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Abstract 

The shallow water equations (SWE), describing a thin layer of fluid flow (liquid or gas) in 
two dimensions, is the simplest possible model that captures the essential characteristics of 
fluid flow on the sphere. In this paper we present a p-adaptive method based in higher order 
finite differences and pseudo-spectral derivatives that is applied in the solution of shallow 
water equations on the sphere. The numerical experiments confirm the expected high-order 
accuracy. 

 
Keywords: shallow water, p-adaptive, finite difference, pseudo-spectral, partial differential 
equations 
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1 Introduction  

The shallow water equations (SWE), which describe the flow of a thin layer of fluid in two 

dimensions have been used by the atmospheric modelling community as a vehicle for 

testing promising numerical methods for solving atmospheric and oceanic problems. The 

SWE are important for the study of the dynamics of large-scale flows, as well for the 

development of new numerical schemes that are applied to more complex models.  
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 There exists a relatively large group of numerical methods for solving the SWE on a 

sphere, each of them having advantages and disadvantages concerning accuracy, efficiency, 

reliability, conservation, flexibility, scalability, etc.  

One of the most popular class of methods for solving flow problems on the sphere is the 

spectral transform method (STM) [1,2]. STM expresses the variables as series expansions 

in terms of the spherical harmonic basis functions, and is known for its high level of 

accuracy and for being extremely stable. Fornberg [3-5] completed a successful numerical 

analysis of a simpler set of fluid flow equations on a spherical geometry using a pseudo-

spectral method. 

An active research area today is the development of numerical methods for solving partial 

differential equations using adaptively refined grids. Adaptive methods increase the order 

of accuracy locally, thereby treating to distribute the discretization error uniformly. In this 

study we present a p-adaptive method for the solution of the shallow water on the sphere. 

The method combines different approximations (Finite Difference/Pseudo-spectral) of the 

spatial derivatives using an error indicator. Based on a set of standardized test cases the 

resulting model performance is investigated. 

In section 2, we describe a formulation of the shallow water equations in rectangular 

coordinates. In section 3 we describe the numerical methods and the p-adaptive scheme 

used to represent the sphere and to solve the SWE. Williamson et al. [6], proposed a suite 

of standard tests, for evaluating numerical methods for the SWE in spherical geometry. In 

section 4 we describe the first two test cases of Williamson and results. For both cases an 

error analysis is done comparing with Williamson’s results and the results of  the p-adative 

scheme are shown. Section 5 contains concluding remarks. 
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2 The shallow water equations on the sphere 

The shallow water equations are a set of equations used to model many fluid flows. They 

are particularly well suited-and often used-to test numerical techniques for weather 

prediction. A full formulation of the Shallow Water Equations in spherical coordinates can 

be found in Holton [7]. The equations are as follows  

( )cos
0

cos cos

tan
0

cos cos

tan
0

cos

vh u h v h h u

t a a a

u u u v u u g h
f v

t a a a a

v u v v v u g h
f u

t a a a a

θ
θ ϕ θ θ ϕ θ

θ
θ ϕ θ θ ϕ

θ
θ ϕ θ θ

∂ ∂ ∂ ∂ ∂
+ + + + = ∂ ∂ ∂ ∂ ∂ 

∂ ∂ ∂ ∂ + + − + + = ∂ ∂ ∂ ∂ 

∂ ∂ ∂ ∂ + + + + + = ∂ ∂ ∂ ∂ 

               (1) 

where f is the Coriolis parameter, g is the acceleration due to gravity, a is the mean radius 

of the sphere, h the height function and u and v are the speed of fluid in the ϕ  and θ  

directions respectively. 

We take the globe and map it to a two dimensional grid in ( ),ϕ θ coordinates. The 

longitude-latitude ( ),ϕ θ  grid system used by Fornberg [5] was utilized for computation, 

with [ ],ϕ∈ −π π  and ,
2 2

π π θ∈ − + ε − ε  
. The grid points in this system are arranged so 

that no grid points are at the poles. This grid system has the advantage of avoiding 

singularity at the poles and enabling the periodic boundary conditions to be imposed in 

both longitude and latitude direction. Figure 1 illustrates how the periodic boundary 

conditions can be imposed in latitude direction.  

It should be noted that the sign of the quantities must be adjusted properly when using the 

periodic boundary condition in latitude direction, depending on whether the quantities are 

scalar or vector( the velocities change sign as one crosses the pole).  
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In this study we present a p-adaptive method for the solution of the shallow water on the 

sphere. Using this adaptive method in the case of solving various coupled partial 

differential equations, it is possible to employ adaptivity using the standard rectangular grid 

of Fig. 1 for all the variables involved {h,u,v} in SWE(1). The time integration was done 

by the fourth-order Runge–Kutta method. 

 

3 P-adaptive scheme 

The p-adaptive method is based in higher order finite differences and pseudo spectral 

derivatives[3](calculated using the fast Fourier transform).  

The scheme used to calculate the spatial derivatives are based on three spatial differencing 

methods: the first one is sixth order accurate, the second one is tenth order accurate and the 

third one is pseudo-spectral. The type of method used to calculate the derivatives is selected 

according with an error indicator. 

Finite difference methods are attractive because of the relative ease of implementation and 

flexibility. High order accurate finite difference schemes are important in scientific 

computation because they offer a means to obtain accurate solutions.  

The sixth order finite difference approximation (FD6) of the first derivatives (see Fig. 1) is 

as follows 

 

 (2) 

 

 

 being 
2M

π
∆ = . 

( ) ( ) ( ) ( ) ( ) ( )
( , ) ( , )

1
3, 9 2, 45 1, 45 1, 9 2, 3,

60
i j i j

f f
f i j f i j f i j f i j f i j f i j

ϕ θϕ ϕ
∂ ∂

= ≈ − − + − − − + + − + + +  ∂ ∂ ∆

( ) ( ) ( ) ( ) ( ) ( )
( , ) ( , )

1
, 3 9 , 2 45 , 1 45 , 1 9 , 2 , 3

60
i j i j

f f
f i j f i j f i j f i j f i j f i j

ϕ θθ θ
∂ ∂

= ≈ − − + − − − + + − + + +  ∂ ∂ ∆
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The tenth order finite difference approximation (FD10) of the first derivatives(see Fig. 1) is 

as follows 

 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
( , ) ( , )

1
2 5, 25 4, 150 3, 600 2, 2100 1,

2520

2100 1, 600 2, 150 3, 25 4, 2 5,
i j i j

f f
f i j f i j f i j f i j f i j

f i j f i j f i j f i j f i j

ϕ θϕ ϕ
∂ ∂

= ≈ − − + − − − + − − −∂ ∂ ∆

+ + − + + + − + + + 

    (3) 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
( , ) ( , )

1
2 , 5 25 , 4 150 , 3 600 , 2 2100 , 1

2520

2100 , 1 600 , 2 150 , 3 25 , 4 2 , 5
i j i j

f f
f i j f i j f i j f i j f i j

f i j f i j f i j f i j f i j

ϕ θθ θ
∂ ∂

= ≈ − − + − − − + − − −∂ ∂ ∆

+ + − + + + − + + + 

 

 

Pseudo-spectral techniques are spectrally accurate in space, using all the grid points to 

calculate the derivatives. Then, the spatial derivatives are calculated more accurately and  

the spurious oscillations of the solution can be removed. In application of this method, the 

basic trick is to note that the discrete Fourier transform of an evenly spaced array of N 

numbers is the wave number for frequency. The discrete Fourier transform(DFT) of an 

evenly spaced array of N numbers fi,j, ,that we call fj  in order to simplify the notation for 

(i=fixed value ), is 

                             (4) 

 
where    ∆    is the grid spacing, 2=

∆n
n

k
N

π      is the wave number for frequency n, and 
j

θ  

is the position of  
j

f  . The useful part of the discrete Fourier transform is that is invertible 

by a similar algorithm 

1

0
( )

−

=
= ∆∑ n j

N
ik

n j
j

DFT f e
θ
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               (5) 
 
 
 

Taking the derivative with respect to θ , we get 

 
   (6) 
 
 
 
But that’s just the inverse Fourier transform of      ( )− n nik DFT  . Therefore the basic 

pseudo-spectral approach to spatial differencing is to use 
  

                           1( ) ( )−∂
  = −   ∂

j

n j

f
DFT ik DFT f

θ
                                    (7)   

 
and similarly for theϕ -first derivative. 

Numerically, the pseudo-spectral method involves calls to the fast Fourier transform(FFT). 

To best utilize FFT’s the pseudo-spectral method is confined to 2M points north-south and 

4M+1 points east-west where M is a power of two (see Fig. 1). We use the pseudo-spectral 

method of Fornberg, see Appendix F of [3], that is particularly easy to implement since it is 

associated with an orthogonal grid (Fig. 1), and all spatial derivatives are obtained by one 

dimensional approximation along grid lines. After each time step, numerical smoothing 

(FFT-based) was applied inϕ direction (no smoothing was applied in the θ direction).  

The p-adaptive scheme used to calculate the spatial derivatives, is completed with the use 

of an error indicator. Error indicators identify variations and discontinuities within the 

approximate solution and assume that these are the dominant source of error. For 

1

0

1 ( )
−

−

=
= ∑ n j

N
ik

nj
n

f DFT e
N

θ

1

0

1 ( )
−

−

=

∂
= −

∂ ∑ n j

N
ikj

n n
n

f
ik DFT e

N

θ

θ
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hyperbolic conservation laws significant errors are generated in both the smooth and 

discontinuous regions of the flow. The error indicator should have the ability to identify 

errors in both of the regions. We shall use the indicator of Lönher[8], that we represent here 

to select the method of approximation of θ -first derivative as  

                                         
i, j 1 i, j i, j 1

j

i, j 1 i, j i, j i, j 1

f 2f f
ind

f f f f c

+ −

+ −

− +
=

− + − +
                                (8) 

The term c is introduced to filter out small oscillations.  The parameter c can be taken to be 

either a multiple of the local average of fi,j or ( )i, j 1 i, j i, j i, j 1c f f f f+ −= β − + −   for some 

constant β , or directly a constant c . This indicator is a modified second derivative error 

norm and has the same characteristics as the normalized 2nd divided difference, but is 

bounded above by unity. The indicator attempt to identify the location of discontinuities or 

variations in the smooth flow. For example, in a discontinuity the 2nd divided difference 

reaches its maximum at the edges of the discontinuity. The constant c is given a value of 

0.1. The advantage of this error indicator is that it is dimensionless and entirely local. Then, 

it can be applied in complete generality to any of the variables of the SWE. By using the 

values obtained with the error indicator, in order to perform the p-adaptivity we select the 

type of approximation for the spatial ( ),ϕ θ -derivatives as follows: 

ind 0.01 Pseudo spectral

0.01 ind 0.00001 FD10

ind 0.00001 FD6

 
 
 
 
 

⇒ −

≥ ≥ ⇒

⇒

f

p

                                                                    (9) 

The same limits for the p-adaptivity have been used for any of the variables of the SWE. 

Explicit time integration  used is based in fourth-order Runge-Kutta(RK4) method.  
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As it was shown in Fig. 1 the globe is mapped in a two dimensional grid in 

( ),ϕ θ coordinates. The p-adaptive process doesn’t change the standard rectangular grid of 

Fig. 1, and uses in all time steps the RK4 method.  

According with ref. [3], the stability of the scheme can often be improved by adding some 

high-order dissipation, a damping of the high frequency modes that does not affect the 

order of accuracy. Solving SWE on the sphere the convergence of the meridians at the 

poles demands a short time step in order to satisfy the CFL requirement for computational 

stability. To avoid severe CFL stability restrictions near the poles after each time step, 

numerical smoothing (FFT-based) was applied in the ϕ -direction. 

 

 

4 Numerical results 

Test Cases 1–2 have been used to check the accuracy of the proposed method. The first 

case in the suite tests the advective component of the numerical method in isolation. Test 

case 2 (which involves the full set of shallow water equations) has a steady state solution to 

the non-linear SWE. Detailed mathematical formulas of the test cases and requested 

performance  measurements are described in [6].  

4.1     TestCase1: Advection of a Cosine Bell 

Test case 1 is a pure advection problem in which a cosine bell is blown around the sphere 

under a constant velocity  field. A cosine bell is advected once around the sphere; the 

divergence is chosen to be zero for this test case. The cosine bell is discontinuous in the 

second derivative and this restricts the accuracy of any method which does not specifically 

compensate for this fact such as an adaptive grid approach.  
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This test case does not use the full set of the shallow water equations but only the advection 

equation with a constant velocity field which describes a solid body rotation, so that the 

height field is transported without any change of shape. The direction of advection can be 

changed so that the initial data, a compact cosine bell, takes different paths over the 

computational grid. The earth’s rotation is allowed to have an angle α from the coordinate 

axes to test the capability of the numerical method to handle the pole problem. Thus, by 

choosing different α’s, one can simulate different orientations of the advecting wind, 

including advection around the equator (α = 0), directly over the poles (α = π/2), and with 

minor shifts from these two orientations (α = 0.05 and π/2−0.05). The time-step was chosen 

to be sufficiently small so spatial truncation errors dominate temporal errors, because in this 

paper we focus on the implementation of a p-adaptive technique for spatial derivatives. 

The SWE for this test case is as follows  

( )cos
0

cos cos

∂ ∂ ∂ ∂ ∂
+ + + + = ∂ ∂ ∂ ∂ ∂ 

vh u h v h h u

t a a a

θ
θ ϕ θ θ ϕ θ                        (10) 

the solid body rotation is given by 

0

3
(cos cos cos( )sin sin )

2
= + +u u

π
θ α ϕ θ α                                              (11)  

0

3
sin( )sin

2
= − +v u

π
ϕ α                                                                           (12) 

where 0 2 /(12 )u R daysπ= . 

The final difference equation obtained after discretization depends of the values of the error 

indicator in each time step. For example by using in (10) the sixth order finite difference 

approximation for the derivatives we have 
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, , ,

,, ,

3, 9 2, 45 1,1

cos 60 45 1, 9 2, 3,

, 3 9 , 2 45 , 11

60 45 , 1 9 , 2 , 3

cos
cos

− − + − − − + ∂
+ + 

∂ ∆ + − + + +  

− − + − − − + 
+ 

∆ + − + + +  

 ∂ ∂
+ − 

∂ ∂ 

i j i j

i j

i j

i j

i j i j i j

i ji j i j

h i j h i j h i jh u

t a h i j h i j h i j

h i j h i j h i jv

a h i j h i j h i j

h u v
v sen

a

θ

θ θ
θ ϕ θ

0=


                       (13) 

The algorithm for the Test Case1 is summarized below: 
 
1.-Define input data: 
            number of grid points  

angle between the axis of solid body rotation and the polar axis  
h(i,j), u(i,j) and v(i,j) initial data 
time step (k) 
number of time steps  
 

2.- For each time step 
 

* For each  point (i,j): 

• Fourth order Runge-Kutta method:       1
, , 1 2 3 4

1
( 2 2 )

6
+ = + + + +n n

i j i j
h h d d d d  

( )1 ,* ,= n n

i j
d k f t h  

2 , 1

1
* ,

2 2
 = + + 
 

n n

i j

k
d k f t h d  

3 , 2

1
* ,

2 2
 = + + 
 

n n

i j

k
d k f t h d  

( )4 , 3* ,= + +n n

i j
d k f t k h d  

( ), , , ,
,

( , ), ,( , ) ( , ) ( , )

cos
( , )

cos cos

 ∂ ∂∂ ∂ ∂
= = − − − + 

∂ ∂ ∂ ∂ ∂  

i j i j i j i jn n

i j

i ji j i ji j i j i j

h u v h vh h u
f t h

t a a a

θ
θ ϕ θ θ ϕ θ

 
• Use error indicator  to select the approximation of derivatives 

 
* Numerical smoothing (FFT-based) in φ direction 
 
* Error norms calculation 
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Figure 2 shows the geopotential field h (Cosine bell) after one revolution with the p-

adaptive method for 0α =  . The numerical solution translated in all cases without change 

of shape.  

 For the last time step shown in Figure 2, by using the error indicator (4) the p-adaptive 

results are shown in Fig. 3. Red points (black point in black-and-white print edition) have 

been calculated with pseudo-spectral derivatives, white points have been calculated with 

FD10 and blue points (the smallest size points) with FD6. 

 

The errors allow to evaluate the advective properties of the scheme. Errors which are 

defined in the usual way[6]. The global relative errors on the advected field have been 

measured in different norms in Fig  4 . We recall here their definition for a generic variable 

Z: 

1

−
=
∑

∑

true

i i

i

true

i

i

Z Z

L
Z

;
( )

( )

1
2 2

2 2

 −
 

=  
 
 

∑

∑

true

i i

i

true

i

i

Z Z

L
Z

; max∞

−
=

true

i i

i true

i

Z Z
L

Z
          (14) 

 

It is interesting to compare the p-adaptive method with a numerical standard technique, 

for example, using FD6 in all the points of the unrolled sphere. Then in Fig. 5, the L2 –error 

obtained with the p-adaptive method is compared with the error obtained in the case of 

using the FD6 approximation in all the points.  
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4.2 Test CASE 2: Global Steady State Nonlinear Zonal Geostrophic Flow 

To test the p-adaptive scheme on the full SWE, we used Test case 2 in [6], Global Steady 

State Nonlinear Zonal Geostrophic Flow, which has a steady state solution to the non-linear 

SWE (1). In this test initially h( , )ϕ θ  is described by  

                          

 

where  4 2 2
0 2.94 10 /=gh x m s , g is the gravitational constant and u0 and α , as they were in 

test case 1. For this case 2, the test pattern should retain the same shape on the sphere for 

{h,u,v} throughout all the rotation. The solution is stationary in time.  

The final difference equation obtained after discretization depends of the values of the error 

indicator in each time step. For example by using in (1) the tenth order finite difference 

approximation for the {h, u, v}-derivatives we have 

 

 

 

 

 

  

 

 

 

 

( )
2

20
0 0

u
gh( , ) gh a u cos cos sin sin cos (15)

2

 
ϕ θ = − Ω + − ϕ θ α + θ α 
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The algorithm used for TestCase2 is similar to the one of Test case 1, but RK4 is applied to 

the system of differential equations(16), to obtain h, u and v for each time step. 

Figure 6 gives the results obtained for h(geopotential field),u(velocity),v(velocity) after one 

revolution for with the p-adaptive method for  0.05
2

π
α = −  with M=16. Also in Figure 6, 

by using the error indicator (4) the p-adaptive results are shown. As it is shown the 

accuracy of the approximation of the derivatives is different for {h,u,v} depending of the 

error indicator obtained for each one of the variables. Red points (black point in black-and-

white print edition) have been calculated with pseudo-spectral derivatives, white points 

have been calculated with FD10 and blue points (the smallest size points) with FD6. In this 

case we have solved the full set of SWE and the p-adaptive method can give in each point 

( , )ϕ θ  a different p-approximation for the {h, u, v}-derivatives using the standard grid of 

Fig.1. 

Figure 7 shows the norm errors in the geopotential field after one revolution with the p-

adaptive method for  0.05
2

π
α = −  with M=16. We observe that the p-adaptive scheme is 

numerically very stable. 

It is interesting to compare the p-adaptive method with a numerical standard technique, 

for example using FD6 in all the points of the unrolled sphere. Then in Fig. 8 the L2 –error 

obtained with the p-adaptive method is compared with the error obtained in the case of 

using the FD6 approximation in all the points.  
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5 Conclusions 

A p-adaptive method for solving the SWE on the sphere based on a regular latitude-

longitude grid, has been developed and tested. The method combines different 

approximations (Finite Difference/Pseudo-spectral) of the spatial derivatives using an error 

indicator. Explicit time integration  used is based in fourth-order Runge-Kutta method. 

Figures presented in this work have shown the ability of the p-adaptive method to treat the 

presence of strong gradients. The ability of the p-adaptive method is increased in the case 

of solving the full SWE. Then, the p-adaptivity is applied at the same time in the three 

variables of equations (1) using the regular latitude-longitude grid.      

The p-adaptive method is computationally efficient. Validation of the algorithm has been 

carried out using the standard test set of Williamson. Application to the standard test set 

(cases one and two) for the shallow water equations shows the high accuracy and flexibility 

of the p-adaptive scheme.  

The test results presented in this study show that our method is thought to be promising for 

a variety of numerical models including p-adaptive high-resolution models for weather 

prediction. Computational results demonstrating the accuracy have been presented. 
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List of figure captions 

Figure 1: Unrolling the sphere onto a two dimensional grid. 

Figure 2: Cosine bell after one revolution with the p-adaptive method for 0α =  with  

M=16. 

Figure 3: P-adaptivity in the geopotential field  after one revolution for  0α =  with M=16 

Figure 4: Errors in the geopotential field  after one revolution with the p-adaptive method 

for  0α =  with M=16 

Figure 5: L2 norm with p-adaptive method and FD6 in CaseTest1 for  0α =  with M=16 

Figure. 6:   h(geopotential field), u(velocity) and v(velocity)  after one revolution with the 

p-adaptive method for  0.05
2

π
α = −  and M=16. 

Figure 7 : Norm errors in the geopotential field after one revolution with the p-adaptive 

method for  0.05
2

π
α = −  with M=16. 

Figure 8: L2 norm with p-adaptive method and FD6 in CaseTest2 for  0.05
2

π
α = −  with 

M=16 
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Figure 1: Unrolling the sphere onto a two dimensional grid. 
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Figure 2: Cosine bell after one revolution with the p-adaptive method for 0α =  with  M=16. 
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Figure 3: P-adaptivity in the geopotential field  after one revolution for  0α =  with M=16 
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Figure 4: Errors in the geopotential field  after one revolution with the p-adaptive method for  

0α =  with M=16 
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Figure 5. L2 norm with p-adaptive method and FD6 in CaseTest1 for  0α =  with M=16 

 

 
 

Figure. 6:   h(geopotential field), u(velocity) and v(velocity)  after one revolution with the p-

adaptive method for  0.05
2

π
α = −  and M=16. 
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Figure 7 : Norm errors in the geopotential field after one revolution with the p-adaptive 

method for  0.05
2

π
α = −  with M=16. 
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Figure 8. L2 norm with p-adaptive method and FD6 in CaseTest2 for  0.05
2

π
α = −  with 

M=16 
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