HAL
open science

REMARKS ON SYMMETRIES OF 2 D-QUASICRYSTALS (SI - CMMSE - 2006)

Sergio Sánchez

- To cite this version:

Sergio Sánchez. REMARKS ON SYMMETRIES OF 2 D-QUASICRYSTALS (SI - CMMSE - 2006). International Journal of Computer Mathematics, 2008, 85 (03-04), pp.319-328. 10.1080/00207160701429766 . hal-00545356

HAL Id: hal-00545356

https://hal.science/hal-00545356

Submitted on 10 Dec 2010

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

REMARKS ON SYMMETRIES OF 2

D-QUASICRYSTALS
(SI - CMMSE - 2006)

Journal:	International Journal of Computer Mathematics			
Manuscript ID:	GCOM-2007-0229			
Manuscript Type:	Original Article			
Date Submitted by the	Author:	23-Apr-2007 \quad Komplete List of Authors:	Sánchez, Sergio; Rey Juan Carlos, Applied Mathematics	
---:	:---			
Keywords:	symmetries, quasicrystals, a model set, a cut and project set, Abelian group			

SCholaroNE"
Manuscript Central

REMARKS ON SYMMETRIES OF 2
 D-QUASICRYSTALS (SI - CMMSE - 2006)

V.ARTAMONOV, S.SÀNCHEZ

Abstract

The paper presents a strict mathematical proof of the classifications of finite groups of symmetries of 2-dimensional quasicrystals given in [4].

Introduction

There are various approaches to a construction of mathematical models of quasicrystals and a definition of their symmetries, see for example [1], [2, Chapter 6], [4], [5], [9]. We shall adopt the following model which is usually call cut and project scheme [9]. Nowadays the common definition of this method is the following one. Let V be an additive locally compact topological Abelian group, U an additive group of a real phys$i c a l$ or internal vector space of dimension d and M a discrete subgroup in $E=U \oplus V$ such that E / M is compact and $M \cap V$ consists only of zero vector. The group E is often called a hyperspace or embedding space. Consider the diagram of projections of groups

Since the intersection of V and M consists only of zero element the projection π is injective on M. It is assumed that $\rho(M)$ is dense is in V.

Let us take a convex compact subset W in V called a window. Let us put $Q=\rho^{-1}(W) \cap M$. Then the set $\pi(Q)$ is called a model set or a cut and project set. Note that the set Q under the projection π is mapping injectively into U.

It is necessary to mention [8, Chapter 2, $\S 3.2$] that any locally compact Abelian group V is an inverse limit of direct product of additive groups $\mathbb{R}^{m} \times \mathbb{T}^{s} \times D$ where \mathbb{T} is a one-dimensional torus and D is a

Date: September 29, 2006.
2000 Mathematics Subject Classification. Primary 52C23; Secondary 37L20.
Key words and phrases. symmetries, quasicrystals.
Research partially supported by grants RFBR 06-01-00037, NSh-5666.2006.1.
discrete group. So the case when V is a real vector space is in fact one of the most important.

Throughout the paper we shall consider the special case of the model when V is a normed real vector space of a finite dimension $n-d>0$. Then E is a vector space of dimension $n>d$ and M is a lattice in E. It means that M is discrete and $E=\mathbb{R} \otimes_{\mathbb{Z}} M$. Equivalently the rank of the free Abelian group M is equal to n. We shall assume that Q contains a basis of M as a free Abelian group.

Since all norms in E are equivalent without loss of generality we can assume that E is an Euclidean space.

According to [1] and [2, Chapter 6] a symmetry of the model Q in this case is the group of all affine transformations of E which map Q bijectively onto itself. Since Q contains a basis of M each symmetry leaves the lattice M invariant. We shall now call all these symmetries proper. It is necessary to mention that there exist non-proper symmetries. For example for Fibonacci tilings powers of the matrix

$$
\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)
$$

show examples of non-proper symmetries.
Suppose that M has also zero intersection with V. If f is a symmetry of Q and 0 is the origin then $f(0) \in M \cap U=0$. Hence each symmetry f is in fact a linear operator. As in [1] we can show that U is invariant under an action of f.

Generalizing this idea we shall denote by $\operatorname{Sym} Q$ the subgroup in the group $\operatorname{GL}(E)$ of all invertible linear operators in E such that both U and M are invariant under an action of each element from $\operatorname{Sym} Q$. The group of proper symmetries is a subgroup of $\operatorname{Sym} Q$. Each element of the group $\operatorname{Sym} Q$ in some special basis of E has the lower left zero block from (1). Moreover there exists an invertible matrix $Z \in G L(n, \mathbb{R})$ such that $Z^{-1} \operatorname{Sym} Q Z \subset \mathrm{GL}(n, \mathbb{Z})$. These two conditions are equivalent to the definition of the group $\operatorname{Sym} Q$.

In the paper we shall consider the case when $\operatorname{dim} U=\operatorname{dim} V=2$ and G is a finite subgroup of $\operatorname{Sym} Q$. The main results of the paper are in Theorems 2.5, 2.11, 2.12, 2.13, 2.14, 2.15. The list of these finite groups is given in [4] without proof. Here we justify this classification and expose strict mathematical proofs based on group theory approach. The main results of the present paper are complementary to those in [4], [3] where realizations of some symmetries are presented. We give a list of group and in also in $\S 3$ their representation in 4-dimensional hyperspace.

We thank Prof. E.S. Golod for useful consultations concerning cyclotomic fields and the referee for his valuable comments and remarks.

1. Matrix representations of symmetries

Suppose that e_{1}, \ldots, e_{n} is a basis of the lattice M. Then these elements form a basis of E. If $\mathcal{A} \in \operatorname{Sym} Q$ and A is a matrix of \mathcal{A} is the basis e_{1}, \ldots, e_{n}. Since M is invariant under \mathcal{A} we can conclude that A is an integer matrix, $A \in \operatorname{GL}(n, \mathbb{Z})$.

Let u_{1}, \ldots, u_{d} be a basis of U and u_{d+1}, \ldots, u_{n} a basis of V. Suppose that

$$
\left(u_{1}, \ldots, u_{n}\right)=\left(e_{1}, \ldots, e_{n}\right) C, \quad C \in \operatorname{GL}(n, \mathbb{R}) .
$$

Since U is invariant under \mathcal{A} we have

$$
\begin{align*}
& C^{-1} A C=\left(\begin{array}{cc}
A_{1} & A_{2} \\
0 & A_{3}
\end{array}\right) \tag{1}\\
& A_{1} \in \operatorname{GL}(d, \mathbb{R}), A_{3} \in \operatorname{GL}(n-d, \mathbb{R}), A_{2} \in \operatorname{Mat}(d \times(n-d), \mathbb{R}) .
\end{align*}
$$

We shall use throughout the paper these properties of matrices representing elements from $\operatorname{Sym} Q$.

2. 2 D symmetries

In this section we shall assume that $n=4, d=2$ and G is a finite subgroup in $\operatorname{Sym} Q$. Recall that a dihedral group D_{k} is a group of orthogonal symmetries of a regular k-gon [2]. D_{k} is a subgroup of the group of orthogonal matrices $\mathrm{O}(2, \mathbb{R})$ generated by two matrices

$$
a=\left(\begin{array}{cc}
\cos \frac{2 \pi}{k} & -\sin \frac{2 \pi}{k} \tag{2}\\
\sin \frac{2 \pi}{k} & \cos \frac{2 \pi}{k}
\end{array}\right), \quad b=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

It is known [2] that D_{k} consists of $2 k$ elements

$$
1, a, \ldots, a^{k-1}, b, b a, \ldots, b a^{k-1}
$$

where $a^{k}=\left(b a^{l}\right)^{2}=1$ for any l. In particular $b a^{l}=a^{-l} b$. Note that

$$
a^{l}=\left(\begin{array}{cc}
\cos \frac{2 \pi l}{k} & -\sin \frac{2 \pi l}{l} \tag{3}\\
\sin \frac{2 \pi l}{k} & \cos \frac{2 \pi l}{k}
\end{array}\right), \quad b a^{l}=\left(\begin{array}{cc}
\cos \frac{2 \pi l}{k} & \sin \frac{2 \pi l}{k} \\
\sin \frac{2 \pi l}{k} & -\cos \frac{2 \pi l}{k}
\end{array}\right)
$$

In order to classify finite subgroups in $\operatorname{Sym} Q$ we need some auxiliary statements. We exclude some proofs of known facts.

Proposition 2.1. Let H be a finite subgroup of $\mathrm{O}(2, \mathbb{R})$. If $H \subset$ $\mathrm{SO}(2, \mathbb{R})$ then H is a cyclic group. If $H \nsubseteq \mathrm{SO}(2, \mathbb{R})$, then $H=D_{k}$ for some k.

Proposition 2.2. Suppose that a finite group G is a subgroup of a direct product of two cyclic groups $H=\left\langle a_{1}\right\rangle_{k_{1}} \times\left\langle a_{2}\right\rangle_{k_{2}}$ of orders k_{1} and k_{2} respectively. Denote by $\nu_{i}: G \rightarrow\left\langle a_{i}\right\rangle_{k_{i}}$ the natural projection and suppose that ν_{1}, ν_{2} are surjective. Then $\left(a_{1}^{s_{1}}, a_{2}\right),\left(a_{1}, a_{2}^{s_{2}}\right) \in G$ for some $s_{i} \in \mathbb{Z}$ and therefore $a_{i}^{s_{1} s_{2}-1} \in G \cap\left\langle a_{i}\right\rangle_{k_{i}}$. If $d=\left(k_{1}, k_{2}\right)$ is the greatest common divisor of k_{1}, k_{2} then $a_{i}^{d} \in G \cap\left\langle a_{i}\right\rangle_{k_{i}}$ for $i=1$, 2. In particular $G \cap\left\langle a_{i}\right\rangle_{k_{i}}$ is a cyclic group $\left\langle a_{i}^{l_{i}}\right\rangle$, where $l_{i} \mid d$ and $l_{i} \mid\left(s_{1} s_{2}-1\right)$.

Proof. Since ν_{1} is surjective, then there exists an element $\left(a_{1}, b\right) \in G$ for some $b \in\left\langle a_{2}\right\rangle$. Then $\left(a_{1}, b\right)^{k_{2}}=\left(a_{1}^{k_{2}}, b^{k_{2}}\right)=\left(a_{1}^{k_{2}}, 1\right) \in G \cap\left\langle a_{1}\right\rangle$. Since the order of a_{1} is k_{1} by $\left[2\right.$, Theorem 1.6, § 1.4] we can conclude that $a_{1}^{d} \in$ $G \cap\left\langle a_{1}\right\rangle$. Apply [2, Theorem 1.5, § 1.4]. Similarly if $\left(a_{1}^{s_{1}}, a_{2}\right),\left(a_{1}, a_{2}^{s_{2}}\right) \in$ G, then

$$
\left(a_{1}^{s_{1}}, a_{2}\right)^{s_{2}}\left(a_{1}, a_{2}^{s_{2}}\right)^{-1}=\left(a_{1}^{s_{1} s_{2}-1}, 1\right) \in G \cap\left\langle a_{1}\right\rangle .
$$

Similarly $a_{2}^{s_{1} s_{2}-1} \in G \cap\left\langle a_{2}\right\rangle$.
Recall that the Euler function $\phi(m), m \in \mathbb{Z}$, is the number of all integers $1 \leqslant k<m$ which are coprime with m. Recall that if $\zeta=$ $\exp \frac{2 \pi i}{m}$ then $\phi(m)$ coincides with the degree of the minimal integer cyclotomic polynomial $\Phi_{m}(X) \in \mathbb{Z}[X]$ such that $\Phi_{m}(\zeta)=0$ and with the order of the Galois group $\operatorname{Gal}(\mathbb{Q}[\xi] / \mathbb{Q})$.
Proposition 2.3. Let m be a positive integer such that $\phi(m) \leqslant 4$. Then m is one of the numbers

m	10	5	12	6	3	8	4	2	1
$\phi(m)$	4	4	4	2	2	4	2	1	1

Proposition 2.4 ([2], Theorem 2.16, § 2.4). Let Δ be a finite subgroup in $\mathrm{SO}(2, \mathbb{R})$. Then $\Delta=\langle a\rangle_{k}$ is a cyclic group of order k, where

$$
a=\left(\begin{array}{cc}
\cos \frac{2 \pi}{k} & -\sin \frac{2 \pi}{k} \\
\sin \frac{2 \pi}{k} & \cos \frac{2 \pi}{k}
\end{array}\right) .
$$

Moreover, the following are equivalent

1) Δ is conjugate in $\mathrm{GL}(2, \mathbb{R})$ to a subgroup of $\mathrm{SL}(2, \mathbb{Z})$;
2) the trace $\operatorname{tr} a=2 \cos \frac{2 \pi}{k} \in \mathbb{Z}$;
3) $k=1,2,3,4,6$,
4) $\phi(k) \leqslant 2$.

Recall that a subgroup G of a direct product of groups $G_{1} \times G_{2}$ is a subdirect product of G_{1}, G_{2} if each projection $G \rightarrow G_{i}, i=1,2$, is surjective. In this case we also say that G is a subdirect subgroup of $G_{1} \times G_{2}$.
Theorem 2.5. Let G be a finite subgroup in $\operatorname{Sym} Q$ where $\operatorname{dim} U=$ $2=\operatorname{dim} V$. Then G is a subdirect product of either $C_{k_{1}} \times C_{k_{2}}, C_{k_{1}} \times$ $D_{k_{2}}, D_{k_{1}} \times D_{k_{2}}\left(C_{k}\right.$: cyclic group of order $\left.k\right)$ The integers k_{1}, k_{2} satisfy one of the following conditions

1) $k_{1}, k_{2}=1,2,3,4,6$;
2) $\left(k_{1}, k_{2}\right)$ is either $(5,10)$ or $(10,5)$
3) $k_{1}=k_{2}=12$.
4) $k_{1}=k_{2}=8$.

Proof. By [2, Theorem 3.1, § 3.1] there exists a scalar product $[x, y]$ in E such that each linear operator from G is orthogonal with respect to the new product $[x, y$]. The physical space U is G-invariant. Let
W be an orthogonal complement of U with respect to $[x, y]$. Then W is also G-invariant. it means that there exists an invertible matrix C such that (1) holds with $A_{2}=0$. In this case G is a subgroup of a direct product $G \subseteq \nu_{1}(G) \times \nu_{2}(G)$, where ν_{1}, ν_{2} are projections and each $\nu_{i}(G)$ is a finite subgroup of $\mathrm{O}(2, R)$.

According to Proposition 2.1 each $\nu_{j}(G)$ is either a cyclic group $\left\langle a_{j}\right\rangle_{k_{j}}$ generated by the matrix a_{j} of order k_{j} from (2) or a dihedral group $D_{k_{j}}$ generated by matrices a_{j}, b from (2). A subgroup $G \cap\left\langle a_{j}\right\rangle$ of a cyclic group $\left\langle a_{j}\right\rangle$ is cyclic generated by the element $a_{j}^{l_{j}}$ where l_{j} is the least exponent of elements from $G \cap\left\langle a_{j}\right\rangle$. Note that if, say $k_{1}=1$, then $G=G_{2}$ and applying Proposition 2.4 we deduce the statement of the theorem. Hence in what follows we can assume that $k_{1}, k_{2}>1$. Let $d=\left(k_{1}, k_{2}\right)$ be the greatest common divisor of k_{1} and k_{2}.
Without loss of generality we can assume that ν_{1}, ν_{2} are surjective that is G is a subdirect subgroup of $\nu_{1}(G) \times \nu_{2}(G)$ and one of the required cases takes place.
Lemma 2.6. $\phi\left(k_{1}\right), \phi\left(k_{2}\right) \leqslant 4$.
Proof. Since G is a subdirect subgroup it contains a matrix

$$
F=\left(\begin{array}{cc}
a_{1} & 0 \\
0 & b_{2}^{i} a_{2}^{j}
\end{array}\right), \quad j \in \mathbb{Z}, i=0,1 .
$$

where $a_{1}, b_{2}^{i} a_{2}^{j}$ are from (2), (3). Since F is conjugate in GL $(4, \mathbb{R})$ to an integer matrix the characteristic polynomial $\operatorname{det}(F-t E)$ has integer coefficients.
Let $\zeta=\exp \frac{2 \pi i}{k_{1}} \in \mathbb{C}$. Then ζ is a root of the integer polynomial $\operatorname{det}(F-t E)$ of degree 4 because

$$
\operatorname{det}(F-t E)=\operatorname{det}\left(a_{1}-t E\right) \operatorname{det}\left(b_{2}^{i} a_{2}^{j}-t E\right)
$$

The minimal integer polynomial of $\exp \frac{2 \pi i}{k_{1}}$ is the cyclotomic integral polynomial $\Phi_{k_{1}}(t)$ of degree $\phi\left(k_{1}\right)$. Hence $\Phi_{k_{1}}(t)$ divides $\operatorname{det}(F-t E)$ and therefore $\phi\left(k_{1}\right) \leqslant 4$. The case of k_{2} is similar.
Lemma 2.7. If G contains a matrix

$$
F=\left(\begin{array}{cc}
a_{1} & 0 \tag{4}\\
0 & b_{2} a_{1}^{j}
\end{array}\right), \quad j \in \mathbb{Z},
$$

then $\phi\left(k_{1}\right) \leqslant 2$. Similarly if

$$
F_{1}=\left(\begin{array}{cc}
b_{1} a_{1}^{j} & 0 \\
0 & a_{1}
\end{array}\right) \in G, \quad j \in \mathbb{Z}
$$

then $\phi\left(k_{2}\right) \leqslant 2$.
Proof. Note that $\operatorname{tr} F=\operatorname{tr} a_{1}+\operatorname{tr}\left(b_{2} a_{1}^{j}\right)=\operatorname{tr} a_{1} \in \mathbb{Z}$ by (3). Apply Proposition 2.4.

Corollary 2.8. One of the cases takes place:

1) $\phi\left(k_{1}\right), \phi\left(k_{2}\right) \leqslant 2$;
2) $\phi\left(k_{1}\right)=\phi\left(k_{2}\right)=4$.

Proof. Suppose that $\phi\left(k_{2}\right) \leqslant 2$. If G contains a matrix F_{1} then we apply Lemma 2.7 . Suppose that G contains a matrix

$$
\begin{align*}
B= & \left(\begin{array}{cc}
a_{1} & 0 \\
0 & a_{2}^{s_{2}}
\end{array}\right)= \\
& \left(\begin{array}{cccc}
\cos \frac{2 \pi}{k_{1}} & -\sin \frac{2 \pi}{k_{1}} & 0 & 0 \\
\sin \frac{2 \pi}{k_{1}} & \cos \frac{2 \pi}{k_{1}} & 0 & \\
0 & 0 & \cos \frac{2 \pi s_{2}}{k_{2}} & -\sin \frac{2 \pi s_{2}}{k_{2}} \\
0 & 0 & \sin \frac{2 s_{2}}{k_{2}} & \cos \frac{2 \pi s_{2}}{k_{2}}
\end{array}\right) \in G \subseteq G_{1} \times G_{2} . \tag{5}
\end{align*}
$$

Then $\operatorname{tr} B=2\left(\cos \frac{2 \pi}{k_{1}}+\cos \frac{2 \pi s_{2}}{k_{2}}\right) \in \mathbb{Z}$. By the assumption $2 \cos \frac{2 \pi}{k_{1}} \in \mathbb{Z}$. Apply Proposition 2.4.

Starting from now we shall assume that $\phi\left(k_{1}\right)=\phi\left(k_{2}\right)=4$. By Proposition 2.3 it means that $k_{1}, k_{2}=10,5,12,8$ and by Lemma 2.7 the group G contains the matrix B a nd a matrix

$$
B_{2}=\left(\begin{array}{cc}
a_{1}^{s_{1}} & 0 \tag{6}\\
0 & a_{2}
\end{array}\right)
$$

Let $\xi_{n}=\exp \frac{2 \pi i}{n} \in \mathbb{C}$. As in the proof of Lemma 2.6 we know that $\Phi_{4}(t)=\operatorname{det}(B-t E)$. Hence the roots of $\operatorname{det}(B-t E)$ are $\xi_{k_{1}}^{r}$, where $1 \leqslant r<k_{1}$ and $\left(r, k_{1}\right)=1$. Similarly the roots of $\operatorname{det}(B-t E)$ are $\xi_{k_{2}}^{s_{2} t}$ where $1 \leqslant t<\frac{k_{2}}{\left(s, k_{2}\right)}$ and $\left(t, \frac{k_{2}}{\left(s, k_{2}\right)}\right)=1$ Hence $\xi_{k_{2}}^{s_{2}}=\xi_{k_{1}}^{r}, \xi_{k_{1}}=\xi_{k_{2}}^{s_{2} t}$. In particular $\mathbb{Z}\left[\xi_{k_{1}}\right]=\mathbb{Z}\left[\xi_{k_{2}}^{s_{2}}\right] \subseteq \mathbb{Z}\left[\xi_{k_{2}}\right]$. Similarly $\mathbb{Z}\left[\xi_{k_{2}}\right]=\mathbb{Z}\left[\xi_{k_{1}}^{s_{1}}\right] \subseteq \mathbb{Z}\left[\xi_{k_{1}}\right]$. Hence

$$
\begin{equation*}
\mathbb{Z}\left[\xi_{k_{1}}\right]=\mathbb{Z}\left[\xi_{k_{1}}^{s_{1}}\right]=\mathbb{Z}\left[\xi_{k_{2}}\right]=\mathbb{Z}\left[\xi_{k_{2}}^{s_{2}}\right] . \tag{7}
\end{equation*}
$$

Lemma 2.9. The following cases take place
a) $k_{1}, k_{2}=10,5$ and $s_{1} s_{2} \equiv 1 \bmod 5$;
b) $k_{1}=k_{2}=12$ and $s_{1}, s_{2}=1,5,7,11$;
c) $k_{1}=k_{2}=8$ and $s_{1}, s_{2}=1,3,5,7$.

Proof. Recall that $\mathbb{Z}\left[\xi_{10}\right]=\mathbb{Z}\left[\xi_{5}\right]$ and

$$
\mathbb{Z}\left[\xi_{10}\right] \neq \mathbb{Z}\left[\xi_{12}\right] \neq \mathbb{Z}\left[\xi_{8}\right] \neq \mathbb{Z}\left[\xi_{10}\right] .
$$

Apply (7). Note also that $a_{i}^{s_{1} s_{2}-1} \in G$ by Proposition 2.2. Hence by Proposition $2.4 s_{1} s_{2}-1$ in the first case should be divisible by 5 .

By Lemma 2.7 we complete the proof of Theorem 2.5.
In order to present more detailed classification of groups in Theorem 2.5 we need

Proposition 2.10. Let G, k_{1}, k_{2} be from Theorem 2.5 and $\phi\left(k_{1}\right)=$ $\phi\left(k_{2}\right)=4$. Suppose that the group G contains a matrix

$$
F=\left(\begin{array}{cc}
a_{1}^{t} & 0 \\
0 & b_{2}
\end{array}\right)
$$

Then G contains

$$
a_{1}^{2}=\left(\begin{array}{cc}
a_{1}^{2} & 0 \\
0 & 1
\end{array}\right)
$$

and a matrix F with $t=0$, that is b_{2}. In this case $G \cap\left(\left\langle a_{1}\right\rangle \times D_{k_{2}}\right)$ is a semidirect product of a normal subgroup $\langle B\rangle \times\left\langle a_{2}^{2}\right\rangle$ by a cyclic group $\langle F\rangle$ of order 2 with $t=0$, where B is from (5) with $s_{2}=1$.
Proof. We know that G contains a matrix B from (5). Then

$$
U=B F B F^{-1}=a_{1}^{2} \in G
$$

Multiplying F and B_{2} from (6) by powers of U we can assume that $t=0,1$ and $s_{1}=1$. The case $t=1$ is impossible because otherwise $\operatorname{tr} a_{1}^{2} \in \mathbb{Z}$ which contradicts Proposition 2.4. Thus we can assume that $B_{2}=B$ and $t=0$.

Note that $G_{1}=\langle B\rangle \times\left\langle a_{2}^{2}\right\rangle$ is a subgroup in G containing a_{1}^{2} and therefore a_{2}^{2}. Hence the index of G_{1} in $H=\left\langle a_{1}\right\rangle \times\left\langle a_{2}\right\rangle$ is dividing 4 . Since $a_{1}, a_{2} \notin G$ we can conclude that $G_{1}=G \cap H$. Now the proof follows.

Theorem 2.11. Let a group G be a subdirect product from Theorem 2.5 where $k_{1}=k_{2}=10$. Then G is one of the following groups.
a) If G is a subdirect product of two cyclic groups $\left\langle a_{1}\right\rangle_{10} \times\left\langle a_{2}\right\rangle_{10}$ then G is direct product of two cyclic groups

$$
\begin{equation*}
\langle B\rangle \times\left\langle a_{1}^{l}\right\rangle \tag{8}
\end{equation*}
$$

where B is from (5) with $1 \leqslant s_{2} \leqslant 9, s_{2} \neq 5$ and $l=0$, 5 . If s_{2} is even then $l=5$.
b) G is a subdirect subgroup of $D_{10} \times D_{10}$ and a semidirect product of the normal group (8) by a cyclic group $\langle W\rangle$ of order 2, where

$$
W=\left(\begin{array}{cc}
b_{1} & 0 \tag{9}\\
0 & b_{2} a_{2}^{j}
\end{array}\right), \quad j=0, \ldots, 9 .
$$

Proof. Case a). We know that some matrices B, B_{2} from (5), (6) belong to G where s_{i} are from Lemma 2.9, case a). The group G contains the cyclic group $\langle B\rangle$ of order 10 which projects onto $\left\langle a_{1}\right\rangle_{10}$. Thus $G=\langle B\rangle \times\left(G \cap\left\langle a_{2}\right\rangle_{10}\right)$. But by Proposition 2.4 the order of the group $G \cap\left\langle a_{2}\right\rangle_{10}$ is equal to $1,2,3,4$ or 6 . Hence $G \cap\left\langle a_{2}\right\rangle_{10}=\left\langle a_{1}^{l}\right\rangle$ where $l=0$ or 5 . Suppose that s_{2} is even and $l=0$. Then the cyclic group $\langle B\rangle$ does not contain B_{2} which is impossible.
Suppose that G is a subdirect product of $\left\langle a_{1}\right\rangle_{10} \times D_{10}$. Then $G \cap$ $\left\langle a_{1}\right\rangle_{10} \times\left\langle a_{2}\right\rangle_{10}$ is a group (8). Also G contains the matrix F from

Proposition 2.10 which contradicts Proposition 2.4. So this case is impossible.

Case b). Using previous argument we can show that G does not contain the matrix F from Proposition 2.10. Thus $G \cap\left(\left\langle a_{1}\right\rangle_{10} \times\left\langle a_{2}\right\rangle_{10}\right)$ is a subdirect product and therefore as in the case \mathbf{a}) it has the form (8). As above G does not contain the matrix F from Proposition 2.10. Hence G contains a matrix $W \in G$ as in (9). Then $W g W^{-1}=g^{-1}$ for all $g \in\left\langle a_{1}\right\rangle_{10} \times\left\langle a_{2}\right\rangle_{10}$ and $W^{2}=E$. Thus G has the required form.
Theorem 2.12. Let $k_{1}=10, k_{2}=5$. Then there are only two cases.
a) If G is a subdirect product $\left\langle a_{1}\right\rangle_{10} \times\left\langle a_{2}\right\rangle_{5}$ then $G=\langle B\rangle$ where $s_{2}=$ $1,2,3,4$.
b) If G is a subdirect product of $D_{10} \times D_{5}$ then G is generated by B and by W from (9), where $j=0,1,2,3,4$. Thus $G \simeq D_{10}$.

Proof. The group G contains a matrix B from (5) where s_{2} is invertible modulo 5 by Lemma 2.9. In the case a) either G is generated by B or G has a nontrivial intersection with $\left\langle a_{2}\right\rangle$ which is impossible by Proposition 2.4.

The case when G is a subdirect product $\left\langle a_{1}\right\rangle_{10} \times D_{5}$ is impossible by Proposition 2.10.

The proof in the case \mathbf{b}) is similar to those in the previous Theorem.

The proof of the next Theorem is similar.
Theorem 2.13. Let $k_{1}=5, k_{2}=10$. Then there are only two cases.
a) If G is a subdirect product $\left\langle a_{1}\right\rangle_{5} \times\left\langle a_{2}\right\rangle_{10}$ then $G=\left\langle B_{2}\right\rangle$ from (6) where $s_{1}=1,2,3,4$.
b) If G is a subdirect product of $D_{5} \times D_{10}$ then G is generated by B_{2} and by W from (9). Thus $G \simeq D_{10}$.
Theorem 2.14. Let group G be a subdirect product from Theorem 2.5, where $k_{1}=k_{2}=8$.
A) If G is a subdirect product of cyclic groups $\left\langle a_{1}\right\rangle_{8} \times\left\langle a_{2}\right\rangle_{8}$, then G is a direct product of two cyclic groups (8), where $l=0,2,4$, and s_{2} being odd in B from (5).
B) Suppose that G is a subdirect product of $\left\langle a_{1}\right\rangle \times D_{8}$. Then G is a semidirect product of the normal subgroup (8) and a cyclic group $\left\langle b_{2}\right\rangle$ of order 2, where $l=0,2,4$, and s_{2} being odd in B from (5).
C) Suppose that G is a subdirect subgroup of $D_{8} \times D_{8}$. Then G is one of the groups
a) a semidirect product of a normal subgroup (8) with $l=2$ and s_{2} odd by a direct product $\left\langle b_{1}\right\rangle_{2} \times\left\langle b_{2}\right\rangle_{2}$.
b) G is semidirect product of the normal subgroup (8) and a cyclic group $\langle W\rangle_{2}$, where $l=0,2,4, s_{2}$ being odd in B from (5) and W is from (9).

Proof. In the case A) the group G contains a matrix B from (5) with odd s_{2}. If $G \neq\langle B\rangle$ then $G=\langle B\rangle \times\left(G \cap\left\langle a_{2}\right\rangle\right)$, where $G \cap\left\langle a_{2}\right\rangle=\left\langle a_{2}^{l}\right\rangle$ and $l=0,2,4$ by Proposition 2.4.

The case B) follows from Proposition 2.10.
In the case \mathbf{C}) by Lemma 2.9 the group G contains a matrix B from (5) with odd s_{2}. Hence $G \cap\left(\left\langle a_{1}\right\rangle \times\left\langle a_{2}\right\rangle\right)$ is a subdirect product from the case A). If F from Proposition 2.10 belongs to G then $t=0$ and

$$
G \cap\left(\left\langle a_{1}\right\rangle \times\left\langle a_{2}\right\rangle\right)=\langle B\rangle \times\left\langle a_{2}^{2}\right\rangle .
$$

Symmetrically G contains a matrix

$$
b_{1}=\left(\begin{array}{cc}
b_{1} & 0 \\
0 & 1
\end{array}\right) .
$$

Hence G has the form Ca).
Suppose that $U, U^{\prime} \notin G$. Then G contains a matrix W from (9) where $j=0, \ldots, 8$. Also

$$
G \cap\left(\left\langle a_{1}\right\rangle \times\left\langle a_{2}\right\rangle\right)=\langle B\rangle \times\left\langle a_{2}^{l}\right\rangle, \quad l=0,2,4 .
$$

Then G has the form $\mathbf{C b}$).
Note that the case B) with $l=0$ and $s_{2}=3$ corresponds to perfect 8 -fold dihedral symmetry in a certain member of the LI-class of Ammann-Beenker tilings [4]. The generating matrices of the group are

$$
\frac{1}{\sqrt{2}}\left(\begin{array}{cccc}
1 & 1 & 0 & 0 \\
-1 & 1 & 0 & 0 \\
0 & 0 & -1 & -1 \\
0 & 0 & 1 & -1
\end{array}\right), \quad\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right) .
$$

Using the same argument one can prove
Theorem 2.15. Let $k_{1}=k_{2}=12$. Then G is one of the following groups.
A) If G is subdirect product of $\left\langle a_{1}\right\rangle_{12} \times\left\langle a_{2}\right\rangle_{12}$ then G is the group

$$
\begin{equation*}
G=\langle B\rangle \times\left\langle a_{2}^{l}\right\rangle \tag{10}
\end{equation*}
$$

where B is from (5) with $s_{2}=1,5,7,11$ and $l=0,2,3,4,6$.
B) If G is a subdirect product of $\left\langle a_{1}\right\rangle_{12} \times D_{12}$ then G is a semidirect product of the normal subgroup (10) with $l=2$ and $\left\langle b_{2}\right\rangle_{2}$.
C) If G is a subdirect product of $D_{12} \times D_{12}$ then G is one of groups:
a) a semidirect product of a normal subgroup (10) with $l=2$ and s_{2} odd by a direct product $\left\langle b_{1}\right\rangle_{2} \times\left\langle b_{2}\right\rangle_{2}$.
b) a semidirect product of the normal subgroup (10) and a cyclic group $\langle W\rangle_{2}$, where $l=0,2,4, s_{2}=1,5,7,11$ in B from (5) and where W is from (9).

Applying previous results to the window W which is a closure of a projection of A into V we obtain

Corollary 2.16. The symmetry group of the window of any plane module set with 2 dim internal space is one of the following: C_{i} or $D_{i}, i=1,2,3,4,5,6,8,10,12$.

3. Realization

In this section we shall show that two exceptional cases 2), 3) in Theorem 2.5 can be realized. The idea of this realization comes from [10], [7], [4]. Let $m \geqslant 3$ be a positive integer. Take the real vector space $E=\mathbb{R} \otimes_{\mathbb{Z}} \mathbb{Z}[\xi]$ of dimension $\phi(m)$ where $\xi=\exp \left(\frac{2 \pi i}{m}\right)$. Then basis of E consists of $\phi(m)$ vectors $e_{j}=1 \otimes \xi^{j}, 0 \leqslant j<\phi(m)$, [6, Chapter IV, § 1]. Define in in E two linear operators

$$
a\left(1 \otimes \xi^{j}\right)=1 \otimes \xi^{j+1}, \quad b\left(1 \otimes \xi^{j}\right)=1 \otimes \xi^{-j}
$$

for all $j \in \mathbb{Z}$. These definitions are correct since $\mathbb{Z}[\xi]$ is a left $\mathbb{Z}[\xi]$ module and the map b is a Galois automorphism of $\mathbb{Z}[\xi]$. It is easy to see that $b^{2}=(b a)^{2}=1$. Hence the group of invertible operators generated by a, b is the dihedral group D_{m} and we have a representation of D_{m} in E of dimension $\phi(m)$. It is decomposed into direct sum of irreducible ones. Since dimensions of irreducible representations of dihedral groups are 1 or 2 [2, chapter 3], it suffices to show that ± 1 are not eigenvalues of operators a and b. Note that the characteristic polynomial of the operator a is equal to $\Phi_{m}(t)$, and in fact ± 1 are not roots of $\Phi_{m}(t)$, provided $m \geqslant 3$.

We have proved
Theorem 3.1. Let $m \geqslant 3$ be an integer. Then the dihedral group D_{m} is a subgroup of a symmetry group $\operatorname{Sym} Q$ of some 2D-quasicrystal Q which can be constructed by a cut and project method using a hyperspace E of dimension $\phi(m) \geqslant 2$.

There is another way of constructing symmetries of quasicrystals based on algebraic integers. Let $\xi=\exp \left(\frac{2 \pi i}{m}\right)$ be as above. Then again $\mathbb{Z}[\xi]$ is a left $\mathbb{Z}[\xi]$-module and therefore the Abelian group $\mathbb{Z}[\xi]^{*}$ of invertible elements of the ring $\mathbb{Z}[\xi]$ acts on $E=\mathbb{R} \otimes_{\mathbb{Z}} \mathbb{Z}[\xi]$. By $[2$, Theorem 3.3, Chapter3] the complex space $\mathbb{C} \otimes_{\mathbb{R}} E$ contains one-dimensional subspace which is invariant under the action of the Abelian group $\mathbb{Z}[\xi]^{*}$. Hence E contains 2-dimensional real invariant subspace U. So taking U as a physical space and the lattice $\mathbb{Z}[\xi]$ in E as M we can construct a quasicrystal Q in which the symmetry group $\operatorname{Sym} Q$ contains $\mathbb{Z}[\xi]^{*}$ as a subgroup. By [3, page 561] the Abelian group $\mathbb{Z}[\xi]^{*}$ has rank $\frac{\phi(m)}{2}-1$. Applying Proposition 2.3 as in [7] we obtain

Theorem 3.2. Let m be an integer and either $m=5$ or $m \geqslant 7$. Consider 2D-quasicrystal Q constructed by a cut and project method
using a hyperspace E of dimension $\phi(m) \geqslant 2$ and $M=\mathbb{Z}[\xi]$ as a lattice. The symmetry group $\operatorname{Sym} Q$ contains an Abelian group isomorphic to $\mathbb{Z}[\xi]^{*}$ and having rank $\frac{\phi(m)}{2}-1 \geqslant 1$. In particular $\operatorname{Sym} Q$ contains elements of infinite order.

For example take $E=\mathbb{R} \otimes \mathbb{Z}[\xi], \xi=\frac{1+i}{\sqrt{2}}$. Then $\operatorname{dim} E=\phi(8)=4$ and E is a left module over $\mathbb{Z}[\xi]$. Therefore the group $\mathbb{Z}[\xi]^{*}$ of invertible elements of the ring $\mathbb{Z}[\xi]$ acts on E. The rank of the group $\mathbb{Z}[\xi]^{*}$ is equal to $\frac{\phi(8)}{2}-1=1[3$, page 561] and therefore it contains an element g of infinite order.

References

[1] Artamonov V.A., On symmetries of quasicrystals. Contemp. Math. v. 376. Algebraic Structures and Their Representations: XV Colloquium Latinoamericano de Álgebra, Cocoyoc, Morelos, Mexico, July 20-26, 2003, Jose A. de la Pena, Ernesto Vallejo, and Natig Atakishiyev ed., AMS, 2005, 175-188.
[2] Artamonov V.A., Slovokhotov Yu.L., Groups and their applications in physics, chemistry and crystallography. Publ. center Academia, Moscow, 2005, P.512.
[3] Hasse H. Number theory, Springer-Verlag Berlin, Heidelberg, New York, 1980.
[4] Hermisson J., Richard Ch., Baake V., A Guide to the symmetry structure of quasiperiodic tiling classes, J. Phys. I France, 7 (1997), 1003-1018.
[5] Baake M., Hermisson J., Pleasants A.B., The torus parametrization of quasiperiodic $L I$-classes, J. Phys A, 30 (1997), 3029-3056.
[6] Lang S. Algebraic number theory. Addison-Wesley Publ. Company, 1970, 354.
[7] Niizeki K., Self-similarity of quasilattices in two dimensions. I The n gonal quasilattice. Journal of Physics A: Mathematical and General. 22(1989), 193-204.
[8] Skornyakov L.A. Ed., General algebra, v.1, Moscow: Nauka, Fizmatlit, 1990.
[9] Moody R.V. Model sets: a survey. In the book: From quasicrystals to more Complex Systems. Springer, Berlin, pp. 145-166, arXiv:math.MG/0002020 v1
[10] Pleasants P.A.B., Designer quasicrystals: cut-and-project sets with pre-assigned properties. In the book: Directions in Mathematical Quasicrystals (M. Baake and R. V. Moody, eds.), CRM Monograph Series, AMS, Providence, Rhode Island, 93-138.

Department of Algebra, Faculty of Mechanics and Mathematics, Moscow State University

Department of Applied Mathematics, University Rey Juan Carlos, Madrid

E-mail address: artamon@mech.math.msu.su, sergio.sanchez@urjc.es

