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Introduction

The shallow water equations (SWE), which describe the flow of a thin layer of fluid in two dimensions have been used by the atmospheric modelling community as a vehicle for testing promising numerical methods for solving atmospheric and oceanic problems. The SWE are important for the study of the dynamics of large-scale flows, as well for the development of new numerical schemes that are applied to more complex models. There exists a relatively large group of numerical methods for solving the SWE on a sphere, each of them having advantages and disadvantages concerning accuracy, efficiency, reliability, conservation, flexibility, scalability, etc.

One of the most popular class of methods for solving flow problems on the sphere is the spectral transform method (STM) [START_REF] Swarztrauber | Spectral transform methods for solving the shallow water equations on the sphere[END_REF][START_REF] Taylor | The spectral element method for the shallow water equations on the sphere[END_REF]. STM expresses the variables as series expansions in terms of the spherical harmonic basis functions, and is known for its high level of accuracy and for being extremely stable. Fornberg [START_REF] Fornberg | A Practical Guide to Pseudospectral Methods[END_REF][START_REF] Fornberg | A Pseudospectral Approach for Polar and Spherical Geometries[END_REF][START_REF] Fornberg | Comparison of finite difference and pseudospectral methods for convective flow over a sphere[END_REF] completed a successful numerical analysis of a simpler set of fluid flow equations on a spherical geometry using a pseudospectral method.

An active research area today is the development of numerical methods for solving partial differential equations using adaptively refined grids. Adaptive methods increase the order of accuracy locally, thereby treating to distribute the discretization error uniformly. In this study we present a p-adaptive method for the solution of the shallow water on the sphere.

The method combines different approximations (Finite Difference/Pseudo-spectral) of the spatial derivatives using an error indicator. Based on a set of standardized test cases the resulting model performance is investigated.

In section 2, we describe a formulation of the shallow water equations in rectangular coordinates. In section 3 we describe the numerical methods and the p-adaptive scheme used to represent the sphere and to solve the SWE. Williamson et al. [START_REF] Williamson | A Standard Test Set for Numerical Approximations to the Shallow Water Equations in Spherical Geometry[END_REF], proposed a suite of standard tests, for evaluating numerical methods for the SWE in spherical geometry. In section 4 we describe the first two test cases of Williamson and results. For both cases an error analysis is done comparing with Williamson's results and the results of the p-adative scheme are shown. Section 5 contains concluding remarks. The shallow water equations are a set of equations used to model many fluid flows. They are particularly well suited-and often used-to test numerical techniques for weather prediction. A full formulation of the Shallow Water Equations in spherical coordinates can be found in Holton [START_REF] Holton | An Introduction to Dynamic Meteorology[END_REF]. The equations are as follows ( )
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where f is the Coriolis parameter, g is the acceleration due to gravity, a is the mean radius of the sphere, h the height function and u and v are the speed of fluid in the ϕ and θ directions respectively.

We take the globe and map it to a two dimensional grid in ( )

, ϕ θ coordinates. The longitude-latitude ( ) , ϕ θ grid system used by Fornberg [START_REF] Fornberg | Comparison of finite difference and pseudospectral methods for convective flow over a sphere[END_REF] was utilized for computation,

with

[ ]

, ϕ ∈ -π π and , 2 2 
π π   θ ∈ -+ ε -ε    
. The grid points in this system are arranged so that no grid points are at the poles. This grid system has the advantage of avoiding singularity at the poles and enabling the periodic boundary conditions to be imposed in both longitude and latitude direction. Figure 1 illustrates how the periodic boundary conditions can be imposed in latitude direction.

It should be noted that the sign of the quantities must be adjusted properly when using the periodic boundary condition in latitude direction, depending on whether the quantities are scalar or vector( the velocities change sign as one crosses the pole). In this study we present a p-adaptive method for the solution of the shallow water on the sphere. Using this adaptive method in the case of solving various coupled partial differential equations, it is possible to employ adaptivity using the standard rectangular grid of Fig. 1 for all the variables involved {h,u,v} in SWE [START_REF] Swarztrauber | Spectral transform methods for solving the shallow water equations on the sphere[END_REF]. The time integration was done by the fourth-order Runge-Kutta method.

P-adaptive scheme

The p-adaptive method is based in higher order finite differences and pseudo spectral derivatives [START_REF] Fornberg | A Practical Guide to Pseudospectral Methods[END_REF](calculated using the fast Fourier transform).

The scheme used to calculate the spatial derivatives are based on three spatial differencing methods: the first one is sixth order accurate, the second one is tenth order accurate and the third one is pseudo-spectral. The type of method used to calculate the derivatives is selected according with an error indicator.

Finite difference methods are attractive because of the relative ease of implementation and flexibility. High order accurate finite difference schemes are important in scientific computation because they offer a means to obtain accurate solutions.

The sixth order finite difference approximation (FD6) of the first derivatives (see Fig. 1) is as follows 
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Pseudo-spectral techniques are spectrally accurate in space, using all the grid points to calculate the derivatives. Then, the spatial derivatives are calculated more accurately and the spurious oscillations of the solution can be removed. In application of this method, the basic trick is to note that the discrete Fourier transform of an evenly spaced array of N numbers is the wave number for frequency. The discrete Fourier transform(DFT) of an evenly spaced array of N numbers f i,j, ,that we call f j in order to simplify the notation for

(i=fixed value ), is (4) 
where ∆ is the grid spacing, 

Taking the derivative with respect to θ , we get

But that's just the inverse Fourier transform of ( ) n n ik DFT . Therefore the basic pseudo-spectral approach to spatial differencing is to use
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and similarly for the ϕ -first derivative.

Numerically, the pseudo-spectral method involves calls to the fast Fourier transform(FFT).

To best utilize FFT's the pseudo-spectral method is confined to 2M points north-south and 4M+1 points east-west where M is a power of two (see Fig. 1). We use the pseudo-spectral method of Fornberg, see Appendix F of [START_REF] Fornberg | A Practical Guide to Pseudospectral Methods[END_REF], that is particularly easy to implement since it is associated with an orthogonal grid (Fig. 1), and all spatial derivatives are obtained by one dimensional approximation along grid lines. After each time step, numerical smoothing (FFT-based) was applied in ϕ direction (no smoothing was applied in the θ direction).

The p-adaptive scheme used to calculate the spatial derivatives, is completed with the use of an error indicator. Error indicators identify variations and discontinuities within the approximate solution and assume that these are the dominant source of error. For errors in both of the regions. We shall use the indicator of Lönher [START_REF] Luo | An efficient spatial adaption algorithm on 3-d unstructured meshes for the euler equations[END_REF], that we represent here to select the method of approximation of θ -first derivative as i, j 1 i, j i, j 1 j i, j 1 i, j i, j i, j 1
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The term c is introduced to filter out small oscillations. The parameter c can be taken to be either a multiple of the local average of f i,j or 
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The same limits for the p-adaptivity have been used for any of the variables of the SWE.

Explicit time integration used is based in fourth-order Runge-Kutta(RK4) method. According with ref. [START_REF] Fornberg | A Practical Guide to Pseudospectral Methods[END_REF], the stability of the scheme can often be improved by adding some high-order dissipation, a damping of the high frequency modes that does not affect the order of accuracy. Solving SWE on the sphere the convergence of the meridians at the poles demands a short time step in order to satisfy the CFL requirement for computational stability. To avoid severe CFL stability restrictions near the poles after each time step, numerical smoothing (FFT-based) was applied in the ϕ -direction.

Numerical results

Test Cases 1-2 have been used to check the accuracy of the proposed method. The first case in the suite tests the advective component of the numerical method in isolation. Test case 2 (which involves the full set of shallow water equations) has a steady state solution to the non-linear SWE. Detailed mathematical formulas of the test cases and requested performance measurements are described in [START_REF] Williamson | A Standard Test Set for Numerical Approximations to the Shallow Water Equations in Spherical Geometry[END_REF].

TestCase1: Advection of a Cosine Bell

Test case 1 is a pure advection problem in which a cosine bell is blown around the sphere under a constant velocity field. A cosine bell is advected once around the sphere; the divergence is chosen to be zero for this test case. The cosine bell is discontinuous in the second derivative and this restricts the accuracy of any method which does not specifically compensate for this fact such as an adaptive grid approach. This test case does not use the full set of the shallow water equations but only the advection equation with a constant velocity field which describes a solid body rotation, so that the height field is transported without any change of shape. The direction of advection can be changed so that the initial data, a compact cosine bell, takes different paths over the computational grid. The earth's rotation is allowed to have an angle α from the coordinate axes to test the capability of the numerical method to handle the pole problem. Thus, by choosing different α's, one can simulate different orientations of the advecting wind, including advection around the equator (α = 0), directly over the poles (α = π/2), and with minor shifts from these two orientations (α = 0.05 and π/2-0.05). The time-step was chosen to be sufficiently small so spatial truncation errors dominate temporal errors, because in this paper we focus on the implementation of a p-adaptive technique for spatial derivatives.

The SWE for this test case is as follows ( )
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the solid body rotation is given by 0 3 (cos cos cos( ) sin sin )
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The final difference equation obtained after discretization depends of the values of the error indicator in each time step. For example by using in (10) the sixth order finite difference approximation for the derivatives we have 
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The algorithm for the Test Case1 is summarized below:

1.-Define input data: number of grid points angle between the axis of solid body rotation and the polar axis h(i,j), u(i,j) and v(i,j) initial data time step (k) number of time steps 2.-For each time step * For each point (i,j):

• Fourth order Runge-Kutta method: ( ) ) cos cos Figure 2 shows the geopotential field h (Cosine bell) after one revolution with the padaptive method for 0 α = . The numerical solution translated in all cases without change of shape.
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For the last time step shown in Figure 2, by using the error indicator (4) the p-adaptive results are shown in Fig. 3. Red points (black point in black-and-white print edition) have been calculated with pseudo-spectral derivatives, white points have been calculated with FD10 and blue points (the smallest size points) with FD6.

The errors allow to evaluate the advective properties of the scheme. Errors which are defined in the usual way [START_REF] Williamson | A Standard Test Set for Numerical Approximations to the Shallow Water Equations in Spherical Geometry[END_REF]. The global relative errors on the advected field have been measured in different norms in Fig 4 . We recall here their definition for a generic variable Z:

1 - = ∑ ∑ true i i i true i i Z Z L Z ; ( ) ( ) 1 2 2 2 2   -   =       ∑ ∑ true i i i true i i Z Z L Z ; max ∞ - = true i i i true i Z Z L Z (14)
It is interesting to compare the p-adaptive method with a numerical standard technique, for example, using FD6 in all the points of the unrolled sphere. Then in Fig. 5, the L 2 -error obtained with the p-adaptive method is compared with the error obtained in the case of using the FD6 approximation in all the points. 2.94 10 / = gh x m s , g is the gravitational constant and u 0 and α , as they were in test case 1. For this case 2, the test pattern should retain the same shape on the sphere for {h,u,v} throughout all the rotation. The solution is stationary in time.

The final difference equation obtained after discretization depends of the values of the error indicator in each time step. For example by using in (1) the tenth order finite difference approximation for the {h, u, v}-derivatives we have ( ) The algorithm used for TestCase2 is similar to the one of Test case 1, but RK4 is applied to the system of differential equations( 16), to obtain h, u and v for each time step.
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Figure 6 gives the results obtained for h(geopotential field),u(velocity),v(velocity) after one revolution for with the p-adaptive method for 0.05 2 π α =with M=16. Also in Figure 6, Figure 7 shows the norm errors in the geopotential field after one revolution with the padaptive method for 0.05 2 π α =with M=16. We observe that the p-adaptive scheme is numerically very stable.

It is interesting to compare the p-adaptive method with a numerical standard technique, for example using FD6 in all the points of the unrolled sphere. Then in Fig. 8 the L 2 -error obtained with the p-adaptive method is compared with the error obtained in the case of using the FD6 approximation in all the points. The test results presented in this study show that our method is thought to be promising for a variety of numerical models including p-adaptive high-resolution models for weather prediction. Computational results demonstrating the accuracy have been presented. 

  significant errors are generated in both the smooth and discontinuous regions of the flow. The error indicator should have the ability to identify

  or directly a constant c . This indicator is a modified second derivative error norm and has the same characteristics as the normalized 2 nd divided difference, but is bounded above by unity. The indicator attempt to identify the location of discontinuities or variations in the smooth flow. For example, in a discontinuity the 2 nd divided difference reaches its maximum at the edges of the discontinuity. The constant c is given a value of 0.1. The advantage of this error indicator is that it is dimensionless and entirely local. Then, it can be applied in complete generality to any of the variables of the SWE. By using the values obtained with the error indicator, in order to perform the p-adaptivity we select the type of approximation for the spatial ( ) , ϕ θ -derivatives as follows: ind 0.01 Pseudo spectral 0.01 in d 0.00001 FD10 ind 0.00001 FD6
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Test CASE 2: Global Steady State Nonlinear Zonal Geostrophic Flow

  To test the p-adaptive scheme on the full SWE, we used Test case 2 in[START_REF] Williamson | A Standard Test Set for Numerical Approximations to the Shallow Water Equations in Spherical Geometry[END_REF], Global Steady State Nonlinear Zonal Geostrophic Flow, which has a steady state solution to the non-linear
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