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Several numerical methods are presented adapted for a linear, first order, hyperbolic partial differential equation: the nonhomogeneous constant coefficient one-way advection-reaction equation. This equation is solved exactly when the nonhomogeneous part is a polynomial in time or/and space. We analyze the properties of convergence: stability and consistency of those schemes applied to this equation. But, finally we will show that those methods reach very good results with other non-linear problems.

Introduction:

Firstly, we are going to focus our attention on the numerical methods that exactly integrate of the following nonhomogeneous constant coefficient one-way advection-reaction equation

∂u ∂t + a ∂u ∂x + bu = p(x, t); x 0 ≤ x ≤ x f , t 0 ≤ t ≤ t f , b ≥ 0, (1) 
(where p(x, t) is a polynomial in time and/or space) subject to the boundary conditions u(x, t 0 ) = φ(x), u(x 0 , t) = ϕ 0 (t), u(x f , t) = ϕ 1 (t).

For example, this problem arises in chemical engineering in the form of the plug flow reactor and heat exchanger equations (see [START_REF] Mccartin | The exponential method of angled derivatives[END_REF] or [START_REF] Rhee | First order partial differential equations, theory and application of single equations[END_REF]) or in the mathematical modeling of automatic catalytic converters (see [START_REF] Finlayson | Numerical methods for Problems with moving fronts[END_REF] or [START_REF] Mccartin | The exponential method of angled derivatives[END_REF]). In this latter application, u(t, x) would be either concentration or temperature, a is the convective velocity, b is either a mass or heat transfer coefficient and f (x, t) accounts for sources and sinks (see [START_REF] Mccartin | Numerical investigation of the validity of the quasi-static approximation in the modelling of catalytic converters[END_REF]).

In the second section we will derive several families of explicit numerical methods for the problem (1), being the pure advection problem (b = 0) a special case that will study. Those methods will be exponential fitting methods, following the idea in [START_REF] Martín-Vaquero | Exponential fitting BDF algorithms: explicit and implicit 0-stable methods[END_REF], [START_REF] Vigo-Aguiar | A general procedure for the adaptation of multistep algorithms to the integration of oscillatory problems[END_REF], [START_REF] Vigo-Aguiar | Family of twelve steps exponential fitting symmetric multistep methods for the numerical solution of the Schrodinger equation[END_REF], [START_REF] Vigo-Aguiar | On the stability of exponential Fitting BDF Algorithms[END_REF] or [START_REF] Vigo-Aguiar | Adapted BDF Algorithms Applied to Parabolic Problems[END_REF] with ODEs, but now adapted to PDE's.

Later, in the third section we will study the properties of convergence: stability and consistency of those schemes applied to equation [START_REF] Ahmad | MOL solvers for hyperbolic PDEs with source terms[END_REF].

Finally, we will show with several numerical examples the efficiency of the proposed codes, not only with the advection-reaction equation, but, with excellent results, in the following problem: 

∂u ∂t + a ∂u ∂x + bu = f (x, t, u), (3) 
x 0 ≤ x ≤ x f , t 0 ≤ t ≤ t f , c ≥ 0,
with | f (x, t, u) | 1, near the solution of the problem, subject to the boundary conditions (2).

2.

Derivation of the explicit methods.

If we consider that the problem (1) is basically

kf = (kD t + akD x + bk)u, (4) 
and the operators

∇ k t = Id -(E k t ) -1 and ∇ ak x = Id -(E ak x ) -1 , where E k t is the operator E k t (u(x, t)) = u(x, t + k), E ak x the operator E ak x (u(x, t)) = u(x + ak, t).
Then we proceed symbolically by writing kD t = log(E k t ) and akD x = log(E ak x ) (see [START_REF] Martín-Vaquero | Métodos Exponential Fitting y Adaptados para problemas stiff[END_REF][START_REF] Martin-Vaquero | Adapted BDF Algorithms: higher-order methods and their stability[END_REF][START_REF] Vigo-Aguiar | On the stability of exponential Fitting BDF Algorithms[END_REF][START_REF] Vigo-Aguiar | Adapted BDF Algorithms Applied to Parabolic Problems[END_REF]) and we obtain that

u = kf -log(1 -∇ k t ) + log(1 -∇ ak x ) + bk . ( 5 
)
If f = 0, then u((i + 1)k, jh) = e -bk u(ik, jh -ak) or (E k t -e -bk E -ak x )u i,j = 0, where v i,j = v(x 0 + jak, t 0 + ik), so, if we apply (E k t -e -bk E -ak
x we will derive the first new family of schemes through

(E k t -e -bk E -ak x )u i,j = 1 1-∇ k t -e -bk 1-∇ -ak x -log(1 -∇ k t ) + log(1 -∇ ak x ) + bk kf i,j , (6) 
(in this case we can notice that ∇ k t depends on k, while ∇ ak x depends on ak, so if we want exact formulas we have to choose t = k, x = h = ak).

Then, the first family of methods will be

u i+1,j -e -bk u i,j+p = k   r1 q1=0   r2 q2=0 β 0 q 1 ,q 2 (∇ k t ) q 1 (∇ ak x ) q 2 f i,j     , ( 7 
)
where p = 1 if a < 0 or p = -1 if a > 0, the step lengths have the relation h = ak and the coefficients β 0 q1,q2 are obtained through the McLaurin series around (x 1 , x 2 ) = (0, 0) of the generating function

G 0 (x 1 , x 2 ) = 1 1-x1 -e -bk 1-x2 -log(1 -x 1 ) + log(1 -x 2 ) + bk . ( 8 
)
Thus, for example, some weights β 0 q 1 ,q 2 are: Obviously, b could be 0 (the pure advection problem), in this special case those weights would be β 0 0,0 = 1, β 0 1,0 = 1/2, β 0 0,1 = 1/2 and β 0 1,1 = 1/6. This is not the only family of explicit methods, we could consider

β 0 0,0 = 1 -e -bk bk , β 0 1,0 = - 1 -e -bk -bk (bk) 2 , β 0 0,1 = e -bk (-1 + e bk -bk) (bk)
(E k t -e -bk E -ak x )u i,j = 1 1-∇ k t -e -bk 1-∇ -ak x -log(1 -∇ k t ) + log(1 -∇ ak x ) + bk (E ak x ) -n (E ak x ) n kf i,j (9) 
=

(1-∇ -ak x ) n 1-∇ k t -e -bk (1-∇ -ak x ) n 1-∇ -ak x -log(1 -∇ k t ) + log(1 -∇ ak x ) + bk kf i,j+pn ,
being p = 1 if a < 0 or p = -1 if a > 0, again, and n an integer number, positive or negative.

Then, if we calculate the series expansion, then we obtain other methods, these can be written as

u i+1,j -e -bk u i,j+p = k   r 1 q 1 =0   r 2 q 2 =0 β n q 1 ,q 2 (∇ k t ) q1 (∇ ak x ) q2 f i,j+pn     , (10) 
where the coefficients β n q 1 ,q 2 are obtained through the McLaurin series around (x 1 , x 2 ) = (0, 0) of the generating function

G n (x 1 , x 2 ) = (1-x 2 ) n 1-x1 -e -bk (1-x 2 ) n 1-x2 -log(1 -x 1 ) + log(1 -x 2 ) + bk . ( 11 
)
2.1. Some example of the new methods.

We can derive many new methods in this way, then we need a notation to call them. The name Expl-α-β-γ will denote the method in [START_REF] Mccartin | The exponential method of angled derivatives[END_REF] with r 1 = α, r 2 = β and n = γ, so that, for example: i) Expl-0-0-0 is

u i+1,j = e -bk u i,j+1 + k 1 -e -bk bk f i,j , if a < 0 or u i+1,j = e -bk u i,j-1 + k 1 -e -bk bk f i,j ,
if a > 0 and when b = 0, it is ii) While Expl-0-0-1 will be

u i+1,j = u i,j+1 + kf i,j , if a < 0 or u i+1,j = u i,j-1 + kf i,
u i+1,j = e -bk u i,j+p + k 1 -e -bk bk f i,j+p ,
and when b = 0, it is

u i+1,j = u i,j+p + kf i,j+p .
iii) The previous methods were relatively simple, but now we are going to build better methods that can be used effectively with the numerical examples. The first one is Expl-1-1-0:

u i+1,j = e -bk u i,j+p + +k β 0 0,0 f i,j + β 0 1,0 (f i,j -f i-1,j ) + β 0 0,1 (f i,j -f i,j-p ) + +k β 0 1,1 (f i,j -f i-1,j -f i,j-p + f i-1,j-p ) = k (β 0 0,0 + β 0 1,0 + β 0 0,1 + β 0 1,1 )f i,j - ( 12 
) -k (β 0 1,0 + β 0 1,1 )f i-1,j + (β 0 0,1 + β 0 1,1 )f i,j-p + +k β 0 1,1 f i-1,j-p .
iv) And, for example, Expl-2-2-0 is

u i+1,j = e -bk u i,j+p + k (β 0 0,0 + β 0 1,0 + β 0 2,0 + β 0 0,1 + β 0 1,1 + β 0 2,1 + β 0 0,2 + β 0 1,2 + β 0 2,2 )f i,j - -k (β 0 1,0 + 2β 0 2,0 + β 0 1,1 + 2β 0 2,1 )f i-1,j - -k (β 0 0,1 + 2β 0 0,2 + β 0 1,1 + 2β 0 1,2 )f i,j-p + +k (β 0 2,0 + β 0 2,1 + β 0 2,2 )f i-2,j + (β 0 0,2 + β 0 1,2 + β 0 2,2 )f i,j-2p + (13) +k (β 0 1,1 + 2β 0 2,1 + 2β 0 1,2 + 4β 0 2,2 )f i-1,j+1 - -k (β 0 2,1 + 2β 2,2 )f i-2,j+p + (β 0 1,2 + 2β 2,2 )f i-1,j+2p + +k ((β 2,2 )f i-2,j+2p ) 3.
Convergence of the methods.

In this section we are going to study the convergence of the new methods, all of which are one-step finite difference types when they approximate the problem (1), then we can take the definition of convergence from [START_REF] Strikwerda | Finite difference schemes and partial differential equations[END_REF], pages 23-24 for one-step methods. A direct proof of convergence is usually difficult, in which case we employ the equivalent verifiable conditions of consistency and stability as the Lax-Richtmyer equivalence theorem.

3.1.

Consistency of the methods.

We are going to use a definition and the notation in [START_REF] Strikwerda | Finite difference schemes and partial differential equations[END_REF], that is, we say that the finite difference scheme In our case, we choose the time step as a function of the space, k = F (h), so we are going to consider the next definition of order of accuracy: "a scheme P k,h v = R k,h f with k = F (h) that is consistent with the differential equation is accurate of order r if for any smooth function φ(t, x)"

P k,h v = f is consistent
P k,h φ -R k,h φ = O(h r ).
Theorem 1: The explicit method ( 10) is consistent with order min(r 1 + 2, r 2 + 2) with the differential equation [START_REF] Ahmad | MOL solvers for hyperbolic PDEs with source terms[END_REF].

Proof If we consider that u(x, t + k) -e -bk u(x -ak, t) = (14) = (1-∇ -ak x ) n 1-∇ k t -e -bk (1-∇ -ak x ) n 1-∇ -ak x -log(1 -∇ k t ) + log(1 -∇ ak x ) + bk kf (x + akn, t),
(from ( 9)) and we have that

P k,h φ -R k,h φ = k   ∞ q 1 =0   ∞ q 2 =0 β n q1,q2 (∇ h t ) q 1 (∇ k x ) q 2 f i,j+pn     - -k   r 1 q 1 =0   r 2 q 2 =0 β n q1,q2 (∇ h t ) q1 (∇ k x ) q2 f i,j+pn     = (15) k   ∞ q1=r1+1   ∞ q2=0 β n q 1 ,q 2 (∇ h t ) q 1 (∇ k x ) q 2 f i,j+pn     + +k   r1 q1=0   ∞ q2=r2+1 β n q 1 ,q 2 (∇ h t ) q 1 (∇ k x ) q 2 f i,j+pn     ,
and the differences satisfy ( 

∇ h t ) q 1 φ(x, t) = h q 1 (∂ t ) q 1 φ(x, t)+O(h q 1 +1 ), and (∇ k x ) q 2 φ(x, t) = k q 2 (∂ x ) q 2 φ(x, t)+ O(k q2+1 ), obtaining that P k,h φ -R k,h φ = k   ∞ q 1 =r 1 +1   ∞ q 2 =0 β n q 1 ,q 2 (∇ h t ) q 1 (∇ k x ) q 2 f i,j+pn     + ( 16 
β n q 1 ,q 2 (∇ h t ) q 1 (∇ k x ) q 2 f i,j+pn     = k h r 1 +1 β n r 1 +1,0 (∂ t ) r 1 +1 f i,j+pn + O(k) + O(h r 1 +2 ) + k k r 2 +1 β n 0,r 2 +1 (∂ x ) r 2 +1 f i,j+pn + O(h) + O(k r 2 +2 ) , (this is because ∇ h t ∇ k x ϕ = ∇ k x ∇ h t ϕ
) and we only need to consider that h = ak.

3.2.

Stability of the methods.

We will consider the definition of stability that appears in [START_REF] Strikwerda | Finite difference schemes and partial differential equations[END_REF], p. 29 for homogeneous initial value problems. Proposition 2: The new methods are unconditional unstable with the inhomogeneous constant coefficient one-way advection-reaction equation.

Proof

There are two different ways to demonstrate that the new methods are unconditional unstable applied to the homogeneous equation:

1) If, b = 0, p(x, t) in 1, this is, if we reduce to consider only the pure advection homogeneous problem

u t + au x = 0
the new methods reduce to the classical method u i+1,j = u i,j+p , (p = 1 or p = -1 depending on the sign of a), this method is stable with this problem (as it is shown in many references, for example [START_REF] Strikwerda | Finite difference schemes and partial differential equations[END_REF]). Now, a consistent one-step scheme for the equation

u t + au x + bu = 0
is stable if and only if it is stable for this equation when b is equal to 0 (following the Theorem 2.2.3 in [START_REF] Strikwerda | Finite difference schemes and partial differential equations[END_REF], p. 53), then our algorithms are stable with this last homogeneous equation.

2) We could also prove that the new methods are stable with the homogeneous advection-reaction equation using the Von Neumann analysis by considering the well-known Fourier inversion formula. We have

v n+1,m = 1 √ 2π πh -πh
e imhξ vn (ξ)dξ, which implies vn+1 (ξ) = e -bh e ikξ vn (ξ), and the amplification factor g(hξ) satisfies the stability condition on Theorem 2.2.1 in [START_REF] Strikwerda | Finite difference schemes and partial differential equations[END_REF], because, in our case In these both ways, we have prove that the new methods are stable with homogeneous problem, now, with the inhomogeneous problem, we merely remember that using Duhamel's principle, a scheme is stable for the equation P k,h v = f if it is stable for the equation P k,h v = 0 as it is shown in [START_REF] Strikwerda | Finite difference schemes and partial differential equations[END_REF], chapter 9.

| g(θ, k, h) |= e -bh ≤

4.

Numerical examples.

There are many recent references proposing numerical test examples of this kind or new methods to solve PDE's as 3 or the resulting ODE's after the Method Of Lines is used (see [START_REF] Ahmad | MOL solvers for hyperbolic PDEs with source terms[END_REF] [2], [START_REF] Finlayson | Numerical methods for Problems with moving fronts[END_REF], [START_REF] Kumar | A three-step wavelet Galerkin method for parabolic and hyperbolic partial differential equations[END_REF], [START_REF] Martín-Vaquero | Exponential fitting BDF algorithms: explicit and implicit 0-stable methods[END_REF], [START_REF] Mccartin | Numerical investigation of the validity of the quasi-static approximation in the modelling of catalytic converters[END_REF], [START_REF] Mccartin | The exponential method of angled derivatives[END_REF], [START_REF] Saucez | Upwinding in the method of lines[END_REF], [START_REF] Sethian | Fast marching methods[END_REF], [START_REF] Strikwerda | Finite difference schemes and partial differential equations[END_REF] or [START_REF] Wang | New characteristic difference method with adaptive mesh for one-dimensional unsteady convection-dominated diffusion equations[END_REF]). But in this section, we are going to compare, in most of the cases, the new schemes with the well-known Lax-Wendroff method.

Example 1: We are going to use a simple example to see the convergence ratios of some of the new methods, we consider the problem (3) with a = 1, b = 1 and

f (x, t) = (1 + t + x) cos(t(1 + x)) + sin(t(1 + x)), with t, x ∈ [0, 1].
The initial (at t 0 = 0) and boundary (at x 0 = 0 and x f = 1) conditions are those such the exact solution is u(x, t) = sin(t + xt).

We have chosen t = k = 1 20 , 1 100 , 1 500 and we have compared in Table 1 the results obtained with some of our new methods against the results obtained with the well-known Lax-Wendroff with λ = k h = 1. The method Expl-α-β-γ will denote the method in 10 with r 1 = α, r 2 = β and n = γ. Error is max i,j | u(jh, ik) -u i,j |, while ratio convergence in column of k = . Example 2: The second example is of importance in the mathematical modelling of the warmup process for automative catalytic converters (see [START_REF] Finlayson | Numerical methods for Problems with moving fronts[END_REF], [START_REF] Mccartin | Numerical investigation of the validity of the quasi-static approximation in the modelling of catalytic converters[END_REF] or [START_REF] Mccartin | The exponential method of angled derivatives[END_REF]). In spite of the fact that the flow of air is down the length of the converter, chemical reactions along its surface give rise to a backward propagating wave known as the light-off point. Herewith, we model such countercurrent wave propagation through the forcing 1.472

Method

× 10 -6 term f (x, t) = 50erf c(6(x + t -2)) - 12 √ π e -36(x+t-2) 2 ,
with a = 1 and b = 100 in (1). The initial (at t 0 = 0) and boundary (at x 0 = 0 and x f = 1) conditions are those such the exact solution is

u(x, t) = 1 2 erf c(6(x + t -2)).
In Figure 1 we can see that f (x, t) changes very fast near t = 1, x = 1 and this produce problems to the numerical methods.

We have chosen t = k = 1 20 , 1 100 , 1 500 , we have solved the problem in t ∈ [0, 1], x ∈ [0, 1] and we have compared in Table 2 the results obtained with some of our new methods against the results obtained with the well-known Lax-Wendroff with λ = k h = 1. The method Expl-α-β-γ will denote the method in [START_REF] Mccartin | The exponential method of angled derivatives[END_REF] with

r 1 = α, r 2 = β and n = γ. Error is max i,j | u(jh, ik) -u i,j |.
Obviously, the new methods have higher-order and with smaller length step h the results with the new methods are much better than with Lax-Wendroff.

Example 3: We consider the problem (see [START_REF] Strikwerda | Finite difference schemes and partial differential equations[END_REF])

u t + u x = -sin 2 u, x ∈ [0, 1], t ∈ [0, 1],
subject to the boundary conditions In Figure 2 we can see that | εg(x, t, u) |=| -sin 2 u | 1 (in this example) and the new numerical methods have very good results.

φ(x) = 2 +
Again, the error is max i,j | u(jh, ik) -u i,j | and we have compared in Table 3 the results obtained with some of our new methods against the results obtained with the well-known Lax-Wendroff with λ = k h = 1, obviously new methods are faster, because they are explicit and the results are better because the order is higher.

Example 4: Now, we are going to change in the Problem 3 a parameter on the function εg(x, t, u), so now the non linear problem is

u t + u x = -sin 2 u, x ∈ [0, 1], t ∈ [0, 1],
subject to the boundary conditions

φ(x) = 2 + x 10 , ϕ 0 (t) = arc cot cot 2 -t 10 + t , ϕ 1 (t) = arc cot cot 2 + (1 -t) 10 + t .
If we use a similar reasoning to what we can read in [START_REF] Strikwerda | Finite difference schemes and partial differential equations[END_REF], we can find the solution of the problem. We define τ = t, ξ = x -t, and ũ(τ, ξ) = u(t, x), then

∂ ũ ∂τ = ∂t ∂τ u t + ∂x ∂τ u x = = u t + u x = -sin 2 u,
solving the ordinary differential in τ , we have that ũ(τ, ξ) = arc cot( τ + c) and u(t, x) = ũ(t, x -t) and according to the initial conditions we finally have that

u(x, t) = arc cot cot 2 + (x -t) 10 + t .
We are trying to study the behavior of the error with the different algorithms when the parameter changes. Therefore, in Table 4, we have compared the results obtained with some of the new methods and Lax-Wendroff method with λ = k h = 1, being k = h = 1 20 , 1 100 and = 1, 1 5 , 1 25 . Again, the new methods are faster. In this case, we have consider error with norm . 2 .

We can easily see in Table 4 that the numerical methods function better and better when is smaller and smaller in norm. The reason is that f (x, t, u) is similar to a constant function when 1 as we can see in Figure 3.

Example 5: Now, we are going to consider a modification of a well-known model problem proposed by Leveque and Yee [START_REF] Leveque | A study of numerical methods for hyperbolic conservation laws with stiff source terms[END_REF] (see [START_REF] Ahmad | MOL solvers for hyperbolic PDEs with source terms[END_REF], too), this is u t + u x = -µu(u -1)(u - In the examples 1-4, we could check approximately the order of the new methods, however, in this numerical example, we can not check it (as it happens with the Lax-Wendroff method), because of the unstability produced by the test example.

5.

Conclusions.

Several numerical methods were presented with good results for the non-linear nonhomogeneous constant coefficient one-way advection-reaction equation. This paper is part of a bigger project where the authors want to extend these schemes to systems of hyperbolic equations with constant coefficients in one space dimension. Another interesting goal is extending these finite difference to other more challenging problems as for example, the advection-reaction equation with constant coefficients but in two space dimensions.
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 1 Figure 1. Plots of the functions u(x, t) solution of the problem 2 and f (x, t), the forcing term.

Error k = 1 20Error k = 1 100Error k = 1 500

 111 Expl-2-2-0 9.259 × 10 -3 3.477 × 10 -5 6.272 × 10 -8 Expl-2-2-1 9.337 × 10 -3 1.116 × 10 -4 8.425 × 10 -7 Expl-3-3-0 7.655 × 10 -3 1.950 × 10 -5 3.181 × 10 -8 Lax-Wendroff 4.424 × 10 -4 3.245 × 10 -5

Figure 2 .

 2 Figure 2. Plots of the functions u(x, t) solution of the problem 3 and f (x, t, u).
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Table 1 .

 1 Numerical Errors in Problem 1.
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Table 2 .

 2 Numerical Errors in Problem 2.

Table 3 .

 3 Numerical Errors in Problem 3.

	Method Expl-1-1-0	Error k = 1 20 5.219 × 10 -5	Time (sec) Error k = 1 100 0.1 2.071 × 10 -6	Time (sec) 4.216
	Expl-2-2-0	3.094 × 10 -6	0.24	2.343 × 10 -8	8.152
	Expl-3-3-0	3.127 × 10 -7	0.54	8.938 × 10 -10	16.45
	Lax-Wendroff 4.490 × 10 -6	1.41	1.796 × 10 -7	33.43
	being the solution				
		u(x, t) = arc cot cot	2 + x -t 10	+ t .

Table 4 .

 4 Numerical Errors in Problem 4.
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t (a) f (x, t, u) when = 1 5 . (b) f (x, t, u) when = 1 25 .

Figure

3

. Plots of f (x, t, u) when = 1 5 , 1 25 .
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is simply u(x, t) = u(x -t, 0). This equation has stable equilibria at u = 0 and u = 1, but unstable equilibrium at u = 1 2 . Our numerical methods are exact for this problem, so, we are going to consider the following example:

with

r(x, t) being such that, the solution of the problem is

for example, ε = 10 -5 . In this case, even when the parameter µ = 10 is not very big, the numerical methods can have many difficulties because the unstability, since the solution cross the value 1 2 as we can see in Figure 4. However, if we modify slightly the problem 18 to

(this is, the parameters in our method are a = 1, b = 1) with

then, ψ(x, t, u) is relatively small in norm (as we show in Figure 4) and our numerical methods show very good results, as we can see in Table 5.
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