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In this work we introduce a new method for solving nonsmooth equations with simple constraints. The method is based on the inexact and quasi-Newton approaches with backtracking strategy. Some conditions are given that ensure global superlinear convergence to a solution of the equation. Moreover, we propose a nonmonotone scheme of algorithm. Both versions of algorithm was constructed for the Lipschitz continuous equations.

Introduction

The problem considered in this work is to find x ∈ Ω ⊂ R n , which is a solution of the system of nonlinear equations

F (x) = 0, (1) 
where Ω is closed and convex, F : R n → R n is Lipschitz continuous on an open set that contains Ω. Newton's method is the most known method for solving nonlinear systems, which arise from other important problems. Pang and Qi in [START_REF] Pang | Nonsmooth equations: motivation and algorithms[END_REF] established a lot of the motivations of nonsmooth equations. Constrained nonlinear systems appear in applications when we need to solve real-life problems. However, not all solutions of the mathematical model have physical meaning, only the ones belonging to a constraint set Ω. Often, Ω is an n-dimensional box {x ∈ R n : l ≤ x ≤ u}, where l, u ∈ R n . A formulation as nonlinear programming problem using the squared norm of F as objective function can be inefficient in some cases.

An efficient method for solving the equation (1) without constraint is the inexact Newton method. The general idea of this method was presented by Dembo, Eisenstat and Steihaug in [START_REF] Dembo | Inexact Newton methods[END_REF]. A sequence x (k) of approximations to solution x * is generated as follows: find the step s (k) ∈ R n which satisfies J x (k) s (k) + F x (k) ≤ η k F x (k) and set x (k+1) = x (k) + s (k) , where η k ∈ [0, 1), k = 0, 1, 2, ... are the scalar parameters and J(x) denotes the Jacobian of F . The inexact-Newton iteration was analyzed from various points of view, e.g. global convergence by Eisenstat and Walker in [START_REF] Eisenstat | Globally convergent inexact Newton methods[END_REF], nonsmooth version by Martínez and Qi in [START_REF] Martínez | Inexact Newton method for solving nonsmooth equations[END_REF], nonmonotone smooth version by Bonettini in [START_REF] Bonettini | A nonmonotone inexact Newton method[END_REF]. Moreover, Kozakevich, Martínez and Santos introduced in [START_REF] Kozakevich | Solving nonlinear systems of equations with simple constraints[END_REF] global convergent inexact-Newton algorithm for solving a 

B k s (k) = -F x (k) ,
where, in general B k is not the Jacobian, e.g. in generalized Newton method B k is taken from Clarke's generalized Jacobian ∂F (x) (see [START_REF] Qi | A nonsmooth version of Newton's method[END_REF]) or from Bdifferential ∂ B F (x) (see [START_REF] Qi | Convergence analysis of some algorithms for solving nonsmooth equations[END_REF]). In [START_REF] Pu | Globally convergent inexact generalized Newton's methods for nonsmooth equations[END_REF] one type of globally convergent inexact generalized Newton's method to solve nonsmooth equations was proposed by Pu and Tian. The combination of the ideas of inexact-Newton and quasi-Newton method was described in several papers. Some versions of the inexact quasi-Newton method for solving smooth equations was proposed e.g. by Bergamaschi, Moret, Zilli in [START_REF] Bergamaschi | Inexact quasi-Newton methods for sparse systems of nonlinear equations[END_REF] (inexact Newton-Cimmino method for sparse systems) and Birgin, Krejić, Martínez in [START_REF] Birgin | Globally convergent inexact quasi-Newton methods for solving nonlinear systems[END_REF] (inexact quasi-Newton algorithm with backtracking). Another study on the inexact quasi-Newton method with preconditioners can be found in Bergamaschi, Bru, Martínez, Putti [START_REF] Bergamaschi | Quasi-Newton preconditioners for the inexact Newton method[END_REF]. Our approach is to generalize the smooth inexact quasi-Newton method for nonsmooth case and to modify the general framework in a nonmonotone way. Our proposed algorithms was constructed for solving the Lipschitz continuous equations for which some mild assumptions are fulfilled.

In whole work we assume that function F : R n → R n is Lipschitz continuous, i.e. there exists L > 0 such that, for any x, y ∈ R n it holds

F (x) -F (y) ≤ L x -y .
According to the Rademacher's theorem the Lipschitz continuity of F implies that F is differentiable almost everywhere. Let D F be the set where F is differentiable. Then [START_REF] Qi | Convergence analysis of some algorithms for solving nonsmooth equations[END_REF]. The generalized Jacobian of F at x in the sense of Clarke [START_REF] Clarke | Optimization and Nonsmooth Analysis[END_REF] is

∂ B F (x) = lim x i →x JF (x i ) , x i ∈ D F is called B-differential of F at x
∂F (x) = conv ∂ B F (x).
We have (see [START_REF] Clarke | Optimization and Nonsmooth Analysis[END_REF]) (a) ∂F (x) is nonempty, convex and compact; (b) ∂F is upper semicontinuous at x. We say that F is BD-regular at x if F is locally Lipschitz at x and if all V ∈ ∂ B F (x) are nonsingular. Qi in [START_REF] Qi | Convergence analysis of some algorithms for solving nonsmooth equations[END_REF] (Lemma 2.6) proved that if F is BDregular at x, then there exist a neighborhood N of x and a constant C > 0 such that for any y ∈ N and V ∈ ∂ B F (y), V is nonsingular and

V -1 ≤ C.
This paper is organized as follows. In section 2 we describe the model algorithm of our nonsmooth inexact quasi-Newton method, we prove the superlinear convergence and we state convergence theorem for main algorithm of method. In section 3 we present a nonmonotone version of algorithm. Section 4 reports some numerical results concerning the application of the new algorithms to the different problems. Finally, we draw some conclusions in section 5.

Notation. Throughout the paper, x * ∈ Ω is a solution of (1). Moreover, • denotes the Euclidean norm. However, it is easy to verify that results are independent of this choice.

Algorithm and its properties

The main algorithm in this work is Algorithm 2. Before its statement, we define a more general method, that helps to understand the structure of the main algorithm.

Algorithm 1. (Model algorithm) Assume that σ ∈ (0, 1), γ ∈ (0, 1], τ 1 , τ 2 ∈ (0, 1), τ 1 < τ 2 are given independently of k. Let x (0) ∈ R n be an arbitrary initial point and α 0 = 1. Given a point x (k) , the steps for obtaining x (k+1) are:

Step 1. Find some s (k) ∈ R n such that

x (k) + s (k) ∈ Ω. Step 2. If F x (k) + α k s (k) ≤ F x (k) (2) define x (k+1) = x (k) + α k s (k) . (3) 
Otherwise set x (k+1) = x (k) .

Step 3.

If F x (k) + α k s (k) ≤ 1 - σγα k 2 F x (k) (4) 
set α k+1 = 1. Otherwise choose

α k+1 ∈ [τ 1 α k , τ 2 α k ] , (5) 
Let us denote K 1 = {k ∈ N : (4) holds}.

Lemma 1 Let x (k) be the sequence generated by Algorithm 1. If K 1 is infinite and lim sup k∈K 1 α k > 0 then

lim k→∞ F x (k) = 0.
Proof. Assume that K 2 is an infinite subset of K 1 such that 

α k ≥ ᾱ > 0 for all k ∈ K 2 . 4 
k 2 ≤ 1 - σγ ᾱ 2 ≡ c < 1 for all k ∈ K 2 . Therefore F x (k)
is a nonincreasing sequence such that F x (k+1) ≤ c F x (k) for all k ∈ K 2 . This implies that F x (k) → 0.

For convenience, the sum of squares of F (x) as merit function

f (x) = 1 2 F (x)
2 will be used. Note that F x (k) is reduced monotonically in algorithm. The sufficient reduction criterion imposed depends on the norm of F not on its generalized Jacobian.

Assumption A: Assume that function F is Lipschitz continuous. We say that F satisfies A at x if for any y ∈ R n and any V y ∈ ∂ B F (y), the following equality holds

F (y) -F (x) = V y (y -x) + o ( y -x ) .
Moreover, we say that F satisfies A at x with degree ρ if F is Lipschitz continuous and the following equality holds

F (y) -F (x) = V y (y -x) + O ( y -x ρ ) .
Remarks: (i) Pu and Tian in [START_REF] Pu | Globally convergent inexact generalized Newton's methods for nonsmooth equations[END_REF] established three classes of functions that satisfied assumption A. Semismoothness (introduced by Mifflin in [START_REF] Mifflin | Semismooth and Semiconvex Functions in Constrained Optimization[END_REF]), second order C-differentiability (introduced by Qi in [START_REF] Qi | C-differential operators, C-differentiability and generalized Newton methods[END_REF]) and H-differentiability (introduced by Gowda and Ravindran in [START_REF] Gowda | On the characterizations of P-and P 0 -properties in nonsmooth functions[END_REF]) are properties that imply A. (ii) If F is BD-regular at x and satisfies A at x, then there exist a neighborhood N of x and a constant C > 0 such that for any y ∈ N and V ∈ ∂ B F (y)

y -x ≤ C V y (y -x) . (6) 
Lemma 2 Let

l = max 2β, 1 2β + V y , where β = V -1 y , V y ∈ ∂ B F (y). If F is BD-regular at x * and satisfies assump- tion A at x * then 1 l y -x * ≤ F (y) ≤ l y -x * for all y ∈ N x * , where N x * is some neighborhood of x * .
Proof. By assumption A, there exists a neighborhood N x * of x * such that for any y ∈ N x * and any V y ∈ ∂ B F (y) Since for all V y ∈ ∂ B F (y)

F (y) -F (x * ) -V y (y -x * ) ≤ 1 2β y -x * .
F (y) = V y (y -x * ) + [F (y) -F (x * ) -V y (y -x * )] ,
taking norms,

F (y) ≤ V y y -x * + F (y) -F (x * ) -V y (y -x * ) ≤ ≤ V y + 1 2β y -x * ,
and

F (y) ≥ V -1 y -1 y -x * -F (y) -F (x * ) -V y (y -x * ) ≥ ≥ V -1 y -1 - 1 2β y -x * = 1 2β y -x * , whenever y ∈ N x * .
Remark: A similar lemma as the above one was established by Dembo, Eisenstat and Steihaug in [START_REF] Dembo | Inexact Newton methods[END_REF] for continuously differentiable functions to prove superlinear convergence of the classical inexact Newton method.

Theorem 3 Assume that L F = {x ∈ Ω : F (x) ≤ F (x 0 ) } is bounded. Let θ ∈ [0, 1
) and x (k) be the sequence generated by Algorithm 1 with γ = 1θ 2 . Assume that there exists M > 0 such that for all k = 0, 1, 2, ...

s (k) ≤ M (7) and V k s (k) + F x (k) ≤ θ F x (k) , (8) 
where

V k ∈ ∂ B F x (k) .
If F is BD-regular at x * , satisfies assumption A at x * and for every sequence x (k) converging to x * , every convergent sequence s (k) and every sequence {λ k } of positive scalars converging to 0 lim sup

k→∞ f x (k) + λ k s (k) -f x (k) λ k ≤ lim k→∞ F x (k) T V k s (k) , (9) 
whenever the limit in the left-hand side exists, then every limit point of the sequence x (k) is a solution of equation ( 1) and x (k) converges superlinearly to x * .

Proof. 

If
x (k) = x * .
Assume, by contradiction, that F (x * ) = 0. So, F x (k) = 0 for all k = 0, 1, 2, .... We may assume that α k < 1 for all k ∈ K 2 without loss of generality. By ( 5) and ( 4) we have that, for all k ∈ K 2

α k ∈ [τ 1 α k-1 , τ 2 α k-1 ] (11) 
and

F x (k-1) + α k-1 s (k-1) > 1 - σγα k-1 2 F x (k-1) . (12) 
By ( 10) and [START_REF] Kozakevich | Solving nonlinear systems of equations with simple constraints[END_REF] we have lim k∈K 2 α k-1 = 0. So, using [START_REF] Dembo | Inexact Newton methods[END_REF], we obtain that

lim k∈K2 x (k-1) = x * .
Moreover, by ( 12)

f x (k-1) + α k-1 s (k-1) -f x (k-1) α k-1 > σ 2 γ 2 α k-1 4 -σγ f x (k-1) (13) 
for all k ∈ K 2 .

Since s (k-1) ≤ M for all k, there exists K 3 , an infinite subset of K 2 , such that lim

k∈K 3 s (k-1) = s.
Taking limits for k ∈ K 3 on both sides of (13), we obtain

lim k∈K3 f x (k-1) + α k-1 s (k-1) -f x (k-1) α k-1 ≥ -σγf (x * ) .
Exploiting the assumption (9), we obtain

lim k∈K3 F x (k-1) T V k-1 s (k-1) ≥ -σγf (x * ) . So, for large enough k ∈ K 3 V k-1 s (k-1) , F x (k-1) > -γf x (k-1) (14) 
Now, observe that [START_REF] Eisenstat | Globally convergent inexact Newton methods[END_REF] implies that for all k = 0, 1, 2, ...

V k s (k) , F x (k) ≤ -γf x (k)
where V k ∈ ∂ B F x (k) , which contradicts [START_REF] Melhem | A comparison of methods for determining turning pons of nonlinear equations[END_REF]. This proves that original assumption

F (x * ) = 0 is false. Since F x (k)
is monotone, any other k) has to be solution of (1). Now assume that K 1 is finite. Hence, there exists k 0 ∈ N such that (4) does not hold for all k ≥ k 0 . Therefore, α k → 0 and we can repeat the former proof with some minor modifications.

Observe that, since F is BD-regular and θ ∈ [0, 1), then (8) implies that, for k large enough,

s (k) = V -1 k V k s (k) = V -1 k V k s (k) + F x (k) -V -1 k F x (k) ≤ ≤ V -1 k θ F x (k) + V -1 k F x (k) = = (θ + 1) V -1 k F x (k) ≤ 2 V -1 k F x (k) .
Therefore, by the above inequality, assumption A and (8), we have for k large enough

F x (k) + s (k) ≤ F x (k) + V k s (k) + o s (k) ≤ ≤ θ F x (k) + o F x (k) .
Since θ ∈ [0, 1) and F x (k) → 0, this implies that

lim k→∞ F x (k) + s (k) F x (k) = 0.
So, for k large enough

F x (k) + s (k) ≤ 1 - σγ 2 F x (k) .
Therefore (4) holds with α k = 1. Hence for k large enough x (k+1) = x (k) + s (k) . Then we have

lim k→∞ F x (k+1) F x (k) = 0. ( 15 
)
By the Lemma 2 there exists a number l > 0 such that

1 l y -x * ≤ F (y) ≤ l y -x *
for all y in a neighborhood of x * . Then, by ( 15)

lim k→∞ x (k+1) -x * x (k) -x * = 0.
Remark: If F satisfies A at x * with degree 2, then we obtain quadratic convergence of the algorithm. Now, we will present Algorithm 2 which is a particular case of Algorithm 1, where either conditions [START_REF] Dembo | Inexact Newton methods[END_REF] and ( 8) are fulfilled or the execution is stopped. If θ is close to 1 and M is large then failure in satisfying (7) and ( 8) reflects near-stationarity of the current point.

Algorithm 2. (Inexact quasi-Newton method) Assume that θ ∈ [0, 1), σ ∈ (0, 1), γ = 1θ 2 , τ 1 , τ 2 ∈ (0, 1), τ 1 < τ 2 , M > 0 are given independently of k. Let x (0) ∈ R n be an arbitrary initial point and α 0 = 1. Given a point x (k) , the steps for obtaining x (k+1) are:

Step 1. Find some s k ∈ R n such that

x (k) + s (k) ∈ Ω and s (k) ≤ M (16) 
and

V k s (k) + F x (k) ≤ θ F x (k) , (17) 
where

V k ∈ ∂ B F x (k)
. If such choice is not possible, the algorithm breaks down.

Step 2.

If F x (k) + α k s (k) ≤ F x (k) (18) define x (k+1) = x (k) + α k s (k) . (19) 
Otherwise set

x (k+1) = x (k) . Step 3. If F x (k) + α k s (k) ≤ 1 - σγα k 2 F x (k) (20) 
set α k+1 = 1. Otherwise choose

α k+1 ∈ [τ 1 α k , τ 2 α k ] .
The proof of the below theorem follows straightforward from Theorem 3 and definition of Algorithm 2.

Theorem 4 Assume that L F = {x ∈ Ω : F (x) ≤ F (x 0 ) } is bounded. Let x (k) be the sequence generated by Algorithm 2. Then every limit point of the sequence x (k) is a solution of (1). Moreover, if F is BD-regular at x * , satisfies A at x * and (9) holds, then x (k) converges superlinearly to x * .

Remark: Assumption with condition ( 9) is a weaker version of the assumption (A4) in [START_REF] Martínez | Inexact Newton method for solving nonsmooth equations[END_REF]. Such condition is not required in the smooth case, because the function F and its Jacobian have the strong properties. In this section we describe a nonmonotone version of algorithm, modificating the general framework ( 17) and ( 20) by substituting these conditions [START_REF] Pu | Globally convergent inexact generalized Newton's methods for nonsmooth equations[END_REF] and [START_REF] Qi | A nonsmooth version of Newton's method[END_REF] with the inequalities in which an element x ℓ(k) is used. x ℓ(k) is the point with the following property

F x ℓ(k) = max 0≤j≤min(n,k) F x (k-j) (21) for given n ∈ N. Note that k -min (n, k) ≤ ℓ(k) ≤ k.
The nonmonotone approach is well known for their effectiveness in the choice of the step in many linesearch procedures (see e.g. [START_REF] Grippo | A nonmonotone line search technique for Newton's method[END_REF]). The smooth nonmonotone inexact Newton method was proposed by Bonettini in [START_REF] Bonettini | A nonmonotone inexact Newton method[END_REF]. Bonettini and Tinti in [START_REF] Bonettini | A nonmonotone semismooth inexact Newton method[END_REF] modified the general inexact Newton algorithm in a nonmonotone way for a semismooth equations. Our approach is similar as both versions presented in [START_REF] Bonettini | A nonmonotone inexact Newton method[END_REF] (smooth) and [START_REF] Bonettini | A nonmonotone semismooth inexact Newton method[END_REF] (semismooth). In these papers the authors are mainly concerned with convergence of inexact Newton method for solving unconstrained semismooth equations while we study the inexact quasi-Newton method for the Lipschitz continuous equations with simple constraint. Moreover, the particular case of the below algorithm that corresponds to Ω = R n consists a feature of the acceptance of x (k) +α k s (k) as new iterate whenever

F x (k) + α k s (k) ≤ F x ℓ(k) .
Let us note that this approach allow to alleviate the tendency to taking "smaller than necessary" steps in backtracking.

Algorithm 3. (Nonmonotone inexact quasi-Newton method) Assume that θ ∈ [0, 1), σ ∈ (0, 1), γ = 1θ 2 , τ 1 , τ 2 ∈ (0, 1), τ 1 < τ 2 , M > 0 are given independently of k. Let x (0) ∈ R n be an arbitrary initial point and α 0 = 1. Given a point x (k) , the steps for obtaining x (k+1) are:

Step 1. Find some s k ∈ R n such that

x (k) + s (k) ∈ Ω and s (k) ≤ M (22) and V k s (k) + F x (k) ≤ θ F x ℓ(k) , (23) 
where

V k ∈ ∂ B F x (k)
. If such choice is not possible, the algorithm breaks down.

Step 2. 

If F x (k) + α k s (k) ≤ F x ℓ(k) (24) define x (k+1) = x (k) + α k s (k) . ( 25 
) Otherwise set x (k+1) = x (k) . Step 3. If F x (k) + α k s (k) ≤ 1 - σγα k 2 F x ℓ(k) (26 
α k+1 ∈ [τ 1 α k , τ 2 α k ] .
Remark: The sequence F x (k) satisfying ( 23) and ( 26) is nonmonotone but

F x ℓ(k)
is a monotone nonincreasing subsequence of it. We will assume that at each iteration step k it is possible to obtain the vector s (k) which is an inexact quasi-Newton step for some V k ∈ ∂ B F x (k) . We can use the following sufficient condition, which is the special case of assumption (A1) given by Martinez, Qi [START_REF] Martínez | Inexact Newton method for solving nonsmooth equations[END_REF]: there exists δ ≥ 0 such that for all x, v ∈ R n , the intersection of the ball

N (v, δ) = {u ∈ R n : u -v ≤ δ} and the range set R(x) = {u ∈ R n : u = V k s for some s ∈ R n and V k ∈ ∂ B F (x)} is not empty.
The below lemma shows that the sequence generated by Algorithm 3 satisfies conditions (23) and (24).

Lemma 5 Let θ ∈ [0, 1), σ ∈ (0, 1), γ = 1θ 2 and M > 0. Suppose that exists s satisfying

x (k) + s ∈ Ω and s ≤ M and V k s + F x (k) ≤ θ F x ℓ(k)
for some

V k ∈ ∂ B F x (k) .
Then, there exist α max ∈ (0, 1] and a vector s such that

F x (k) + αs ≤ 1 - σγα 2 F x ℓ(k)
holds for any α ∈ (0, α max ].

Proof. Let s = αs. Then we have

V k s + F (x (k) ) = αV k s + αF (x (k) ) -αF (x (k) ) + F (x (k) ) ≤ ≤ α V k s + F (x (k) ) + (1 -α) F (x (k) ) ≤ ≤ αθ F (x ℓ(k) ) + (1 -α) F (x ℓ(k) ) = = [1 -α(1 -θ)] F (x ℓ(k) ) . Now, let ε = (1 -θ)[2 -δ(1 + θ)] 2α s F (x ℓ(k) ) (27) 
and δ > 0 be sufficiently small that 

F x (k) + αs -F x (k) -V k s ≤ εα s (28) 11 F 
for all V k ∈ ∂ B F x (k) whenever s ≤ δ.
Choosing α max = min 1, δ s , for any α ∈ (0, α max ] we have s ≤ δ and, using (27) and (28) we obtain the following inequality

F x (k) + αs ≤ F x (k) + αs -F x (k) -V k s + F x (k) + V k s ≤ ≤ εα 2 s + [1 -α(1 -θ)] F (x ℓ(k) ) = = 1 - σγα 2 F x ℓ(k) ,
which completes the proof.

So, the above lemma yields that Algorithm 3 breaks down if and only if it is impossible to find a nonmonotone inexact quasi-Newton step.

Since x ℓ(k) is a subsequence of x (k) , also the sequence F x ℓ(k) converges to 0 when k goes to infinity, the proof of the below theorem follows from Theorem 4 and definition of Algorithm 3.

Theorem 6 Assume that L F = {x ∈ Ω : F (x) ≤ F (x 0 ) } is bounded. Let θ ∈ [0, 1
) and x (k) be the sequence generated by Algorithm 3 with γ = 1θ 2 . Assume that there exists M > 0 such that for all k = 0, 1, 2, ...

s (k) ≤ M (29) and V k s (k) + F x (k) ≤ θ F x ℓ(k) , (30) 
where

V k ∈ ∂ B F x (k) .
If F is BD-regular at x * , satisfies assumption A at x * , at each iteration step k it is possible to find a vector s (k) such that condition (29) is satisfied and for every sequence x (k) converging to x * , every convergent sequence s (k) and every sequence {λ k } of positive scalars converging to 0 lim sup

k→∞ f x (k) + λ k s (k) -f x ℓ(k) λ k ≤ lim k→∞ F x (k) T V k s (k) , (31) 
whenever the limit in the left-hand side exists, then every limit point of the sequence x (k) is a solution of equation ( 1) and x (k) converges superlinearly to x * .

Numerical examples

In this section, we present some preliminary numerical results for constructed algorithms. We solved some nonsmooth equation from Spedicato [START_REF] Spedicato | Computational experience with quasi-Newton algorithms for minimization problems of moderately large size[END_REF] and the box-constrained nonlinear system related to the computation of singular points of homotopic paths (defined in [START_REF] Kozakevich | Solving nonlinear systems of equations with simple constraints[END_REF]). In the last one we used second test problem taken from collection of Melhem and Rheinboldt [START_REF] Melhem | A comparison of methods for determining turning pons of nonlinear equations[END_REF].

All the experiments were performed on a Pentium IV 2.4 GHz using Dev-C++ and double precision arithmetic. The parameters used in Algorithms 2 and 3 are specified as follows: θ = 0.999, σ = 10 -3 , τ 1 = τ 2 = 0.5 and M = 10.

Moreover, we declare a failure of the algorithm when the stopping criterion F x (k) ≤ 10 -10 is not reached after 1000 iterations or when, in order to satisfy the backtracking condition [START_REF] Qi | A nonsmooth version of Newton's method[END_REF] or (26), more than 25 reductions of the parameter α k have been performed. Tables 1 and2 summarize the results in terms of number of iterations and of backtracking reductions, reported in the rows with the "iter" and "back" symbols, respectively. Our aim is to compare the performances of Algorithm 2 (monotone case) and the ones of Algorithm 3 with different nonmonotonicity degrees. For the nonmonotone algorithm the parameter n has been chosen equal 2, 5 and 8.

Example 1. Consider the equation ( 1) with function F : R n → R n defined by

F i (x) = c 1 g i (x) for g i (x) ≥ 0, c 2 g i (x) for g i (x) ≤ 0,
where

g i (x) = i - i j=1 {cos(x j -1) + j [1 -cos(x j -1)] -sin(x j -1)} . If c 1 = c 2 , F is differentiable. Therefore |c 1 -c 2 |
may be interpreted as the degree of nondifferentiability of F . See [START_REF] Spedicato | Computational experience with quasi-Newton algorithms for minimization problems of moderately large size[END_REF]. The system F (x) = 0 has the solutions (1 + 2k 1 π, ..., 1 + 2k n π) T ,where k 1 , ..., k n are arbitrary integers. We executed both algorithms for three nonsmooth cases: c 1 = -c 2 = 1, 10, 100 with Ω = {-100 ≤ x i ≤ 100, i = 1, ..., n}. Table 2 shows the nonmonotone scheme differs to the monotone one only on the backtracking rule for larger systems.

Example 2. Given H : R m+1 → R m , H = H(y, t), we say that (y * , t * ) is a singular point of H(y, t) = 0 if H (y * , t * ) = 0 and H y (y * , t * ) is singular. Singular points are solutions of system

H(y, t) = 0 H y (y, t) v = 0 v 2 = 1
which has 2m+1 equations and unknowns. We used the problem with Freudenstein-Roth function (m = 2, n = 5) with Ω = {-100 ≤ y 1 , y 2 ≤ 100 and -10 ≤ t ≤ 10}. Table 3 shows that the general reduction of the number of iteration can be observed in nonmonotone approach.

h 1 (y, t) = y 1 -y 3 2 + 5y
Table 1. Numerical results for Example 1. 

c 1 = -c 2 = 1 c 1 = -c 2 = 10 c 1 = -c 2 =

Conclusions

A family of Newton-type methods is important for solving nonlinear equations. The are especially useful when the system has many variables and inexact approach is practical. In this paper, we have studied the new version of inexact quasi-Newton method for solving nonsmooth equations with simple constraint.

We have first proved that under mild assumptions, the every limit point of sequence generated by the inexact quasi-Newton algorithm is solution of equation (1) and this sequence is globally and superlinearly convergent. Then we proposed the nonmonotone technique which can reduce the number of steps of iteration. The numerical experiments with the inexact quasi-Newton method for solving some constrained equations are promising. The numerical tests show that the nonmonotone approach can produce a sensible decrease both the number of iterations and of backtracking reductions. However, a degenerate behaviour of the algorithm can be observed in some problems for a too large value of parameter n. 

  constrained equations. In quasi-Newton methods the direction (step) is computed by solving
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  K 1 is infinite and lim sup k∈K1 α k > 0 the result follows from Lemma 1 and Lipschitz continuity of F . Now, assume that Because L F is bounded, there exist x * ∈ Ω and K 2 , an infinite subset of K 1 , such that lim
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	K 1 is infinite and lim k∈K1	α k = 0.	(10)
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 2 Numerical results for Freudenstein-Roth function (Example 2)
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