNCHEZ

discrete group. So the case when V is a real vector space is in fact one
of the most important.

Throughout the paper we shall consider the special case of the model
when V is a normed real vector space of a finite dimension n− d > 0.
Then E is a vector space of dimension n > d and M is a lattice in E.
It means that M is discrete and E = R ⊗Z M . Equivalently the rank
of the free Abelian group M is equal to n. We shall assume that Q
contains a basis of M as a free Abelian group.

Since all norms in E are equivalent without loss of generality we can
assume that E is an Euclidean space.

According to [1] and [2, Chapter 6] a symmetry of the model Q in
this case is the group of all affine transformations of E which map Q
bijectively onto itself. Since Q contains a basis of M each symmetry
leaves the lattice M invariant. We shall now call all these symmetries
proper. It is necessary to mention that there exist non-proper
symmetries. For example for Fibonacci tilings powers of the
matrix

(
1 1
1 0

)

show examples of non-proper symmetries.
Suppose that M has also zero intersection with V . If f is a symmetry

of Q and 0 is the origin then f(0) ∈ M ∩U = 0. Hence each symmetry
f is in fact a linear operator. As in [1] we can show that U is invariant
under an action of f .

Generalizing this idea we shall denote by Sym Q the subgroup in the
group GL(E) of all invertible linear operators in E such that both U
and M are invariant under an action of each element from Sym Q. The
group of proper symmetries is a subgroup of Sym Q. Each element of
the group Sym Q in some special basis of E has the lower left zero block
from (1). Moreover there exists an invertible matrix Z ∈ GL(n,R) such
that Z−1 Sym QZ ⊂ GL(n,Z). These two conditions are equivalent to
the definition of the group Sym Q.

In the paper we shall consider the case when dim U = dim V = 2
and G is a finite subgroup of Sym Q. The main results of the paper
are in Theorems 2.5, 2.11, 2.12, 2.13, 2.14, 2.15. The list of these finite
groups is given in [4] without proof. Here we justify this classification
and expose strict mathematical proofs based on group theory approach.
The main results of the present paper are complementary to those in
[4], [3] where realizations of some symmetries are presented. We give
a list of group and in also in §3 their representation in 4-dimensional
hyperspace.

We thank Prof. E.S. Golod for useful consultations concerning cy-
clotomic fields and the referee for his valuable comments and remarks.
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SYMMETRIES OF 2D-QUASICRYSTALS 3

1. Matrix representations of symmetries

Suppose that e1, . . . , en is a basis of the lattice M . Then these ele-
ments form a basis of E. If A ∈ Sym Q and A is a matrix of A is the
basis e1, . . . , en. Since M is invariant under A we can conclude that A
is an integer matrix, A ∈ GL(n,Z).

Let u1, . . . , ud be a basis of U and ud+1, . . . , un a basis of V . Suppose
that

(u1, . . . , un) = (e1, . . . , en)C, C ∈ GL(n,R).

Since U is invariant under A we have

C−1AC =

(
A1 A2

0 A3

)
,

A1 ∈ GL(d,R), A3 ∈ GL(n− d,R), A2 ∈ Mat(d× (n− d),R).

(1)

We shall use throughout the paper these properties of matrices repre-
senting elements from Sym Q.

2. 2D symmetries

In this section we shall assume that n = 4, d = 2 and G is a finite
subgroup in Sym Q. Recall that a dihedral group Dk is a group of
orthogonal symmetries of a regular k-gon [2]. Dk is a subgroup of the
group of orthogonal matrices O(2,R) generated by two matrices

a =

(
cos 2π

k
− sin 2π

k
sin 2π

k
cos 2π

k

)
, b =

(
1 0
0 −1

)
(2)

It is known [2] that Dk consists of 2k elements

1, a, . . . , ak−1, b, ba, . . . , bak−1,

where ak = (bal)2 = 1 for any l. In particular bal = a−lb. Note that

al =

(
cos 2πl

k
− sin 2πl

k

sin 2πl
k

cos 2πl
k

)
, bal =

(
cos 2πl

k
sin 2πl

k

sin 2πl
k

− cos 2πl
k

)
(3)

In order to classify finite subgroups in Sym Q we need some auxiliary
statements. We exclude some proofs of known facts.

Proposition 2.1. Let H be a finite subgroup of O(2,R). If H ⊂
SO(2,R) then H is a cyclic group. If H * SO(2,R), then H = Dk for
some k.

Proposition 2.2. Suppose that a finite group G is a subgroup of a
direct product of two cyclic groups H = 〈a1〉k1

×〈a2〉k2
of orders k1 and

k2 respectively. Denote by νi : G → 〈ai〉ki
the natural projection and

suppose that ν1, ν2 are surjective. Then (as1
1 , a2), (a1, a

s2
2 ) ∈ G for some

si ∈ Z and therefore as1s2−1
i ∈ G ∩ 〈ai〉ki

. If d = (k1, k2) is the greatest

common divisor of k1, k2 then ad
i ∈ G∩ 〈ai〉ki

for i = 1, 2. In particular

G ∩ 〈ai〉ki
is a cyclic group

〈
ali

i

〉
, where li | d and li | (s1s2 − 1).
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4 V.ARTAMONOV, S.SÀNCHEZ

Proof. Since ν1 is surjective, then there exists an element (a1, b) ∈ G for
some b ∈ 〈a2〉. Then (a1, b)

k2 = (ak2
1 , bk2) = (ak2

1 , 1) ∈ G ∩ 〈a1〉. Since
the order of a1 is k1 by [2, Theorem 1.6, § 1.4] we can conclude that ad

1 ∈
G∩〈a1〉. Apply [2, Theorem 1.5, § 1.4]. Similarly if (as1

1 , a2), (a1, a
s2
2 ) ∈

G, then
(as1

1 , a2)
s2(a1, a

s2
2 )−1 = (as1s2−1

1 , 1) ∈ G ∩ 〈a1〉 .
Similarly as1s2−1

2 ∈ G ∩ 〈a2〉 . ¤
Recall that the Euler function φ(m), m ∈ Z, is the number of all

integers 1 6 k < m which are coprime with m. Recall that if ζ =
exp 2πi

m
then φ(m) coincides with the degree of the minimal integer

cyclotomic polynomial Φm(X) ∈ Z[X] such that Φm(ζ) = 0 and with
the order of the Galois group Gal (Q[ξ]/Q).

Proposition 2.3. Let m be a positive integer such that φ(m) 6 4.
Then m is one of the numbers

m 10 5 12 6 3 8 4 2 1

φ(m) 4 4 4 2 2 4 2 1 1

Proposition 2.4 ([2], Theorem 2.16, § 2.4). Let ∆ be a finite subgroup
in SO(2,R). Then ∆ = 〈a〉k is a cyclic group of order k, where

a =

(
cos 2π

k
− sin 2π

k
sin 2π

k
cos 2π

k

)
.

Moreover, the following are equivalent

1) ∆ is conjugate in GL(2,R) to a subgroup of SL(2,Z);
2) the trace tr a = 2 cos 2π

k
∈ Z;

3) k = 1, 2, 3, 4, 6,
4) φ(k) 6 2.

Recall that a subgroup G of a direct product of groups G1 × G2 is
a subdirect product of G1, G2 if each projection G → Gi, i = 1, 2, is
surjective. In this case we also say that G is a subdirect subgroup of
G1 ×G2.

Theorem 2.5. Let G be a finite subgroup in Sym Q where dim U =
2 = dim V . Then G is a subdirect product of either Ck1 × Ck2 , Ck1 ×
Dk2 , Dk1×Dk2 (Ck: cyclic group of order k) The integers k1, k2 satisfy
one of the following conditions

1) k1, k2 = 1, 2, 3, 4, 6;
2) (k1, k2) is either (5,10) or (10,5)
3) k1 = k2 = 12.
4) k1 = k2 = 8.

Proof. By [2, Theorem 3.1, § 3.1] there exists a scalar product [x, y]
in E such that each linear operator from G is orthogonal with respect
to the new product [x, y]. The physical space U is G-invariant. Let
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SYMMETRIES OF 2D-QUASICRYSTALS 5

W be an orthogonal complement of U with respect to [x, y]. Then W
is also G-invariant. it means that there exists an invertible matrix C
such that (1) holds with A2 = 0. In this case G is a subgroup of a
direct product G ⊆ ν1(G) × ν2(G), where ν1, ν2 are projections and
each νi(G) is a finite subgroup of O(2, R).

According to Proposition 2.1 each νj(G) is either a cyclic group 〈aj〉kj

generated by the matrix aj of order kj from (2) or a dihedral group Dkj

generated by matrices aj, b from (2). A subgroup G ∩ 〈aj〉 of a cyclic

group 〈aj〉 is cyclic generated by the element a
lj
j where lj is the least

exponent of elements from G ∩ 〈aj〉. Note that if, say k1 = 1, then
G = G2 and applying Proposition 2.4 we deduce the statement of the
theorem. Hence in what follows we can assume that k1, k2 > 1. Let
d = (k1, k2) be the greatest common divisor of k1 and k2.

Without loss of generality we can assume that ν1, ν2 are surjective
that is G is a subdirect subgroup of ν1(G) × ν2(G) and one of the
required cases takes place.

Lemma 2.6. φ(k1), φ(k2) 6 4.

Proof. Since G is a subdirect subgroup it contains a matrix

F =

(
a1 0

0 bi
2a

j
2

)
, j ∈ Z, i = 0, 1.

where a1, b
i
2a

j
2 are from (2), (3). Since F is conjugate in GL(4,R) to an

integer matrix the characteristic polynomial det(F − tE) has integer
coefficients.

Let ζ = exp 2πi
k1

∈ C. Then ζ is a root of the integer polynomial

det(F − tE) of degree 4 because

det(F − tE) = det(a1 − tE) det(bi
2a

j
2 − tE).

The minimal integer polynomial of exp 2πi
k1

is the cyclotomic integral

polynomial Φk1(t) of degree φ(k1). Hence Φk1(t) divides det(F − tE)
and therefore φ(k1) 6 4. The case of k2 is similar. ¤
Lemma 2.7. If G contains a matrix

F =

(
a1 0

0 b2a
j
1

)
, j ∈ Z, (4)

then φ(k1) 6 2. Similarly if

F1 =

(
b1a

j
1 0

0 a1

)
∈ G, j ∈ Z,

then φ(k2) 6 2.

Proof. Note that tr F = tr a1 + tr(b2a
j
1) = tr a1 ∈ Z by (3). Apply

Proposition 2.4. ¤
Corollary 2.8. One of the cases takes place:
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6 V.ARTAMONOV, S.SÀNCHEZ

1) φ(k1), φ(k2) 6 2;
2) φ(k1) = φ(k2) = 4.

Proof. Suppose that φ(k2) 6 2. If G contains a matrix F1 then we
apply Lemma 2.7. Suppose that G contains a matrix

B =

(
a1 0
0 as2

2

)
=




cos 2π
k1

− sin 2π
k1

0 0

sin 2π
k1

cos 2π
k1

0

0 0 cos 2πs2

k2
− sin 2πs2

k2

0 0 sin 2πs2

k2
cos 2πs2

k2


 ∈ G ⊆ G1 ×G2. (5)

Then tr B = 2
(
cos 2π

k1
+ cos 2πs2

k2

)
∈ Z. By the assumption 2 cos 2π

k1
∈ Z.

Apply Proposition 2.4. ¤

Starting from now we shall assume that φ(k1) = φ(k2) = 4. By
Proposition 2.3 it means that k1, k2 = 10, 5, 12, 8 and by Lemma 2.7
the group G contains the matrix B a nd a matrix

B2 =

(
as1

1 0
0 a2

)
. (6)

Let ξn = exp 2πi
n
∈ C. As in the proof of Lemma 2.6 we know that

Φ4(t) = det(B − tE). Hence the roots of det(B − tE) are ξr
k1

, where

1 6 r < k1 and (r, k1) = 1. Similarly the roots of det(B − tE) are ξs2t
k2

where 1 6 t < k2

(s,k2)
and (t, k2

(s,k2)
) = 1 Hence ξs2

k2
= ξr

k1
, ξk1 = ξs2t

k2
. In

particular Z[ξk1 ] = Z[ξs2
k2

] ⊆ Z[ξk2 ]. Similarly Z[ξk2 ] = Z[ξs1
k1

] ⊆ Z[ξk1 ].
Hence

Z[ξk1 ] = Z[ξs1
k1

] = Z[ξk2 ] = Z[ξs2
k2

]. (7)

Lemma 2.9. The following cases take place

a) k1, k2 = 10, 5 and s1s2 ≡ 1 mod 5;
b) k1 = k2 = 12 and s1, s2 = 1, 5, 7, 11;
c) k1 = k2 = 8 and s1, s2 = 1, 3, 5, 7.

Proof. Recall that Z[ξ10] = Z[ξ5] and

Z[ξ10] 6= Z[ξ12] 6= Z[ξ8] 6= Z[ξ10].

Apply (7). Note also that as1s2−1
i ∈ G by Proposition 2.2. Hence by

Proposition 2.4 s1s2 − 1 in the first case should be divisible by 5. ¤

By Lemma 2.7 we complete the proof of Theorem 2.5. ¤

In order to present more detailed classification of groups in Theo-
rem 2.5 we need
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Proposition 2.10. Let G, k1, k2 be from Theorem 2.5 and φ(k1) =
φ(k2) = 4. Suppose that the group G contains a matrix

F =

(
at

1 0
0 b2

)
.

Then G contains

a2
1 =

(
a2

1 0
0 1

)

and a matrix F with t = 0, that is b2. In this case G ∩ (〈a1〉 ×Dk2) is
a semidirect product of a normal subgroup 〈B〉× 〈a2

2〉 by a cyclic group
〈F 〉 of order 2 with t = 0, where B is from (5) with s2 = 1.

Proof. We know that G contains a matrix B from (5). Then

U = BFBF−1 = a2
1 ∈ G.

Multiplying F and B2 from (6) by powers of U we can assume that
t = 0, 1 and s1 = 1. The case t = 1 is impossible because otherwise
tr a2

1 ∈ Z which contradicts Proposition 2.4. Thus we can assume that
B2 = B and t = 0.

Note that G1 = 〈B〉 × 〈a2
2〉 is a subgroup in G containing a2

1 and
therefore a2

2. Hence the index of G1 in H = 〈a1〉 × 〈a2〉 is dividing 4.
Since a1, a2 /∈ G we can conclude that G1 = G ∩ H. Now the proof
follows. ¤
Theorem 2.11. Let a group G be a subdirect product from Theorem 2.5
where k1 = k2 = 10. Then G is one of the following groups.

a) If G is a subdirect product of two cyclic groups 〈a1〉10 × 〈a2〉10 then
G is direct product of two cyclic groups

〈B〉 × 〈
al

1

〉
(8)

where B is from (5) with 1 6 s2 6 9, s2 6= 5 and l = 0, 5. If s2 is
even then l = 5.

b) G is a subdirect subgroup of D10 ×D10 and a semidirect product of
the normal group (8) by a cyclic group 〈W 〉 of order 2, where

W =

(
b1 0

0 b2a
j
2

)
, j = 0, . . . , 9. (9)

Proof. Case a). We know that some matrices B, B2 from (5), (6)
belong to G where si are from Lemma 2.9, case a). The group G
contains the cyclic group 〈B〉 of order 10 which projects onto 〈a1〉10.
Thus G = 〈B〉 × (G ∩ 〈a2〉10). But by Proposition 2.4 the order of the
group G∩〈a2〉10 is equal to 1,2,3,4 or 6. Hence G∩〈a2〉10 =

〈
al

1

〉
where

l = 0 or 5. Suppose that s2 is even and l = 0. Then the cyclic group
〈B〉 does not contain B2 which is impossible.

Suppose that G is a subdirect product of 〈a1〉10 × D10. Then G ∩
〈a1〉10 × 〈a2〉10 is a group (8). Also G contains the matrix F from
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8 V.ARTAMONOV, S.SÀNCHEZ

Proposition 2.10 which contradicts Proposition 2.4. So this case is
impossible.

Case b). Using previous argument we can show that G does not
contain the matrix F from Proposition 2.10. Thus G∩(〈a1〉10 × 〈a2〉10)
is a subdirect product and therefore as in the case a) it has the form
(8). As above G does not contain the matrix F from Proposition 2.10.
Hence G contains a matrix W ∈ G as in (9). Then WgW−1 = g−1 for
all g ∈ 〈a1〉10×〈a2〉10 and W 2 = E. Thus G has the required form. ¤
Theorem 2.12. Let k1 = 10, k2 = 5. Then there are only two cases.

a) If G is a subdirect product 〈a1〉10 × 〈a2〉5 then G = 〈B〉 where s2 =
1, 2, 3, 4.

b) If G is a subdirect product of D10 × D5 then G is generated by B
and by W from (9), where j = 0, 1, 2, 3, 4. Thus G ' D10.

Proof. The group G contains a matrix B from (5) where s2 is invertible
modulo 5 by Lemma 2.9. In the case a) either G is generated by B
or G has a nontrivial intersection with 〈a2〉 which is impossible by
Proposition 2.4.

The case when G is a subdirect product 〈a1〉10×D5 is impossible by
Proposition 2.10.

The proof in the case b) is similar to those in the previous Theorem.
¤

The proof of the next Theorem is similar.

Theorem 2.13. Let k1 = 5, k2 = 10. Then there are only two cases.

a) If G is a subdirect product 〈a1〉5 × 〈a2〉10 then G = 〈B2〉 from (6)
where s1 = 1, 2, 3, 4.

b) If G is a subdirect product of D5 × D10 then G is generated by B2

and by W from (9). Thus G ' D10.

Theorem 2.14. Let group G be a subdirect product from Theorem 2.5,
where k1 = k2 = 8.

A) If G is a subdirect product of cyclic groups 〈a1〉8×〈a2〉8 , then G is
a direct product of two cyclic groups (8), where l = 0, 2, 4, and s2

being odd in B from (5).
B) Suppose that G is a subdirect product of 〈a1〉 × D8. Then G is a

semidirect product of the normal subgroup (8) and a cyclic group
〈b2〉 of order 2, where l = 0, 2, 4, and s2 being odd in B from (5).

C) Suppose that G is a subdirect subgroup of D8×D8. Then G is one
of the groups
a) a semidirect product of a normal subgroup (8) with l = 2 and

s2 odd by a direct product 〈b1〉2 × 〈b2〉2.
b) G is semidirect product of the normal subgroup (8) and a cyclic

group 〈W 〉2, where l = 0, 2, 4, s2 being odd in B from (5) and
W is from (9).
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Proof. In the case A) the group G contains a matrix B from (5) with
odd s2. If G 6= 〈B〉 then G = 〈B〉 × (G ∩ 〈a2〉) , where G∩ 〈a2〉 =

〈
al

2

〉
and l = 0, 2, 4 by Proposition 2.4.

The case B) follows from Proposition 2.10.
In the case C) by Lemma 2.9 the group G contains a matrix B from

(5) with odd s2. Hence G ∩ (〈a1〉 × 〈a2〉) is a subdirect product from
the case A). If F from Proposition 2.10 belongs to G then t = 0 and

G ∩ (〈a1〉 × 〈a2〉) = 〈B〉 × 〈
a2

2

〉
.

Symmetrically G contains a matrix

b1 =

(
b1 0
0 1

)
.

Hence G has the form Ca).
Suppose that U,U ′ /∈ G. Then G contains a matrix W from (9)

where j = 0, . . . , 8. Also

G ∩ (〈a1〉 × 〈a2〉) = 〈B〉 × 〈
al

2

〉
, l = 0, 2, 4.

Then G has the form Cb). ¤

Note that the case B) with l = 0 and s2 = 3 corresponds
to perfect 8-fold dihedral symmetry in a certain member of
the LI-class of Ammann-Beenker tilings [4]. The generating
matrices of the group are

1√
2




1 1 0 0
−1 1 0 0
0 0 −1 −1
0 0 1 −1


 ,




1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1


 .

Using the same argument one can prove

Theorem 2.15. Let k1 = k2 = 12. Then G is one of the following
groups.

A) If G is subdirect product of 〈a1〉12 × 〈a2〉12 then G is the group

G = 〈B〉 × 〈
al

2

〉
(10)

where B is from (5) with s2 = 1, 5, 7, 11 and l = 0, 2, 3, 4, 6.
B) If G is a subdirect product of 〈a1〉12 × D12 then G is a semidirect

product of the normal subgroup (10) with l = 2 and 〈b2〉2.
C) If G is a subdirect product of D12 ×D12 then G is one of groups:

a) a semidirect product of a normal subgroup (10) with l = 2 and
s2 odd by a direct product 〈b1〉2 × 〈b2〉2.

b) a semidirect product of the normal subgroup (10) and a cyclic
group 〈W 〉2, where l = 0, 2, 4, s2 = 1, 5, 7, 11 in B from (5)
and where W is from (9).
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Applying previous results to the window W which is a clo-
sure of a projection of A into V we obtain

Corollary 2.16. The symmetry group of the window of any plane
module set with 2 dim internal space is one of the following: Ci or
Di, i = 1, 2, 3, 4, 5, 6, 8, 10, 12.

3. Realization

In this section we shall show that two exceptional cases 2), 3) in
Theorem 2.5 can be realized. The idea of this realization comes from
[10], [7], [4]. Let m > 3 be a positive integer. Take the real vector
space E = R ⊗Z Z[ξ] of dimension φ(m) where ξ = exp

(
2πi
m

)
. Then

basis of E consists of φ(m) vectors ej = 1 ⊗ ξj, 0 6 j < φ(m), [6,
Chapter IV, § 1]. Define in in E two linear operators

a(1⊗ ξj) = 1⊗ ξj+1, b(1⊗ ξj) = 1⊗ ξ−j

for all j ∈ Z. These definitions are correct since Z[ξ] is a left Z[ξ]-
module and the map b is a Galois automorphism of Z[ξ]. It is easy to see
that b2 = (ba)2 = 1. Hence the group of invertible operators generated
by a, b is the dihedral group Dm and we have a representation of Dm in
E of dimension φ(m). It is decomposed into direct sum of irreducible
ones. Since dimensions of irreducible representations of dihedral groups
are 1 or 2 [2, chapter 3], it suffices to show that ±1 are not eigenvalues
of operators a and b. Note that the characteristic polynomial of the
operator a is equal to Φm(t), and in fact ±1 are not roots of Φm(t),
provided m > 3.

We have proved

Theorem 3.1. Let m > 3 be an integer. Then the dihedral group Dm

is a subgroup of a symmetry group Sym Q of some 2D-quasicrystal Q
which can be constructed by a cut and project method using a hyperspace
E of dimension φ(m) > 2.

There is another way of constructing symmetries of quasicrystals
based on algebraic integers. Let ξ = exp

(
2πi
m

)
be as above. Then again

Z[ξ] is a left Z[ξ]-module and therefore the Abelian group Z[ξ]∗ of in-
vertible elements of the ring Z[ξ] acts on E = R⊗ZZ[ξ]. By [2, Theorem
3.3, Chapter3] the complex space C⊗RE contains one-dimensional sub-
space which is invariant under the action of the Abelian group Z[ξ]∗.
Hence E contains 2-dimensional real invariant subspace U . So taking
U as a physical space and the lattice Z[ξ] in E as M we can construct a
quasicrystal Q in which the symmetry group Sym Q contains Z[ξ]∗ as a

subgroup. By [3, page 561] the Abelian group Z[ξ]∗ has rank φ(m)
2
− 1.

Applying Proposition 2.3 as in [7] we obtain

Theorem 3.2. Let m be an integer and either m = 5 or m > 7.
Consider 2D-quasicrystal Q constructed by a cut and project method
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using a hyperspace E of dimension φ(m) > 2 and M = Z[ξ] as a lattice.
The symmetry group Sym Q contains an Abelian group isomorphic to

Z[ξ]∗ and having rank φ(m)
2
− 1 > 1. In particular Sym Q contains

elements of infinite order.

For example take E = R ⊗ Z[ξ], ξ = 1+i√
2
. Then dim E = φ(8) = 4

and E is a left module over Z[ξ]. Therefore the group Z[ξ]∗ of invertible
elements of the ring Z[ξ] acts on E. The rank of the group Z[ξ]∗ is equal

to φ(8)
2
− 1 = 1 [3, page 561] and therefore it contains an element g of

infinite order.
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