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Denotational semantics for programming languages, balanced quasi-metrics and fixed points (SI-CMMSE2006)

Introduction

It is well known that the classical Baire metric (or Baire distance) provides an efficient tool to obtain denotational models for programming languages (see [START_REF] De Bakker | Control Flow Semantics[END_REF], [START_REF] De Bakker | A metric approach to control flow semantics[END_REF], [START_REF] De Bakker | Denotational models for programming languages: applications of Banach's fixed point theorem[END_REF]). It is also applied, for instance, to study the representation of real numbers by means of regular languages [START_REF] Lecomte | On the representation of real numbers using regular languages[END_REF] and in modelling streams of information in parallel computation [START_REF] Kahn | The semantics of a simple language for parallel processing[END_REF]. The Baire metric is especially useful for the measurement of distances between totally defined objects (infinite words), and, hence, those computational processes where it is necessary to take into account the information given by the partially defined objects (finite words) are usually modelled by using Baire quasi-pseudo-metrics (see [START_REF] Arenas | Ordered fractal semigroups as a model of computation[END_REF], [START_REF] Matthews | Partial metric topology[END_REF], [START_REF] Pin | Uniformities on free semigroups[END_REF], [START_REF] Smyth | Quasi-uniformities: Reconciling domains with metric spaces[END_REF], [START_REF] Smyth | Totally bounded spaces and compact ordered spaces as domains of computation[END_REF], [START_REF] Romaguera | Partial metric monoids and semivaluation spaces[END_REF], [START_REF] Schellekens | The correspondence between partial metrics and semivaluations[END_REF], etc.). However, these quasi-pseudo-metrics generally induce only T 0 topologies. Motivated, in part, by this fact, in Section 2 we present a new model for the measurement of distances between words by means of the notion of a balanced quasi-metric. Moreover, our model possesses other rich quasi-metric and topological properties such as right K-completeness, Hausdorffness and uniformizability -equivalently, complete regularity-and it respects several essential aspects of the computational interpretation given by other known Baire quasi-pseudo-metrics. An application of our approach to the analysis of Probabilistic Divide and Conquer Algorithms via techniques of fixed point is also given.

Our basic references for quasi-pseudo-metric spaces are [START_REF] Fletcher | Quasi-Uniform Spaces[END_REF] and [START_REF] Künzi | Nonsymmetric distances and their associated topologies: About the origin of basic ideas in the area of asymmetric topology[END_REF] and for topology is [START_REF] Engelking | General Topology[END_REF].

Let us recall that a quasi-pseudo-metric on a set X is a nonnegative real valued function d on X × X such that for all x, y, z ∈ X :

(i) d(x, x) = 0; (ii) d(x, y) ≤ d(x, z) + d(z, y).
By a quasi-metric on X we mean a quasi-pseudo-metric d on X that satisfies the following condition: (iii) d(x, y) = 0 if and only if x = y.

A quasi-(pseudo-)metric space is a pair (X, d) such that X is a (nonempty) set and d is a quasi-(pseudo-)metric on X.

Each quasi-pseudo-metric d on X generates a topology τ d on X which has as a base the family of open d-balls {B d (x, r) : x ∈ X, r > 0}, where B d (x, r) = {y ∈ X : d(x, y) < r} for all x ∈ X and r > 0.

Observe that if d is a quasi-metric, then τ d is a T 1 topology. Given a quasi-(pseudo-)metric d on X, then the function d Let Σ be a nonempty alphabet. Denote by Σ F the set of finite sequences ("finite words") over Σ and by Σ ∞ the set of finite and infinite sequences over Σ. We assume that the empty sequence ∅ is an element of Σ F . Denote by the prefix order on Σ ∞ , i.e. x y ⇔ x is a prefix of y. If x y with x = y we write x y.

-1 defined on X × X by d -1 (x, y) = d(y, x), is also a quasi-(pseudo-)metric on X, called the conjugate of d. Finally, the function d s defined on X × X by d s (x, y) = max{d(x, y), d -1 (x, y)} is a (pseudo-)metric on X.
For each x, y ∈ Σ ∞ we define x y as the longest common prefix of x and y, and for each x ∈ Σ ∞ we denote by (x) the length of x. Then (x) ∈ [1, ∞] whenever x = ∅ and (∅) = 0. Remark 1. If (x n ) n∈N is a strictly increasing sequence in Σ ∞ with respect to , i.e. x n x n+1 for all n ∈ N, we shall denote by k x k the unique element in Σ ∞ such that x n ( k x k ) = x n for all n ∈ N. Note that, in this case,

x n ∈ Σ F for all n ∈ N and ( k x k ) = lim n→∞ (x n ) = ∞.
Let us recall that the Baire metric (or Baire distance) on Σ ∞ is the metric d B defined by

d B (x, x) = 0 for all x ∈ Σ ∞ , d B (x, y) = 2 -(x y) for all x, y ∈ Σ ∞ with x = y.
(We adopt the convention that 2 -∞ = 0).

Smyth introduced in [START_REF] Smyth | Quasi-uniformities: Reconciling domains with metric spaces[END_REF] the following quasi-pseudo-metric modification of the Baire metric. For each x, y

∈ Σ ∞ let d (x, y) = 0 if x y, d (x, y) = d B (x, y) otherwise.
Then d is a T 0 quasi-pseudo-metric on Σ ∞ and (d ) s is the Baire metric on Σ ∞ .

Observe that condition d (x, y) = 0 can be used to distinguish between the case that x is a prefix of y and the remaining cases for x, y ∈ Σ ∞ .

Other T 0 quasi-pseudo-metric variants of the Baire metric, with applications, may be found in [START_REF] Künzi | Nonsymmetric topology[END_REF], [START_REF] Matthews | Partial metric topology[END_REF], [START_REF] Pin | Uniformities on free semigroups[END_REF], [START_REF] Romaguera | Applications of utility functions defined on quasi-metric spaces[END_REF], [START_REF] Romaguera | Partial metric monoids and semivaluation spaces[END_REF], etc. However, it is well known and easy to see that both d and these quasi-pseudo-metrics do not generate Hausdorff (in fact, not even T 1 ) topologies. Next we construct a new quasi-metric on Σ ∞ which possesses several interesting properties. In particular, the generated topology will be Hausdorff and completely regular. Furthermore, the information given by condition d (x, y) = 0 is also preserved by our approach. Doitchinov introduced in [START_REF] Doitchinov | On completeness in quasi-metric spaces[END_REF] the notion of a balanced quasi-metric space in order to obtain a consistent theory of quasi-metric completion that preserves complete regularity.

Recall that a quasi-metric d on a set X is balanced provided that whenever (x n ) n∈N and (y n ) n∈N are sequences in X and x, y are points in X such that

d(x, x n ) ≤ r 1 , d(y m , y) ≤ r 2 for all n, m ∈ N, and lim n,m→∞ d(y m , x n ) = 0, then d(x, y) ≤ r 1 + r 2 . A quasi-metric space (X, d) is called balanced if d is a balanced quasi-metric on X.
Each balanced quasi-metric space is Hausdorff and completely regular [START_REF] Doitchinov | On completeness in quasi-metric spaces[END_REF].

Remark 2. It is well known and easy to see that a quasi-metric space (X, d)

is balanced if and only if (X, d -1 ) is balanced. Therefore, if (X, d) is bal- anced, then (X, d -1
) is Hausdorff and completely regular.

Theorem 1. Let Σ be an alphabet and let q

b : Σ ∞ × Σ ∞ → [0, 1] be the function given by q b (x, y) = 2 -(x) -2 -(y) if x y, q b (x, y) = 1 otherwise.
Then, the following statements hold:

(1) q b is a balanced quasi-metric on Σ ∞ . (2) lim n→∞ q b (x n , x) = 0 ⇒ lim n→∞ d B (x n , x) = 0. (3) If (x n ) n∈N is a strictly increasing sequence in Σ ∞ with respect to , then lim n→∞ q b (x n , k x k ) = 0. Proof. (1) We first show that q b is a quasi-metric on Σ ∞ . It is clear that for x, y ∈ Σ ∞ such that q b (x, y) = 0, it follows that x = y. Now let x, y, z ∈ Σ ∞ . If q b (x, z) = 1 or q b (z, y) = 1, it is obvious that q b (x, y) ≤ q b (x, z) + q b (
z, y). Assume then that q b (x, z) < 1 and q b (z, y) < 1. Thus x z and z y, so x y. Hence

q b (x, y) = 2 -(x) -2 -(y) = 2 -(x) -2 -(z) + 2 -(z) -2 -(y) = q b (x, z) + q b (z, y).
We have shown that q b is a quasi-metric on Σ ∞ . In order to prove that q b is balanced, let (x n ) n∈N and (y n ) n∈N be sequences in Σ ∞ , and x, y points in Σ ∞ such that q b (x, x n ) ≤ r 1 for all n ∈ N, q b (y m , y) ≤ r 2 for all m ∈ N, and lim n,m→∞ q b (y m , x n ) = 0. We wish to show that q b (x, y) ≤ r 1 + r 2 . If r 1 = 1 or r 2 = 1, obviously q b (x, y) ≤ r 1 + r 2 . Then, we suppose that r 1 < 1 and r 2 < 1. Thus x x n for all n ∈ N, and y m y for all m ∈ N.

We shall distinguish two cases: i

) (x) = ∞, ii) (x) < ∞.
In case i), from the fact that x x n , it follows that x = x n for all n ∈ N. Thus lim m→∞ q b (y m , x) = 0, and hence lim m→∞ (y m ) = ∞. Since y m y for all m ∈ N, it follows that (y) = ∞. Therefore

lim m→∞ d B (x, y m ) = lim m→∞ d B (y, y m ) = 0, so that x = y, i.e. q b (x, y) = 0.
In case ii), since lim n,m→∞ q b (y m , x n ) = 0, there is n 0 ∈ N such that for each n, m ≥ n 0 , q b (y m , x n ) < 1, so that y m x n whenever n, m ≥ n 0 . Assume first that (y m ) < (x) for all m ≥ n 0 . Since there is k ≥ n 0 such that

q b (y k , x k ) < 2 -(x) , we deduce that 2 -(y k ) < 2 -(x k ) + 2 -(x) ⇒ 2 (x) < 2 (y k ) [2 (x)-(x k ) + 1] ⇒ 2 (x) < 2 (y k )+1 ⇒ (x) < (y k ) + 1,
which provides a contradiction. Consequently, there is m 0 ≥ n 0 with (x) ≤ (y m 0 ); but x x m 0 and y m 0 x m 0 , so we deduce that x y m 0 , and hence

q b (x, y m 0 ) = 2 -(x) -2 -(y m 0 ) ≤ 2 -(x) -2 -(x m 0 ) = q b (x, x m 0 ).
Therefore

q b (x, y) ≤ q b (x, y m 0 ) + q b (y m 0 , y) ≤ q b (x, x m 0 ) + q b (y m 0 , y) ≤ r 1 + r 2 .
We conclude that the quasi-metric q b is balanced. 

2) Let (x n ) n∈N be a sequence in Σ ∞ and x ∈ Σ ∞ such that lim n→∞ q b (x n , x) = 0. If x ∈ Σ F , then x n = x eventually. If (x) = ∞, then there is n 0 ∈ N such that q b (x n , x) = 2 -(xn) = 2 -(xn x) = d B (x n , x), ( 
for all n ≥ n 0 . Consequently lim n→∞ d B (x n , x) = 0.

(3) If (x n ) n∈N is a strictly increasing sequence in Σ ∞ with respect to , then x n

x n+1 for all n ∈ N, and

k x k the unique element in Σ ∞ such that x n ( k x k ) = x n for all n ∈ N. Hence x n ∈ Σ F for all n ∈ N and ( k x k ) = lim n→∞ (x n ) = ∞ (see Remark 1). Therefore q b (x n , k x k ) = 2 -(x n ) -2 -( k x k ) = 2 -(x n ) ,
for all n ∈ N, and thus, lim n→∞ q b (x n , x) = 0.

Remark 3. It is clear that the measurement of the distance from a word x to another word y by means of the Baire metric does not permit us to know if x is a prefix of y or not. This inconvenience is saved by using the Baire quasi-pseudo-metric d . However, if x, y, z ∈ Σ ∞ satisfy x y z, one obtains d (x, z) = d (y, z) = 0, and we can not decide which word of the two, x or y, gives a better approximation of z. For instance, if we consider the totally defined object π and the partially defined ones x = 3.1415 and y = 3.141592, then it is clear that y contains more information on π than x, but the quasi-metric d is not sensitive to this amount of information. The quasi-metric q b avoids this disadvantage because q b (3.1415, π) = 2 -5 and q b (3.141592, π) = 2 -7 as is desirable. In general, for x, y, z ∈ Σ ∞ with x y z, we have (x) < (y) < (z) and thus q b (x, z) > q b (y, z). This last inequality allows the word with smaller information x to be distinguished from the word y which captures greater information of the derived one from z. Furthermore q b (x, y) < 1 if and only if x y with x = ∅ . Other useful properties of q b and (q b ) -1 are given in Remark 4 (c) and Theorem 2 below.

Remark 4. (a)

We first note that Theorem 1(1) and Remark 2 imply that both (Σ ∞ , q b ) and (Σ ∞ , (q b ) -1 ) are Hausdorff and completely regular (actually (q b ) -1 is also a balanced quasi-metric). In fact, topological properties of (q b ) -1 are used in Theorem 4 below.

(b) From Theorem 1(2) it immediately follows that τ (q b ) -1 is finer than τ d B , i.e. τ d B ⊆ τ (q b ) -1 , and thus (Σ ∞ , τ (q b ) -1 ) is submetrizable. 3) provides an appropriate computational interpretation of the fact that each infinite word (totally defined object) can be expressed as the supremum of a strictly increasing sequence of finite words (partially defined objects) and it captures the notion of the amount of information defined by such a sequence. This fact can be mathematically modelled in the realm of right K-sequentially complete quasi-metric spaces as we show in the following.

Let us recall [START_REF] Reilly | Cauchy sequences in quasi-metric spaces[END_REF], that a sequence (x n ) n∈N in a quasi-metric space (X, d)

is right K-Cauchy if for each ε > 0 there is n 0 ∈ N such that d(x m , x n ) < ε whenever m ≥ n ≥ n 0 .
The quasi-metric space (X, d) is said to be right K-sequentially complete if every right K-Cauchy sequence is convergent with respect to τ d .

We point out that right K-sequential completeness provides an efficient tool for the study of function spaces and hyperspaces for quasi-metric spaces (see, for instance, Section 9 of [START_REF] Künzi | Nonsymmetric distances and their associated topologies: About the origin of basic ideas in the area of asymmetric topology[END_REF]).

Theorem 2. The quasi-metric space (Σ ∞ , (q b ) -1 ) is right K-sequentially complete.

Proof. Let (x n ) n∈N be a right K-Cauchy sequence in (Σ ∞ , (q b ) -1 ). Assume without loss of generality that this sequence is strictly increasing with respect to . It then follows from Theorem 1 (3) that lim n→∞ q b (x n , k x k ) = 0. Therefore (Σ ∞ , (q b ) -1 ) is right K-sequentially complete.

3 A fixed point theorem on (Σ ∞ , (q b ) -1 ) with application to the complexity analysis of algorithms

In this section we obtain a fixed point theorem for certain self-maps on the balanced right K-sequentially complete quasi-metric space (Σ ∞ , (q b ) -1 ). We apply such a result to deduce that for several recurrence equations based on the recursive structure of Probabilistic Divide and Conquer Algorithm [START_REF] Flajolet | Analytic analysis of algorithms[END_REF], the associated functionals have a unique fixed point which is the solution for the corresponding recurrence equation. However, in the case that our self-map f satisfies the condition that f x is not a prefix of f y, f cannot be a contraction on Σ ∞ because q b (x, y) = 1 whenever x is not a prefix of y.

For this reason we will establish our result only assuming that the self-map satisfies a contraction property on the orbit of a point of Σ ∞ , which will be sufficient for our purposes in this context. Actually, we will prove a more general result in the framework of Hausdorff right K-sequentially complete quasi-metric spaces. If (X, d) is a quasi-metric space we say that a self-map f : X → X is continuous if it is continuous from (X, τ d ) to (X, τ d ).

Theorem 3. Let (X, d) be a Hausdorff right K-sequentially complete quasimetric space and let f : X → X be a continuous self-map. If there are x 0 ∈ X and k ∈ (0, 1) such that

d(f n+1 x 0 , f n x 0 ) ≤ kd(f n x 0 , f n-1 x 0 ) ( )
for all n ∈ N, then f has a fixed point.

Proof. By our contraction condition, for each n ∈ N we obtain

d(f n+1 x 0 , f n x 0 ) ≤ k n d(f x 0 , x 0 ).
By the triangle inequality it easily follows that for each m, n ∈ N,

d(f n+m x 0 , f n x 0 ) ≤ k n 1 -k d(f x 0 , x 0 ),
and, consequently (f n x 0 ) n∈N is a right K-Cauchy sequence. Thus there is y ∈ X such that lim n→∞ d(y, f n x 0 ) = 0. By continuity of f it follows that lim n→∞ d(f y, f n+1 x 0 ) = 0, so y = f y by Hausdorffness of (X, d). This concludes the proof.

The following easy example shows that uniqueness of the fixed point in the preceding theorem does not hold, in general. 

4. Let Φ : Σ ∞ → Σ ∞ be a continuous self-map on (Σ ∞ , (q b ) -1 ). If there are w 0 ∈ Σ ∞ and k ∈ (0, 1) such that q b (Φ n w 0 , Φ n+1 w 0 ) ≤ kq b (Φ n-1 w 0 , Φ n w 0 ),
for all n ∈ N, then Φ has a fixed point.

When discussing the analysis of Probabilistic Divide and Conquer Algorithms by means of recurrences, the following general recurrence equation is obtained (see, for instance, Section 4 of [START_REF] Flajolet | Analytic analysis of algorithms[END_REF]):

( * ) T (n) = p(n) + n-1 k=1 q(n, k)T (k),
for n ≥ 2, where T (1) ≥ 0, p(n) > 0, and q(n, k) > 0 is proportional to the splitting probabilities that express the changes that a task of size n involve a subtask of size k < n.

A paradigmatic example of the above recurrence equation is the sorting algorithm used in the Unix system. The average case analysis of this algorithm is discussed in [START_REF] Kruse | Data Structures and Program Design[END_REF], where the following recurrence equation is obtained:

T (1) = 0, and

T (n) = 2(n -1) n + n + 1 n T (n -1), n ≥ 2.
We conclude the paper by applying Theorem 4 to prove that each recurrence equation of type ( * ) has a unique solution.

To this end, consider as an alphabet Σ the set of nonnegative real numbers. Let T be a recurrence equation of type ( * ). We associate to T the functional Φ T : Σ ∞ → Σ ∞ given by (Φ T w) 1 = T (1) and (Φ T w) n = p(n) + n-1 k=1 q(n, k)w k for all n ≥ 2 (if w ∈ Σ ∞ has length n < ∞, we write w := w 1 w 2 ...w n , and if w is an infinite word we write w := w 1 w 2 ...). So for v w with (w) = ∞ we deduce

q b (Φ T v, Φ T w) = 2 -(Φ T v) ≤ 2 -(v) ,
which implies that Φ T is continuous from (Σ ∞ , (q b ) -1 ) into itself, because if lim n→∞ (q b ) -1 (w, v n ) = 0, with w = v n , then (w) = ∞ and lim n→∞ (v n ) = ∞, so lim n→∞ (q b ) -1 (Φ T w, Φ T v n ) = 0. Now let w be the element of Σ ∞ given by w := T (1). Then (w) = 1. Since w Φ T w, it follows from condition ( * * ) that

q b (Φ n T w, Φ n+1 T w) = 2 -(Φ n T w) -2 -(Φ n+1 T w) = 2 -1 (2 -(Φ n-1 T w) -2 -(Φ n T w) ) = 2 -1 q b ((Φ n-1
T w, Φ n T w), for all n ∈ N. Consequently, we can apply Theorem 4 (with k = 1/2), and thus Φ T has a fixed point w which is clearly unique by the construction of Φ T . We conclude that w is the unique solution of the recurrence T. 
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  Example. Let X = a, b and let d be the discrete metric on X. Define f (a) = a and f (b) = b, and note that the inequality ( ) is obviously satisfied both for a and b. Now suppose that Σ is an alphabet and let q b the balanced quasi-metric on Σ ∞ constructed in Theorem 1. Then (Σ ∞ , (q b ) -1 ) is a right K-sequentially 8 balanced (hence, Hausdorff) quasi-metric space by Theorem 2 and Remark 4 (a). Hence, we derive from Theorem 3 the following.

Theorem

  

  It is clear by the construction that if (w) = n then (Φ T w) = n + 1 (in particular, (Φ T w) = ∞ whenever (w) = ∞).Furthermore, we obtain( * * ) v w ⇒ Φ T v Φ T w.

The authors thank the support of the Spanish Ministry of Education and Science, and FEDER, grant MTM2006-14925-C02-01

Acknowledgement. The authors thank the referees for their valuable suggestions.