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Introduction

There are various approaches to a construction of mathematical models of quasicrystals and a definition of their symmetries, see for example [START_REF] Artamonov | On symmetries of quasicrystals[END_REF], [START_REF] Artamonov | Groups and their applications in physics, chemistry and crystallography[END_REF]Chapter 6], [START_REF] Hermisson | A Guide to the symmetry structure of quasiperiodic tiling classes[END_REF], [START_REF] Baake | The torus parametrization of quasiperiodic LI-classes[END_REF], [START_REF] Moody | Model sets: a survey[END_REF]. We shall adopt the following model which is usually call cut and project scheme [START_REF] Moody | Model sets: a survey[END_REF]. Nowadays the common definition of this method is the following one. Let V be an additive locally compact topological Abelian group, U an additive group of a real physical or internal vector space of dimension d and M a discrete subgroup in E = U ⊕ V such that E/M is compact and M ∩ V consists only of zero vector. The group E is often called a hyperspace or embedding space. Consider the diagram of projections of groups

U E = U ⊕ V π o o ρ / / V M
Since the intersection of V and M consists only of zero element the projection π is injective on M . It is assumed that ρ(M ) is dense is in V .

Let us take a convex compact subset W in V called a window. Let us put Q = ρ -1 (W ) ∩ M . Then the set π(Q) is called a model set or a cut and project set. Note that the set Q under the projection π is mapping injectively into U .

It is necessary to mention [8, Chapter 2, §3.2] that any locally compact Abelian group V is an inverse limit of direct product of additive groups R m × T s × D where T is a one-dimensional torus and D is a discrete group. So the case when V is a real vector space is in fact one of the most important.

Throughout the paper we shall consider the special case of the model when V is a normed real vector space of a finite dimension n -d > 0. Then E is a vector space of dimension n > d and M is a lattice in E. It means that M is discrete and E = R ⊗ Z M . Equivalently the rank of the free Abelian group M is equal to n. We shall assume that Q contains a basis of M as a free Abelian group.

Since all norms in E are equivalent without loss of generality we can assume that E is an Euclidean space.

According to [START_REF] Artamonov | On symmetries of quasicrystals[END_REF] and [START_REF] Artamonov | Groups and their applications in physics, chemistry and crystallography[END_REF]Chapter 6] a symmetry of the model Q in this case is the group of all affine transformations of E which map Q bijectively onto itself. Since Q contains a basis of M each symmetry leaves the lattice M invariant. We shall now call all these symmetries proper. It is necessary to mention that there exist non-proper symmetries. For example for Fibonacci tilings powers of the matrix

1 1 1 0
show examples of non-proper symmetries.

Suppose that M has also zero intersection with V . If f is a symmetry of Q and 0 is the origin then f (0) ∈ M ∩ U = 0. Hence each symmetry f is in fact a linear operator. As in [START_REF] Artamonov | On symmetries of quasicrystals[END_REF] we can show that U is invariant under an action of f .

Generalizing this idea we shall denote by Sym Q the subgroup in the group GL(E) of all invertible linear operators in E such that both U and M are invariant under an action of each element from Sym Q. The group of proper symmetries is a subgroup of Sym Q. Each element of the group Sym Q in some special basis of E has the lower left zero block from [START_REF] Artamonov | On symmetries of quasicrystals[END_REF]. Moreover there exists an invertible matrix Z ∈ GL(n, R) such that Z -1 Sym Q Z ⊂ GL(n, Z). These two conditions are equivalent to the definition of the group Sym Q.

In the paper we shall consider the case when dim U = dim V = 2 and G is a finite subgroup of Sym Q. The main results of the paper are in Theorems 2.5, 2.11, 2.12, 2.13, 2.14, 2.15. The list of these finite groups is given in [START_REF] Hermisson | A Guide to the symmetry structure of quasiperiodic tiling classes[END_REF] without proof. Here we justify this classification and expose strict mathematical proofs based on group theory approach. The main results of the present paper are complementary to those in [START_REF] Hermisson | A Guide to the symmetry structure of quasiperiodic tiling classes[END_REF], [START_REF] Hasse | Number theory[END_REF] where realizations of some symmetries are presented. We give a list of group and in also in §3 their representation in 4-dimensional hyperspace.

We thank Prof. E.S. Golod for useful consultations concerning cyclotomic fields and the referee for his valuable comments and remarks. Suppose that e 1 , . . . , e n is a basis of the lattice M . Then these elements form a basis of E. If A ∈ Sym Q and A is a matrix of A is the basis e 1 , . . . , e n . Since M is invariant under A we can conclude that A is an integer matrix, A ∈ GL(n, Z).

Let u 1 , . . . , u d be a basis of U and u d+1 , . . . , u n a basis of V . Suppose that (u 1 , . . . , u n ) = (e 1 , . . . , e n )C, C ∈ GL(n, R). Since U is invariant under A we have

C -1 AC = A 1 A 2 0 A 3 , A 1 ∈ GL(d, R), A 3 ∈ GL(n -d, R), A 2 ∈ Mat(d × (n -d), R). (1) 
We shall use throughout the paper these properties of matrices representing elements from Sym Q.

2D symmetries

In this section we shall assume that n = 4, d = 2 and G is a finite subgroup in Sym Q. Recall that a dihedral group D k is a group of orthogonal symmetries of a regular k-gon [START_REF] Artamonov | Groups and their applications in physics, chemistry and crystallography[END_REF]. D k is a subgroup of the group of orthogonal matrices O(2, R) generated by two matrices

a = cos 2π k -sin 2π k sin 2π k cos 2π k , b = 1 0 0 -1 (2)
It is known [START_REF] Artamonov | Groups and their applications in physics, chemistry and crystallography[END_REF] that D k consists of 2k elements 1, a, . . . , a k-1 , b, ba, . . . , ba k-1 , where a k = (ba l ) 2 = 1 for any l. In particular ba l = a -l b. Note that

a l = cos 2πl k -sin 2πl k sin 2πl k cos 2πl k , ba l = cos 2πl k sin 2πl k sin 2πl k -cos 2πl k (3)
In order to classify finite subgroups in Sym Q we need some auxiliary statements. We exclude some proofs of known facts. Proof. Since ν 1 is surjective, then there exists an element (a

Proposition 2.1. Let H be a finite subgroup of O(2, R). If H ⊂ SO(2, R) then H is a cyclic group. If H SO(2, R), then H = D k for some k. Proposition 2.2. Suppose that a finite group G is a subgroup of a direct product of two cyclic groups H = a 1 k 1 × a 2 k 2 of orders k 1 and k 2 respectively. Denote by ν i : G → a i k i the natural projection and suppose that ν 1 , ν 2 are surjective. Then (a s 1 1 , a 2 ), (a 1 , a s 2 2 ) ∈ G for some s i ∈ Z and therefore a s 1 s 2 -1 i ∈ G ∩ a i k i . If d = (k 1 , k 2 ) is the greatest common divisor of k 1 , k 2 then a d i ∈ G ∩ a i k i for i = 1, 2. In particular G ∩ a i k i is a cyclic group a l i i , where l i | d and l i | (s 1 s 2 -1).
1 , b) ∈ G for some b ∈ a 2 . Then (a 1 , b) k 2 = (a k 2 1 , b k 2 ) = (a k 2 1 , 1) ∈ G ∩ a 1 . Since the order of a 1 is k 1 by [2, Theorem 1.6, § 1.4] we can conclude that a d 1 ∈ G∩ a 1 . Apply [2, Theorem 1.5, § 1.4]. Similarly if (a s 1 1 , a 2 ), (a 1 , a s 2 2 ) ∈ G, then (a s 1 1 , a 2 ) s 2 (a 1 , a s 2 2 ) -1 = (a s 1 s 2 -1 1 , 1) ∈ G ∩ a 1 . Similarly a s 1 s 2 -1 2 ∈ G ∩ a 2 .
Recall that the Euler function φ(m), m ∈ Z, is the number of all integers 1

k < m which are coprime with m. Recall that if ζ = exp 2πi m then φ(m) coincides with the degree of the minimal integer cyclotomic polynomial Φ m (X) ∈ Z[X] such that Φ m (ζ) = 0 and with the order of the Galois group Gal (Q[ξ]/Q).

Proposition 2.3. Let m be a positive integer such that φ(m)

4. Then m is one of the numbers

m 10 5 12 6 3 8 4 2 1 φ(m) 4 4 4 2 2 4 2 1 1 Proposition 2.4 ([2], Theorem 2.16, § 2.4). Let ∆ be a finite subgroup in SO(2, R). Then ∆ = a k is a cyclic group of order k, where a = cos 2π k -sin 2π k sin 2π k cos 2π k .
Moreover, the following are equivalent [START_REF] Baake | The torus parametrization of quasiperiodic LI-classes[END_REF][START_REF] Pleasants | Designer quasicrystals: cut-and-project sets with pre-assigned properties[END_REF] or [START_REF] Pleasants | Designer quasicrystals: cut-and-project sets with pre-assigned properties[END_REF][START_REF] Baake | The torus parametrization of quasiperiodic LI-classes[END_REF]) 

1) ∆ is conjugate in GL(2, R) to a subgroup of SL(2, Z); 2) the trace tr a = 2 cos 2π k ∈ Z; 3) k = 1, 2, 3, 4, 6, 4) φ(k) 2. Recall that a subgroup G of a direct product of groups G 1 × G 2 is a subdirect product of G 1 , G 2 if each projection G → G i , i = 1, 2, is surjective. In this case we also say that G is a subdirect subgroup of G 1 × G 2 . Theorem 2.5. Let G be a finite subgroup in Sym Q where dim U = 2 = dim V . Then G is a subdirect product of either C k 1 × C k 2 , C k 1 × D k 2 , D k 1 × D k 2 (C k : cyclic group of order k) The integers k 1 , k 2 satisfy one of the following conditions 1) k 1 , k 2 = 1, 2, 3, 4, 6; 2) (k 1 , k 2 ) is either
3) k 1 = k 2 = 12. 4) k 1 = k 2 = 8. Proof.
= 0. In this case G is a subgroup of a direct product G ⊆ ν 1 (G) × ν 2 (G), where ν 1 , ν 2 are projections and each ν i (G) is a finite subgroup of O(2, R).
According to Proposition 2.1 each ν j (G) is either a cyclic group a j k j generated by the matrix a j of order k j from (2) or a dihedral group D k j generated by matrices a j , b from [START_REF] Artamonov | Groups and their applications in physics, chemistry and crystallography[END_REF]. A subgroup G ∩ a j of a cyclic group a j is cyclic generated by the element a l j j where l j is the least exponent of elements from G ∩ a j . Note that if, say k 1 = 1, then G = G 2 and applying Proposition 2.4 we deduce the statement of the theorem. Hence in what follows we can assume that k 1 , k 2 > 1. Let d = (k 1 , k 2 ) be the greatest common divisor of k 1 and k 2 .

Without loss of generality we can assume that ν 1 , ν 2 are surjective that is G is a subdirect subgroup of ν 1 (G) × ν 2 (G) and one of the required cases takes place.

Lemma 2.6. φ(k 1 ), φ(k 2 ) 4.
Proof. Since G is a subdirect subgroup it contains a matrix

F = a 1 0 0 b i 2 a j 2 , j ∈ Z, i = 0, 1.
where a 1 , b i 2 a j 2 are from (2), (3). Since F is conjugate in GL(4, R) to an integer matrix the characteristic polynomial det(F -tE) has integer coefficients.

Let

ζ = exp 2πi k 1 ∈ C. Then ζ is a root of the integer polynomial det(F -tE) of degree 4 because det(F -tE) = det(a 1 -tE) det(b i 2 a j 2 -tE).

The minimal integer polynomial of exp 2πi

k 1 is the cyclotomic integral polynomial Φ k 1 (t) of degree φ(k 1 ). Hence Φ k 1 (t) divides det(F -tE) and therefore φ(k 1 ) 4. The case of k 2 is similar.

Lemma 2.7. If G contains a matrix F = a 1 0 0 b 2 a j 1 , j ∈ Z, (4) 
then φ(k 1 ) 2. Similarly if

F 1 = b 1 a j 1 0 0 a 1 ∈ G, j ∈ Z, then φ(k 2 ) 2.
Proof. Note that tr F = tr a 1 + tr(b 2 a j 1 ) = tr a 1 ∈ Z by (3). Apply Proposition 2.4. 

1) φ(k 1 ), φ(k 2 ) 2; 2) φ(k 1 ) = φ(k 2 ) = 4. Proof. Suppose that φ(k 2 )
2. If G contains a matrix F 1 then we apply Lemma 2.7. Suppose that G contains a matrix

B = a 1 0 0 a s 2 2 =     cos 2π k 1 -sin 2π k 1 0 0 sin 2π k 1 cos 2π k 1 0 0 0 cos 2πs 2 k 2 -sin 2πs 2 k 2 0 0 sin 2πs 2 k 2 cos 2πs 2 k 2     ∈ G ⊆ G 1 × G 2 . ( 5 
)
Then tr

B = 2 cos 2π k 1 + cos 2πs 2 k 2 ∈ Z. By the assumption 2 cos 2π k 1 ∈ Z. Apply Proposition 2.4.
Starting from now we shall assume that φ(k 1 ) = φ(k 2 ) = 4. By Proposition 2.3 it means that k 1 , k 2 = 10, 5, 12, 8 and by Lemma 2.7 the group G contains the matrix B a nd a matrix

B 2 = a s 1 1 0 0 a 2 . ( 6 
)
Let ξ n = exp 2πi n ∈ C. As in the proof of Lemma 2.6 we know that Φ 4 (t) = det(B -tE). Hence the roots of det(B -tE) are ξ r k 1 , where 1 r < k 1 and (r, k 1 ) = 1. Similarly the roots of det(B -tE) are ξ s 2 t k 2 where 1 t < k 2 (s,k 2 ) and (t,

k 2 (s,k 2 ) ) = 1 Hence ξ s 2 k 2 = ξ r k 1 , ξ k 1 = ξ s 2 t k 2 . In particular Z[ξ k 1 ] = Z[ξ s 2 k 2 ] ⊆ Z[ξ k 2 ]. Similarly Z[ξ k 2 ] = Z[ξ s 1 k 1 ] ⊆ Z[ξ k 1 ]. Hence Z[ξ k 1 ] = Z[ξ s 1 k 1 ] = Z[ξ k 2 ] = Z[ξ s 2 k 2 ]. (7) 
Lemma 2.9. The following cases take place Apply [START_REF] Niizeki | Self-similarity of quasilattices in two dimensions. I The ngonal quasilattice[END_REF]. Note also that a s 

F = a t 1 0 0 b 2 .
Then G contains

a 2 1 = a 2 1 0 0 1 and a matrix F with t = 0, that is b 2 . In this case G ∩ ( a 1 × D k 2 ) is a semidirect product of a normal subgroup B × a 2
2 by a cyclic group F of order 2 with t = 0, where B is from (5) with s 2 = 1.

Proof. We know that G contains a matrix B from [START_REF] Baake | The torus parametrization of quasiperiodic LI-classes[END_REF]. Then 6) by powers of U we can assume that t = 0, 1 and s 1 = 1. The case t = 1 is impossible because otherwise tr a 2 1 ∈ Z which contradicts Proposition 2.4. Thus we can assume that B 2 = B and t = 0.

U = BF BF -1 = a 2 1 ∈ G. Multiplying F and B 2 from (
Note that

G 1 = B × a 2 2 is a subgroup in G containing a 2 1 and therefore a 2 2 . Hence the index of G 1 in H = a 1 × a 2 is dividing 4. Since a 1 , a 2 / ∈ G we can conclude that G 1 = G ∩ H. Now the proof follows.
Theorem 2.11. Let a group G be a subdirect product from Theorem 2. [START_REF] Baake | The torus parametrization of quasiperiodic LI-classes[END_REF] where k 1 = k 2 = 10. Then G is one of the following groups. a) If G is a subdirect product of two cyclic groups a 1 10 × a 2 10 then G is direct product of two cyclic groups

B × a l 1 ( 8 
)
where B is from (5) with 1 s 2 9, s 2 = 5 and l = 0, 5. If s 2 is even then l = 5. b) G is a subdirect subgroup of D 10 × D 10 and a semidirect product of the normal group (8) by a cyclic group W of order 2, where

W = b 1 0 0 b 2 a j 2 , j = 0, . . . , 9. ( 9 
)
Proof. Case a). We know that some matrices B, B 2 from ( 5), ( 6) belong to G where s i are from Lemma 2.9, case a). The group G contains the cyclic group B of order 10 which projects onto a 1 10 . Thus G = B × (G ∩ a 2 10 ). But by Proposition 2.4 the order of the group G ∩ a 2 10 is equal to 1,2,3,4 or 6. Hence G ∩ a 2 10 = a l 1 where l = 0 or 5. Suppose that s 2 is even and l = 0. Then the cyclic group B does not contain B 2 which is impossible.

Suppose that G is a subdirect product of a 1 10 × D 10 . Then G ∩ a 1 10 × a 2 10 is a group [START_REF] Skornyakov | General algebra[END_REF]. Also G contains the matrix F from Case b). Using previous argument we can show that G does not contain the matrix F from Proposition 2.10. Thus G ∩ ( a 1 10 × a 2 10 ) is a subdirect product and therefore as in the case a) it has the form [START_REF] Skornyakov | General algebra[END_REF]. As above G does not contain the matrix F from Proposition 2.10. Hence G contains a matrix W ∈ G as in [START_REF] Moody | Model sets: a survey[END_REF]. Then W gW -1 = g -1 for all g ∈ a 1 10 × a 2 10 and W 2 = E. Thus G has the required form.

Theorem 2.12. Let k 1 = 10, k 2 = 5. Then there are only two cases.

a) If G is a subdirect product a 1 10 × a 2 5 then G = B where s 2 = 1, 2, 3, 4. b) If G is a subdirect product of D 10 × D 5 then G is generated by B
and by W from [START_REF] Moody | Model sets: a survey[END_REF], where j = 0, 1, 2, 3, 4. Thus G D 10 .

Proof. The group G contains a matrix B from ( 5) where s 2 is invertible modulo 5 by Lemma 2.9. In the case a) either G is generated by B or G has a nontrivial intersection with a 2 which is impossible by Proposition 2.4.

The case when G is a subdirect product a 1 10 × D 5 is impossible by Proposition 2.10.

The proof in the case b) is similar to those in the previous Theorem.

The proof of the next Theorem is similar. where

s 1 = 1, 2, 3, 4. b) If G is a subdirect product of D 5 × D 10 then G is generated by B 2
and by W from [START_REF] Moody | Model sets: a survey[END_REF]. Thus G D 10 .

Theorem 2.14. Let group G be a subdirect product from Theorem 2.5,

where

k 1 = k 2 = 8. A) If G is a subdirect product of cyclic groups a 1 8 × a 2 8
, then G is a direct product of two cyclic groups [START_REF] Skornyakov | General algebra[END_REF], where l = 0, 2, 4, and In the case C) by Lemma 2.9 the group G contains a matrix B from (5) with odd s 2 . Hence G ∩ ( a 1 × a 2 ) is a subdirect product from the case A). If F from Proposition 2.10 belongs to G then t = 0 and

s 2 being odd in B from (5). B) Suppose that G is a subdirect product of a 1 × D 8 . Then G
G ∩ ( a 1 × a 2 ) = B × a 2 2 . Symmetrically G contains a matrix b 1 = b 1 0 0 1 .
Hence G has the form Ca). Suppose that U, U / ∈ G. Then G contains a matrix W from (9) where j = 0, . . . , 8. Also

G ∩ ( a 1 × a 2 ) = B × a l
2 , l = 0, 2, 4. Then G has the form Cb).

Note that the case B) with l = 0 and s 2 = 3 corresponds to perfect 8-fold dihedral symmetry in a certain member of the LI-class of Ammann-Beenker tilings [START_REF] Hermisson | A Guide to the symmetry structure of quasiperiodic tiling classes[END_REF]. The generating matrices of the group are

1 √ 2     1 1 0 0 -1 1 0 0 0 0 -1 -1 0 0 1 -1     ,     1 0 0 0 0 1 0 0 0 0 -1 0 0 0 0 -1     .
Using the same argument one can prove Theorem 2.15. Let k 1 = k 2 = 12. Then G is one of the following groups.

A) If G is subdirect product of a 1 12 × a 2 12 then G is the group G = B × a l 2 ( 10 
)
where B is from (5) with s 2 = 1, 5, 7, 11 and l = 0, 2, 3, 4, 6. B) If G is a subdirect product of a 1 12 × D 12 then G is a semidirect product of the normal subgroup [START_REF] Pleasants | Designer quasicrystals: cut-and-project sets with pre-assigned properties[END_REF] Applying previous results to the window W which is a closure of a projection of A into V we obtain Corollary 2.16. The symmetry group of the window of any plane module set with 2 dim internal space is one of the following: C i or D i , i = 1, 2, 3, 4, 5, 6, 8, 10, 12.

Realization

In this section we shall show that two exceptional cases 2), 3) in Theorem 2.5 can be realized. The idea of this realization comes from [START_REF] Pleasants | Designer quasicrystals: cut-and-project sets with pre-assigned properties[END_REF], [START_REF] Niizeki | Self-similarity of quasilattices in two dimensions. I The ngonal quasilattice[END_REF], [START_REF] Hermisson | A Guide to the symmetry structure of quasiperiodic tiling classes[END_REF]. Let m 3 be a positive integer. Take the real vector space 2 -1 = 1 [3, page 561] and therefore it contains an element g of infinite order.

E = R ⊗ Z Z[ξ] of dimension φ(m) where ξ = exp 2πi m . Then basis of E consists of φ(m) vectors e j = 1 ⊗ ξ j , 0 j < φ(m), [6, Chapter IV, § 1]. Define in in E two linear operators a(1 ⊗ ξ j ) = 1 ⊗ ξ j+1 , b(1 ⊗ ξ j ) = 1 ⊗ ξ -j for all j ∈ Z. These definitions are correct since Z[ξ] is a left Z[ξ]- module

1 .

 1 Matrix representations of symmetries

Corollary 2 . 8 .

 28 One of the cases takes place:

a) k 1 , k 2 = 10 , 5 and s 1 s 2 ≡

 12102 1 mod 5; b) k 1 = k 2 = 12 and s 1 , s 2 = 1, 5, 7, 11; c) k 1 = k 2 = 8 and s 1 , s 2 = 1, 3, 5, 7. Proof. Recall that Z[ξ 10 ] = Z[ξ 5 ] and Z[ξ 10 ] = Z[ξ 12 ] = Z[ξ 8 ] = Z[ξ 10 ].

  Proposition 2.10 which contradicts Proposition 2.4. So this case is impossible.

Theorem 2 .

 2 13. Let k 1 = 5, k 2 = 10. Then there are only two cases. a) If G is a subdirect product a 1 5 × a 2 10 then G = B 2 from (6)

  In the case A) the group G contains a matrix B from (5) with odd s2 . If G = B then G = B × (G ∩ a 2 ), where G ∩ a 2 = a l 2 and l = 0, 2, 4 by Proposition 2.4.The case B) follows from Proposition 2.10.

with l = 2

 2 and b 2 2 . C) If G is a subdirect product of D 12 × D 12 then G is one of groups: a) a semidirect product of a normal subgroup (10) with l = 2 and s 2 odd by a direct product b 1 2 × b 2 2 . b) a semidirect product of the normal subgroup (10) and a cyclic group W 2 , where l = 0, 2, 4, s 2 = 1, 5, 7, 11 in B from (5) and where W is from (9).

2 - 1 1 .

 211 and the map b is a Galois automorphism of Z[ξ]. It is easy to see that b 2 = (ba) 2 = 1. Hence the group of invertible operators generated by a, b is the dihedral group D m and we have a representation of D m in E of dimension φ(m). It is decomposed into direct sum of irreducible ones. Since dimensions of irreducible representations of dihedral groups are 1 or 2 [2, chapter 3], it suffices to show that ±1 are not eigenvalues of operators a and b. Note that the characteristic polynomial of the operator a is equal to Φ m (t), and in fact ±1 are not roots of Φ m (t), provided m 3. We have proved Theorem 3.1. Let m 3 be an integer. Then the dihedral group D m is a subgroup of a symmetry group Sym Q of some 2D-quasicrystal Q which can be constructed by a cut and project method using a hyperspace E of dimension φ(m) 2. There is another way of constructing symmetries of quasicrystals based on algebraic integers. Let ξ = exp 2πi m be as above. Then again Z[ξ] is a left Z[ξ]-module and therefore the Abelian group Z[ξ] * of invertible elements of the ring Z[ξ] acts on E = R⊗ Z Z[ξ]. By [2, Theorem 3.3, Chapter3] the complex space C⊗ R E contains one-dimensional subspace which is invariant under the action of the Abelian group Z[ξ] * . Hence E contains 2-dimensional real invariant subspace U . So taking U as a physical space and the lattice Z[ξ] in E as M we can construct a quasicrystal Q in which the symmetry group Sym Q contains Z[ξ] * as a subgroup. By [3, page 561] the Abelian group Z[ξ] * has rank φ(m) 2 -1. Applying Proposition 2.3 as in [7] we obtain Theorem 3.2. Let m be an integer and either m = 5 or m 7. Consider 2D-quasicrystal Q constructed by a cut and project method Page 10 of 11 URL: http://mc.manuscriptcentral.com/gcom E-mail: ijcm@informa.E of dimension φ(m) 2 and M = Z[ξ] as a lattice. The symmetry group Sym Q contains an Abelian group isomorphic to Z[ξ] * and having rank φ(m) In particular Sym Q contains elements of infinite order. For example take E = R ⊗ Z[ξ], ξ = 1+i √ 2 . Then dim E = φ(8) = 4 and E is a left module over Z[ξ]. Therefore the group Z[ξ] * of invertible elements of the ring Z[ξ] acts on E. The rank of the group Z[ξ] * is equal to φ(8) 

  W be an orthogonal complement of U with respect to [x, y]. Then W is also G-invariant. it means that there exists an invertible matrix C such that (1) holds with A 2
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By [2, Theorem 3.1, § 3.1] there exists a scalar product [x, y] in E such that each linear operator from G is orthogonal with respect to the new product [x, y]. The physical space U is G-invariant. Let

  Proposition 2.10. Let G, k 1 , k 2 be from Theorem 2.5 and φ(k 1 ) = φ(k 2 ) = 4. Suppose that the group G contains a matrix
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	1 s 2 -1 Proposition 2.4 s 1 s 2 -1 in the first case should be divisible by 5. ∈ G by Proposition 2.2. Hence by i
	By Lemma 2.7 we complete the proof of Theorem 2.5.
	In order to present more detailed classification of groups in Theo-
	rem 2.5 we need

  is a semidirect product of the normal subgroup[START_REF] Skornyakov | General algebra[END_REF] and a cyclic group b 2 of order 2, where l = 0, 2, 4, and s 2 being odd in B from[START_REF] Baake | The torus parametrization of quasiperiodic LI-classes[END_REF].C) Suppose that G is a subdirect subgroup of D 8 × D 8 . Then Gis one of the groups a) a semidirect product of a normal subgroup (8) with l = 2 and s 2 odd by a direct product b 1 2 × b 2 2 . b) G is semidirect product of the normal subgroup (8) and a cyclic group W 2 , where l = 0, 2, 4, s 2 being odd in B from (5) and W is from (9).
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