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In this paper we study the a one dimensional reaction-diffusion-convection (R-D-C) equation with weak spatial non-
uniformities to the diffusion and reaction rates. The convection is represented by a uniform flow field. Singular per-
turbation analysis will be used to compute the speed of the front as well as the asymptotic solution.
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Integral Condition, Propagation of Fronts.
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1. Introduction

From a physical point of view, the convection-diffusion process and the diffusion-reaction process are
fundamental to describe a wide variety of problems in physical, chemical and biological sciences. Nonlinear
equations that model such process provide many new insights into the question of interaction of nonlinearity
and diffusion. In these problems the propagation of fronts has deserved particular attention of researchers.
We can mention, without being exhaust, the works of [1], [2], [3], [6], [7] and [8].

The R-D-C models which have widest range of applicability involve heterogeneities in the diffusion
and reaction coefficients. However little work has been developed in this general case. Recently in [10]
the authors studied a (R-D) model in a spatially heterogeneous media. They treat separately the case
of nonuniform diffusion and nonuniform reaction. In this work while following the procedure in [10] we
consider simultaneously heterogeneities in diffusion and reaction.

In this paper we consider weak spatial nonuniformaties to the diffusion and reaction rates.
Further, this is a one dimensional study where the convection term is simply to provide a
uniform flow.

The paper is organized as follows. In section (2) we present the model. In section (3), we use a singular
perturbation analysis and we establish an expression for the asymptotic solution, and the front speed.

2. Problem’s formulation

Let consider the reaction-diffusion equation with convection

∂tφ = ∂x[D(εx)∂xφ] + U(εx)f(φ) + α∂xφ (1)
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2 M. Rodrigues

where the function f satisfies f(0) = f(1) = 0, and φ(x, 0) = 1 for x < 0 and φ(x, 0) = 0 for x > 0. In
(1) D and U are, respectively, the dimensionless diffusion coefficient and the reaction rate, ε is a small
parameter and α is the convection coefficient.

Since we expect solutions to behave like totally developed fronts, we consider a change of independent
variables defined by x̂ = x

ε and t̂ = t
ε . According to these transformations, the derivatives in Eq.

(1) can be replaced by

∂bt =
1
ε
∂t, ∂bx =

1
ε
∂x, ∂bxbx =

1
ε2

∂xx,

where hats denote the new variables. In order to simplify the notation, the hats are dropped
for convenience. Then Eq.(1) becomes

ε∂tφ = ε2∂x[D(x)∂xφ] + U(x)f(φ) + εα∂xφ. (2)

In order to have consistency with initial conditions and the existence of a front, we require that the
solution φ of (1) satisfies limx→−∞ φ = 1 and limx→+∞ φ = 0.

3. Singular Perturbation Analysis

In this section we study equation (2) with

U(x) ≡ β + δηU (x); D(x) ≡ 1 + δηD(x), (3)

where δηU (x) and δηD(x) are reaction and diffusion perturbations, respectively.

3.1. General Asymptotic Wavespeed

This method has been already use in the study of pulled fronts speed. We assume δ = O(ε), i.e., δ ≡ σε,
where σ = O(1).

Eqs. (2) and (3), together with the corresponding boundary conditions, becomes

ε∂tφ = ε2∂x[(1 + δηD(x))∂xφ] + (β + δηU (x))f(φ) + εα∂xφ (4)

lim
x→−∞φ = 1, lim

x→+∞φ = 0.

In order to study Eq. (4) we will make a nonrigorous asymptotic analysis. We assume that the domain
is divided into three regions according to the space scales: a boundary layer region, whose width is
O(ε), in which φ is rapidly varying; and two external regions in which φ is almost constant, i.e., either
φ = O(εn1) or φ = 1 + O(εn2), n1, n2 ∈ R+.

In order to solve Eq. (4) in the outer regions we expand φ as follows

φ(x, t; ε) = φ0(x, t) + εφ1(x, t) + ε2φ2(x, t) + O(ε3).

and consequently

f(φ) = f(φ0) + f (1)(φ0)φ1ε +
1
2
f (2)(φ0)φ2

1ε
2 + f (1)(φ0)φ2ε

2 + ...,

where f (1)(φ0) =
df(φ)
dφ

|φ=φ0 and f (2)(φ0) =
d2f(φ)

dφ2
|φ=φ0 .
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Singular perturbation analysis 3

By substituting the previous equation into Eq. (4) and collecting terms with the same powers of ε we
get

βf(φ0) = 0, lim
x→−∞φ0 = 1, lim

x→∞φ0 = 0 (5)

∂tφ0 = βf (1)(φ0)φ1 + σηU (x)f(φ0) + α∂xφ0, lim
x→±∞φ1 = 0 (6)

and

∂tφ1 = ∂xxφ0 + β
1
2
f (2)(φ0)φ2

1 + σηU (x)f (1)(φ0)φ1 + βf (1)(φ0)φ2 + α∂xφ1, lim
x→±∞φ2 = 0. (7)

The solution of Eq. (5) is φ0 = 1 in the left of the boundary layer and φ0 = 0 in the right of the boundary
layer. The solutions of Eqs. (6) and (7) are φ1 ≡ 0 and φ2 ≡ 0, respectively. Thus, φ(x, t; ε) = O(ε3) in the
right of the boundary layer and φ(x, t; ε) = 1 + O(ε3) in the left of the boundary layer. As we can see,
for this order of magnitude, there is no difference in the shape of the front.

In order to study the dynamics in the interior of the boundary layer, we translate Eq. (4) to the reference
frame of the front, i.e.,we define the new variable zε = x− S(t) where S(t) represents the position of
the front.

The derivatives in Eq. (4) are transformed according to

∂t → − Ṡ

ε
∂z + ∂t, ∂xx → 1

ε2
∂zz, ∂x → 1

ε
∂z, (8)

where Ṡ = dS
dt .

Taking into account [10], we expand φ and S in powers of ε we have

φ(z, t) = φ0(z) + εφ1(z, t) + ε2φ2(z, t) + ... (9)

S(t) = S0(t) + εS1(t) + ε2S2(t) + ...

and, consequently,

ηU (x) = ηU (S0 + zε + S1ε + ...) ' ηU (S0) + η′U (S0)(z + S1)ε + ... (10)

ηD(x) = ηD(S0 + zε + S1ε + ...) ' ηD(S0) + η′D(S0)(z + S1)ε + ... (11)

f(φ) = f(φ0) + f (1)(φ0)φ1ε +
1
2
f (2)(φ0)φ2

1ε
2 + f (1)(φ0)φ2ε

2 + ..., (12)

where η′U (S0) =
dηU (x)

dx
|x=S0 , η′D(S0) =

dηD(x)
dx

|x=S0 .

Inserting Eqs. (8), (9), (10), (11) and (12) into (4)
and after some calculations, we get the O(1) equation

∂zzφ0 + (Ṡ0 + α)∂zφ0 + βf(φ0) = 0. (13)
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4 M. Rodrigues

The O(ε) terms are given by

∂zzφ1 + (Ṡ0 + α)∂zφ1 + βf (1)(φ0)φ1 = −Ṡ1∂zφ0 − σηU (S0)f(φ0)− σηD(S0)∂zzφ0.

Introducing the operator

L = ∂zz + (Ṡ0 + α)∂z + βf (1)(φ0)

the O(ε) equation is equivalent to

L(φ1) = −Ṡ1∂zφ0 − σηU (S0)f(φ0)− σηD(S0)∂zzφ0. (14)

Finally, we get the terms in O(ε2)

∂zzφ2 + (Ṡ0 + α)∂zφ2 + βf (1)(φ0)φ2 = −Ṡ1∂zφ1 − β
1
2
f (2)(φ0)φ2

1 + ∂tφ1 − Ṡ2∂zφ0

−σηU (S0)f (1)(φ0)φ1 − ση′U (S0)(z + S1)f(φ0)

−σηD(S0)∂zzφ1 − ση′D(S0)∂zφ0

−ση′D(S0)(z + S1)∂zzφ0.

Since φ0 = φ0(z), Eq. (13) is equivalent to the homogeneous parabolic reaction-diffusion equation trans-
lated to the front reference frame, z = x − ct. The front travels at constant speed c, with c = α + Ṡ0.
Integrating the above equation with respect to t we get S0 = (c− α)t, where we assumed S(0) = 0.

The solvability integral condition of Eq. (14) is
∫ +∞
−∞ ψL(φ1)dz = 0 [9], where ψ is such that L†(ψ) = 0,

L† = ∂zz − (Ṡ0 + α)∂z + βf (1)(φ0) being L† the self-adjoint operator. It is easy to show that ψ = ecz dφ0

dz is
an eigen-function of L† with null eigenvalue.

Therefore, the solvability integral (14) may be rewritten

∫ +∞

−∞
ecz dφ0

dz

[
−Ṡ1∂zφ0(z)− σηU (S0)f(φ0)− σηD(S0)∂zzφ0

]
= 0 (15)

Using (13), we get

∫ +∞

−∞
ecz dφ0

dz
[−Ṡ1∂zφ0 − σηU (S0)f(φ0) + σηD(S0)(Ṡ0 + α)∂zφ0 + βσηD(S0)f(φ0)] = 0 (16)

and therefore

Ṡ1 = −σ(ηU (S0)− βηD(S0))
∫ +∞
−∞ ecz dφ0

dz f(φ0)dz − (Ṡ0 + α)σηD(S0)
∫ +∞
−∞ ecz(dφ0

dz )2dz
∫ +∞
−∞ ecz(dφ0

dz )2dz
,

with c = Ṡ0 + α.
Attending to the equation (13), that can be expressed as

βf(φ0) = −∂zzφ0 − (Ṡ0 + α)∂zφ0, c = α + Ṡ0

and using integrating by parts, the integral
∫ +∞
−∞ ecz dφ0

dz βf(φ0)dz that appears in the numerator
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Singular perturbation analysis 5

of Ṡ1 can be simplified as follows

∫ +∞

−∞
ecz dφ0

dz
βf(φ0)dz = −

∫ +∞

−∞
ecz dφ0

dz

d2φ0

dz2
dz

−c

∫ +∞

−∞
ecz(

dφ0

dz
)2dz

= −1
2
c

∫ +∞

−∞
ecz(

dφ0

dz
)2dz.

Then, we have the following simplification of Ṡ1

Ṡ1 =
cσ
2β

(ηU(S0) + βηD(S0)).

Taking into account Ṡ0 and Ṡ1 and after inverting the hyperbolic scaling, v(t) has the following
simplification

v(t) ' (c− α) +
cδ
2β

[ηU((c− α)tε) + βηD((c− α)tε)] + O(δ2).

3.2. General Asymptotic Solution

In this section we will construct an approximation for the solution of Eqs. (2) and (3). We begin by solving
Eq.(14).

Initially we prove that L(dφ0/dz) = 0 and use this fact to construct a solution for Eq. (14) of the form
φ1(z, t) = (dφ0/dz) + (dφ0/dz)zF (t), where F (t) is obtained from Eq. (14) and L(dφ0/dz) = 0. In fact

L
(

dφ0

dz

)
= ∂zz

(
dφ0

dz

)
+ (Ṡ0 + α)∂z

(
dφ0

dz

)
+ βf (1)(φ0)

(
dφ0

dz

)

= ∂zzz(φ0) + (Ṡ0 + α)∂zz(φ0) + ∂z(βf(φ0))

= ∂z(∂zzφ0 + (Ṡ0 + α)∂zφ0 + βf(φ0))

= 0,

because ∂zzφ0 + (Ṡ0 + α)∂zφ0 + βf(φ0) = 0.
On the other hand we have that

L(φ1) = L
((

dφ0

dz

)
+

(
dφ0

dz

)
zF (t)

)

= −(Ṡ0 + α)
(

dφ0

dz

)
F (t)− 2βf(φ0)F (t). (17)

We observe that in the establishment of (17) we used

(
d3φ0

dz3

)
+ (Ṡ0 + α)

(
d2φ0

dz2

)
+ βf (1)(φ0)

(
dφ0

dz

)
= L

(
dφ0

dz

)
= 0
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6 M. Rodrigues

and

(
d2φ0

dz2

)
= −(Ṡ0 + α)

(
dφ0

dz

)
− βf(φ0).

Attending to Eq. (13), Eq. (14) may be rewritten as

L(φ1) = [−Ṡ1 + σηD(S0)(Ṡ0 + α)]∂zφ0 + [−σηU (S0) + βσηD(S0)]f(φ0) (18)

and according to the equivalence between equations (17) and (18) , we get

−(Ṡ0 + α)
(

dφ0

dz

)
F (t)− 2βf(φ0)F (t) = [−Ṡ1 + σηD(S0)(Ṡ0 + α)]∂zφ0 + [−σηU (S0) + βσηD(S0)]f(φ0).

(19)

Inserting Ṡ1 = 1
2β cσ[ηU (S0) − βηD(S0)] + cσηD(S0), with c = Ṡ0 + α, into Eq. (19), it can be easily

checked that

F (t) =
1
2β

σ[ηU (S0)− βηD(S0)]. (20)

and therefore

φ1(z, t) =
dφ0

dz

[
1 +

1
2β

σ [ηU ((c− α)t)− βηD((c− α)t)] z
]

. (21)

3.3. Specific Asymptotic Solutions

In this section we will present a specific asymptotic solution.
Observe that, for the reaction terms of the form f(φ) = φq+1(1 − φq), q ≥ 1, the exact

solutions, φ0, of the equation (13) are well now in literature (see [6], [10]). In this case φ0

takes the form

φ0(z) =
1

(1 + exp (dz))a
, c =

√
β√

1 + q
, d = qc, a =

1
q
. (22)

Let us assume σ = 1, α = 0 in the Eq.(4) and q = 1 in (22).Taking into account that

zε + S(t) = x,

the asymptotic solution is represented by

φ(x, t) = φ0(x) + εφ1(x, t),

where

φ0(x, t) =
1

1 + exp
[ √

β√
2ε

(x− S(t))
]
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and

φ1(x, t) = −
c exp

[
c
(

x−S(t)
ε

)]

[
1 + exp

[
c
(

x−S(t)
ε

)]]2

[
1 +

1
2β

σ (ηU − βηD)
x− S(t)

ε

]
.

4. Illustration of the Solution Profiles

In this section, we consider a uniform mesh with uniform time steps and we will illustrate
the asymptotic solution profiles at various time.

Let us consider the following expressions for the diffusion

D(x) = εηD(x) + 1,

ηD(x) = 0.4− [(x/0.9) + 1]3 exp[(0.9)4 − (x + 0.9)4]

and the reaction

U(x) = εηU(x) + β,

ηU(x) = [(x/0.8) + 1]3 exp[(0.8)4 − (x + 0.8)4], β ∈ R+.

The following graphics show the diffusion and the reaction for β = 1.

0 20 40 60 80 100 120
0.96

0.97

0.98

0.99

1

1.01

1.02

1.03

1.04

Figure 1. Diffusion

0 20 40 60 80 100 120
1

1.005

1.01

1.015

1.02

1.025

Figure 2. Reaction, β = 1

For this specific diffusion and reaction, we will present the asymptotic solution profiles at
various times.
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0.9

1

t=500
t=1000
t=1500
t=2000

Figure 3. Asymptotic solutions for ε = 0.02 and different values of
t.

We conclude that, the solution behaves like a traveling wave.
Then, we illustrate the effect of the spatial uniform and non-uniform reaction and diffusion

on the asymptotic solution at a specific time, as we can see in the next graphs.

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.1

0.2

0.3
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0.6

0.7

0.8

0.9

1
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Figure 4. Asymptotic solutions for t = 500 and different values of ε

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0
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0.2

0.3

0.4

0.5
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0.7

0.8

0.9

1

ε=0.02
ε=0

Figure 5. Asymptotic solutions for t = 1000 and different values of
ε

Let us remark that,we obtained other numerical results that will not go to be illustrated,
where we concluded that, for small values of ε there is a good agreement between the
“exact solution”- which is in fact a numerical solution computed in a refined mesh - and the
asymptotic solution.
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[7] Sendiña-Nadal, I., Gómez-Gesteira, M., Pérez-Muñuzuri, V., Pérez-Villar, V., Armero, J., Ramı́rez-Piscina, L., Casademunt, J.,

Sagués, F. and Sancho, J. M., 1987, Wave Competition Excitable Modulated Media, Phys. Rev. E, 56, 6298-6301.
[8] Steinbock, O., Zykov, V.S. and Müller, S.C., 1993, Wave Propagation in an Exitable Medium along a line of a Velocity Jump, Phy.

Rev. E, 48, 3295-3298.
[9] Evans, L. C., 1998, Partial Differential Equations, Americam Mathematical Society, Providence.
[10] Méndez, V., Fort, J., Rotstein, H.G. and Fedotov, S., 2003, Speed of Reaction-Diffusion Fronts in Spatially Heterogeneous Media,

Phys. Rev. E, 68, 041105.1-041105.11.
[11] Vereecken, K.M., Dens, E. J. and Impe, J. F. van, 2000, Predictive Modeling of Mixed Microbial Populations in Food Products:

Evaluation of Two-species Models, J. Theor. Biol., 205, 53-72.
[12] Debnath,L., 1997, Nonlinear Partial Differential Equations for Scientist and Engineers, Birkhäuser, Boston.
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