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‡Dpto. Matemática Aplicada, Universidad Rey Juan Carlos, c/Tulipán s/n, 28933 Móstoles-Madrid, Spain
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We propose a finite element method for solving combined convection and radiation in laminar flow past a circular cylinder. The flow
problem is described by the thermal incompressible Navier-Stokes equations subject to a Boussinesq approach. To incorporate radiation
into the model we consider a simplified P1 approximation of the radiative transfer equation. The numerical solution of the governing
equations is performed by a Galerkin-characteristic method using finite element discretization. The method is accurate and stable for
a wide range of optical scales and Reynolds numbers. In addition, the characteristic treatment in the method eliminates most of the
numerical difficulties appear usually in the Eulerian-based methods for convection-dominated problems. Numerical results are presented
and comparisons between simulations with and without radiation are also illustrated.

Keywords: Radiative transfer; Finite element method; Simplified P1 model; Flow past a cylinder; Galerkin-characteristic scheme

AMS Subject Classifications: 85A25; 76M10; 76D05

1. Introduction

Numerical study of flow past a cylinder is of practical importance in engineering applications. In many
engineering designs, circular cylinders constitute the basic component of structures, for example, heat
exchange tubes, cooling systems for nuclear power plants, offshore structures, cooling towers, chimney
stacks and transmission cables, etc. The fluid flow in those structures can be gas, water or malted glass,
among others. In many interesting situations, experimental and numerical simulations help to enrich the
knowledge concerned. The isothermal incompressible flow past a cylinder has been well studied and con-
sidered as a benchmark problem for validating new numerical techniques in computational fluid dynamics
(CFD), compare [5, 10, 20, 28] and further references are therein. Recently, the thermal version of this
problem has been investigated in [6,13]. In the above mentioned references no radiation effects have been
incorporated in the system. However, growing concern with high temperature processes has emphasized
the need for an evaluation of the effect of radiative heat transfer. Nevertheless, it is common for work
on convective flows to neglect thermal radiation mainly because it involves tedious mathematics, which
increase the computational work, and also because of the lack of detailed information on optical properties
of the participating media and surfaces. However, radiation can strongly interact with convection in many
situations of engineering interest and neglecting its effects may have significant consequences in the overall
predictions. The aim of the present work is to demonstrate the effect of radiation in producing benchmark
results, in this case for laminar flow past a circular cylinder, as now illustrated.

In this paper, we provide our numerical solutions for radiation-convection flow past a circular cylinder.
The radiation effects are included into the thermal incompressible Navier-Stokes equations through a sim-
plified P1 (SP1) problem. The SP1 model is obtained using an asymptotic analysis in the radiative transfer
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Figure 1. Geometry of the flow past a cylinder.

equation, we refer the reader to [16] for details on the derivation of generalized simplified PN approxi-
mations. The SP1 model has proved its capability to provide efficient and yet accurate approximation of
radiative heat transfer problems in optically thick media. To the best of our knowledge, this paper is the
first to report numerical results for coupled radiation-convection flow over a circular cylinder. The results
of the present study are useful for providing comparative data and developing accurate and robust solvers
for radiative heat transfer and fluid flow computations.

To numerically solve the governing equations we develop a characteristic-based method in finite elements
framework. In Galerkin-characteristic methods, the time derivative and the advection term are combined
as a directional derivative along the characteristics, leading to a characteristic time-stepping procedure.
Consequently, the Galerkin-characteristic methods symmetrize and stabilize the governing equations, al-
low for large time steps in a simulation without loss of accuracy, and eliminate the excessive numerical
dispersion and grid orientation effects present in many upwind methods, compare for example [3, 6, 14].
A Galerkin-characteristic algorithm has been successfully applied to isothermal incompressible Navier-
Stokes equations in [5]. Application of this method to thermal viscous incompressible flows has recently
been investigated by the authors in [6]. The current work presents an extension of the method to combined
radiation and convection flows.

This paper is organized as follows. The governing equations for coupled radiation and convection are
presented in section 2. In section 3 we introduce the simplified P1 approximation of the radiative transfer
equation. The solution procedure and the numerical methods are formulated in section 4. Section 5 con-
tains the numerical results showing the performance of the proposed methods. Some concluding remarks
complete the study in section 6.

2. Equations for Radiation-Convection Flows

A schematic of the system considered in the present work is shown in Figure 1. The system consists of a
viscous thermal radiating flow in a channel containing a circular cylinder. The isothermal version of this
example has been subject of many numerical validations for laminar flows, see for instance [10,20,28]. Here,
the channel width is L, the channel height is H and the diameter of cylinder is D. A viscous incompressible
fluid flow at cold temperature T ′C enters through the left boundary of channel with uniform velocity u∞
while, the upper and lower walls are kept at hot temperature T ′H . The cylinder wall is also kept at the hot
temperature T ′H . The fluid is Newtonian and all the thermophysical properties are assumed to be constant,
except for density in the buoyancy term that can be adequately modelled by the Boussinesq approximation
[11] and that compression effects and viscous dissipation are neglected. With these assumptions, the
governing equations are

Conservation of mass:

∂u′

∂x
+

∂v′

∂y
= 0. (1)
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Finite element P1 Solution of unsteady thermal flow past a circular cylinder with radiation 3

Conservation of momentum:

∂u′

∂t
+ u′

∂u′

∂x
+ v′

∂u′

∂y
+

1
ρ

∂p′

∂x
= µ

(
∂2u′

∂x2
+

∂2u′

∂y2

)
, (2)

∂v′

∂t
+ u′

∂v′

∂x
+ v′

∂v′

∂y
+

1
ρ

∂p′

∂y
= µ

(
∂2v′

∂x2
+

∂2v′

∂y2

)
+ g′β′

(
T ′ − T∞

)
. (3)

Conservation of energy:

ρ∞cp

(
∂T ′

∂t
+ u′

∂T ′

∂x
+ v′

∂T ′

∂y

)
= λ

(
∂2T ′

∂x2
+

∂2T ′

∂y2

)
−∇ · q′R, (4)

where T∞ is the reference temperature, ρ∞ the reference density, u′ = (u′, v′)T the velocity field, p′ the
pressure, T ′ the temperature, µ the dynamic viscosity, cp the specific heat at constant pressure, g′ the
gravity force, β′ the coefficient of thermal expansion, and λ the thermal diffusivity coefficient. We used
primed variables to denote dimensional quantities. The effect of radiation is taken into consideration in
the energy equation as the divergence of radiative heat flux, q′R. For a grey medium, this term is given by

−∇ · q′R =
∫

S2
κ
(
B′(T ′)− I ′

)
dω, (5)

where S2 denotes the unit sphere and I ′(ω,x) is the spectral intensity at position x and propagating along
direction ω. For a non-scattering medium, the intensity I ′ is obtained from the radiative transfer equation

ω · ∇I ′ + κI ′ = κB′(T ′), (6)

where κ is the absorption coefficient and B′(T ) is the spectral intensity of the black-body radiation given
by the Planck function

B′(T ) = σBT ′4, (7)

with σB is the Boltzmann constant. For more details on the equations of radiation hydrodynamics we
refer to [17, 18] among others. Since it is convenient to work with dimensionless formulations, we define
the following nondimensional variables

x =
x′

D
, t =

u∞t′

D
, u =

u′

u∞
, p =

p′ − ρ∞
ρ∞u2∞

, I =
I

I∞
,

g =
Dg′

u2∞
, T =

T ′ − TC

TH − TC
, β = β′(TH − TC), T0 =

T∞
TH − TC

,

with the subscript ’∞’ presents the reference quantities. We also define the optical scale τ , the Prandtl
number Pr, the Reynolds number Re, and the Planck number Pl, as

τ =
1

κrefD
, Pr =

µ

ρ∞λ
, Re =

ρ∞Du∞
µ

, P l =
λ (TH − TC)

DσBT 4
C

. (8)
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Hence, the equations (1)-(4) can be rewritten in dimensionless form as

∇ · u = 0,

Du
Dt

+∇p− 1
Re
∇2u =

(
T − 1

2

)
e, (9)

DT

Dt
− 1

PrRe
∇2T = − 1

PrRe
∇ · qR,

where e = (0, 1)T is the unit vector in direction of the gravitational force and the material derivative Dw
Dt

of a generic function w is defined as

Dw

Dt
=

∂w

∂t
+ u · ∇w. (10)

The dimensionless radiative heat term is given by

−∇ · qR =
1

τP l

(
B(T )− ϕ

)
, (11)

where ϕ is the radiative energy defined as

ϕ(x) =
∫

S2
I(ω,x) dω. (12)

The dimensionless function B is given by

B(T ) = 4
(

T

T0
+ 1

)4

.

The radiative transfer equation (6) can be rewritten in dimensionless form as

τω · ∇I + κI = κB(T ). (13)

The governing equations (9) and (13) are solved on a computational domain Ω with smooth boundary
∂Ω = Γw ∪ Γin ∪ Γout, as shown in Figure 1, and subject to the following boundary conditions

u(t, x̂) = 0, ∀ x̂ ∈ Γw,

u(t, x̂) = u∞, ∀ x̂ ∈ Γin, (14)

−pn(x̂) +
1

Re
n(x̂) · ∇u(t, x̂) = 0, ∀ x̂ ∈ Γout,

for the flow, and

T (t, x̂) = TH , ∀ x̂ ∈ Γw,

T (t, x̂) = TC , ∀ x̂ ∈ Γin, (15)

n(x̂) · ∇T (t, x̂) = 0, ∀ x̂ ∈ Γout,

for the temperature. Here, n(x̂) denotes the outward unit normal in x̂ with respect to ∂Ω. For the radiative
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Finite element P1 Solution of unsteady thermal flow past a circular cylinder with radiation 5

transfer, the boundary conditions are for diffuse emitting and reflecting walls

I(x̂, ω) = B(TH), ∀ x̂ ∈ Γ−w ,

I(x̂, ω) = B(TC), ∀ x̂ ∈ Γ−in, (16)

I(x̂, ω) = I(x̂, ω′), ∀ x̂ ∈ Γ−out,

where ω′ is the specular reflection of ω on the surface Γout and the boundary regions Γ−i , i ∈ {w, in, out},
are defined as

Γ−i = {x̂ ∈ Γi : n(x̂) · ω < 0} .

It should be stressed that nongrey media and scattering fluids can also be incorporated in our formulation
without major conceptual modifications.

3. The Simplified P1 Approximation

A class of simplified PN approximations for radiative heat transfer problems have been analyzed in [16].
The simplified PN approximations have also been studied in [14, 22, 31] for glass manufacturing, in [2] for
crystal growth, in [8, 23, 24] for gas turbines, and in [29] for low Mach number flows. Recently, validation
of the simplified PN approximations with experimental measurements has been carried out in [27] for a
three-dimensional diffusion flame. In the current work, we extend the SP1 approximations to the radiation-
convection flow past a cylinder.

The starting point for deriving simplified PN approximations for the radiative heat transfer is to rewrite
the equation (13) as

(
1 +

τ

κ
ω · ∇

)
I = B(T ).

Then, apply a Neumann series to formally invert the transport operator

I =
(
1 +

τ

κ
ω · ∇

)−1
B,

≈
(

1− τ

κ
ω · ∇+

τ2

κ2
(ω · ∇)2 + · · ·

)
B.

Integrating respect to ω over all directions in the unit sphere S2 and using the relation

∫

S2
(
ω · ∇)n

dω =
(
1 + (−1)n

) 2π

n + 1
∇n, ∀ n ≥ 1,

we obtain the formal asymptotic equation for ϕ

4πB =
(

1− τ2

3κ2
∇2 − 4τ4

45κ4
∇4

)
ϕ +O(τ6).

When terms of O(τ2) or O(τ4) are neglected we obtain the simplified P0 or simplified P1 approximation,
respectively. Higher order approximations can be derived in a similar manner, compare [16] for more
details. The simplified P0 approximation leads

ϕ = 4πB(T ). (17)
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6 Mohammed Seäıd and Mofdi El-Amrani

Note that the equilibrium (17) cancels the radiation effects in the energy equation (9). In this paper, we
consider only the simplified P1 approach and our techniques can be straightforwardly extended to other
higher order SPN approximations. Thus, the simplified P1 approximation gives

4πB = ϕ− τ2

3κ2
∇2ϕ +O(τ4),

and its associated equation is given by

− τ2

3κ
∇2ϕ + κϕ = 4πκB(T ). (18)

Once the radiative energy ϕ is obtained from the equation (18) the total radiative heat flux is formulated
as in (11). The boundary conditions for the simplified PN approximations are derived from variational
principles using Marshak conditions [9, 15]. Here, we formulate boundary conditions for the SP1 approxi-
mation which are consistent with temperature boundary conditions (15). For more general formulation of
these boundary conditions we refer the reader to [16]. Hence, the boundary conditions for the SP1 equation
(18) are

τ

3κ
n(x̂) · ∇ϕ(x̂) + ϕ(x̂) = 4πB (TH) , ∀ x̂ ∈ Γw,

τ

3κ
n(x̂) · ∇ϕ(x̂) + ϕ(x̂) = 4πB (TC) , ∀ x̂ ∈ Γin, (19)

n(x̂) · ∇ϕ(x̂) = 0, ∀ x̂ ∈ Γout.

It should be stressed that the SP1 model is a promising approach of combining convection and radiation
in participating media. The main advantage of the SP1 equations, apart from the obvious ease with which
the models can be incorporated into CFD calculations due to their compatibility with the solutions of
differential equations for convective and radiating flows, they are computationally efficient and relatively
easy to implement in an existing CFD software.

4. Solution Procedure

The numerical method we propose for approximating solutions to the fluid dynamics and radiation equa-
tions presented in the previous section can be interpreted as a fractional step technique where the radiation-
convection part is decoupled from the Stokes/Boussinesq part in the temporal discretization. Thus, at each
time step the radiative energy, velocity, temperature and pressure are updated by solving first the SP1

equation

− τ2

3κ
∇2ϕ + κϕ = 4πκB(T ), (20)

subject to boundary conditions (19). Second, the convection equations

∂u
∂t

+ u · ∇u = 0,

(21)
∂T

∂t
+ u · ∇T = 0.
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Finite element P1 Solution of unsteady thermal flow past a circular cylinder with radiation 7

and radiative energy

Nodes for velocity, temperatureand 

Nodes for pressure

Figure 2. Taylor-Hood finite element.

Then, the Stokes/Boussinesq equations

∇ · u = 0,

∂u
∂t

+∇p− 1
Re
∇2u =

(
T − 1

2

)
e, (22)

∂T

∂t
− 1

PrRe
∇2T = − 1

PrRe
∇ · qR.

supplied with boundary conditions (14) and (15). Remark that the energy equation in (22) has been
decoupled from the momentum equation, which can be solved separately once the convective step (21) is
approximated.

For the spatial discretization we consider the finite element method. Let h be a spatial discretization
parameter such that 0 < h < h0 with 0 < h0 < 1. We generate a quasi-uniform partition Ωh ⊂ Ω̄ = Ω∪∂Ω
of small triangles Tj that satisfy the following conditions:

(i) Ω̄ =
Ne⋃

j=1

Tj , where Ne is the number of triangles of Ωh.

(ii) If Ti and Tj are two different triangles of Ωh, then

Ti ∩ Tj =





Pij , a mesh point, or
Γij , a common side, or
∅, empty set.

(iii) There exists a positive constant k such that for all j ∈ {1, · · · , Ne}, dj

hj
> k (hj ≤ h), where dj is the

diameter of the circle inscribed in Tj and hj is the largest side of Tj .

The conforming finite element spaces for velocity-temperature-radiation and pressure that we use are
Taylor-Hood finite elements Pm/Pm−1 i.e., polynomial of degree m for the velocity-temperature-radiation
and polynomial of degree m − 1 for the pressure, respectively. An illustration of such finite element is
depicted in Figure 2. These elements can be defined as

Vh =
{

vh ∈ C0(Ω̄) : vh

∣∣
Tj
∈ S(Tj), ∀ Tj ∈ Ωh

}
,

Qh =
{

qh ∈ C0(Ω̄) : qh

∣∣
Tj
∈ R(Tj), ∀ Tj ∈ Ωh

}
,

where C0(Ω̄) denotes the space of continuous and bounded functions in Ω̄, S(Tj) and R(Tj) are polynomial
spaces defined in Tj as S(Tj) = Pm(Tj) and R(Tj) = Pm−1(Tj).

Let us choose a time step ∆t and discretize the time interval into subintervals [tn, tn+1] with tn = n∆t.
For any generic function w we use the notation wn(x) = w(x, tn). Hence, we formulate the finite element
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8 Mohammed Seäıd and Mofdi El-Amrani

solutions to un(x), vn(x), Tn(x), ϕn(x) and pn(x) as

un
h =

M∑

j=1

Un
j φj , vn

h =
M∑

j=1

V n
j φj , Tn

h =
M∑

j=1

Λn
j φj , ϕn

h =
M∑

j=1

ξn
j φj , pn

h =
N∑

j=1

Pn
j ψj , (23)

where M and N are respectively, the number of velocity-temperature-radiation and pressure mesh points
in the partition Ωh. The functions Un

j , V n
j , Λn

j , ξn
j and Pn

j are respectively, the corresponding nodal values
of un

h(x), vn
h(x), Tn

h (x), ϕn
h(x) and pn

h(x) defined as Un
j = un

h(xj), V n
j = vn

h(xj), Λn
j = Tn

h (xj), ξn
j = ϕn

h(xj)
and Pn

j = pn
h(yj) where {xj}M

j=1 and {yj}N
j=1 are the set of velocity-temperature-radiation and pressure

mesh points in the partition Ωh, respectively, so that N < M and {y1, . . . ,yN} ⊂ {x1, . . . ,xM}. In (23),
{φj}M

j=1 and {ψj}N
j=1 are respectively, the set of global nodal basis functions of Vh and Qh characterized

by the property φi(xj) = δij and ψi(yj) = δij with δij denoting the Kronecker symbol. In what follows we
formulate the two main stages in our Galerkin-characteristic method namely, the Lagrangian stage and
the Eulerian stage.

4.1. Solution Procedure: The Lagrangian Stage

Let us denote by X(x, tn+1; t) the characteristic curves associated with the material derivative (10) which
solve the following initial value problem

dX(x, tn+1; t)
dt

= u (X(x, tn+1; t), t) , ∀ (x, t) ∈ Ω̄× [tn, tn+1],
(24)

X(x, tn+1; tn+1) = x.

Notice that X(x, tn+1; t) = (X(x, tn+1; t), Y (x, tn+1; t))
T is the departure point and represents the position

at time t of a particle that reaches the point x = (x, y)T at time tn+1. Hence, for all x ∈ Ω̄ and t ∈ [tn, tn+1]
the solution of (24) can be expressed as

X(x, tn+1; tn) = x−
∫ tn+1

tn

u (X(x, tn+1; t), t) dt. (25)

Accurate estimation of the characteristic curves X(x, tn+1; tn) is crucial to the overall accuracy of the
Galerkin-characteristic method. In this paper, we used a method first proposed in [30] in the context of
semi-Lagrangian schemes to integrate the weather prediction equations. Details on the formulation and
the implementation of this step for characteristics-based methods can be found in references [6, 7, 25, 26]
and are not repeated here. Assuming that a suitable approximation is made for (25), then X(x, tn+1; tn)
would not lie on a spatial position of gridpoint, so it is required that the scheme to compute X(x, tn+1; tn)
be equipped with a search-locate algorithm to find the host element where such point is located. For
structured meshes this step can be simple as index checking or ad hoc searching. To perform this step
we have implemented a search-locate algorithm especially designed in [1] for the semi-Lagrangian method
that works for triangles elements in unstructured discretizations.

Hence, we discretize the Stokes/Boussinesq step in time using the second-order Crank-Nicolson method
for all terms involving velocity and temperature, whereas a first-order implicit Euler scheme is used for
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the pressure variable. This can be formulated as

∇ · un+1 = 0,

un+1 − ũn

∆t
+∇pn+1 − 1

Re
∇2un+1/2 =

(
Tn+1 − 1

2

)
e,

(26)
Tn+1 − T̃n

∆t
− 1

PrRe
∇2Tn+1/2 =

1
PrRe

1
τP l

(
B(T̃n)− ϕn+1

)
.

τ2

3κ
∇2ϕn+1 + κϕn+1 = 4πκB(Tn),

where ũn(x) = u (X(x, tn+1; tn), tn+1), T̃n(x) = T (X(x, tn+1; tn), tn+1) and

wn+1/2 =
1
2
w̃n +

1
2
wn+1.

Since X(x, tn+1; t) would not coincide on a gridpoint, the velocity and temperature fields at the charac-
teristic feet must be obtained by interpolation from known values at the gridpoints of the element where
X(x, tn+1; t) belongs. Since our objective in this paper is to combine the modified method of characteristics
with the finite element spatial discretization, the Lagrangian interpolation is performed in the host element
of departure points using the finite element basis functions as

ũn
h =

M∑

j=1

Ũn
j φj , ṽn

h =
M∑

j=1

Ṽ n
j φj , T̃n

h =
M∑

j=1

Λ̃n
j φj , (27)

where Ũn
j , Ṽ n

j and Λ̃n
j are evaluated by finite element interpolation of un

h(x), vn
h(x) and Tn

h (x) at the feet
of characteristic curves X(x, tn+1; t). This procedure needs less computational work than using a piecewise
exact method for projecting the information from the background Eulerian grid onto the Lagrangian grid
as in [4, 19]. Convergence and stability analysis of this class of Eulerian-Lagrangian methods have been
studied in [3] for convection-diffusion equations and in [5] for incompressible Navier-Stokes equations.

4.2. Solution Procedure: The Eulerian Stage

Now we are in a position to complete the implementation of our Galerkin-characteristic method for
the radiation-convection problem (26). Here, we consider a projection-type procedure to solve the
Stokes/Boussinesq problem, compare [6] for a similar method. Given {pn, un, vn, Tn, ϕn}, we compute
the solution

{
pn+1, un+1, vn+1, Tn+1, ϕn+1

}
as follows:

Step 1. Solve for the radiative energy ϕn+1

τ2

3κ
∇2ϕn+1 + κϕn+1 = 4πκB(T̃n). (28)

Step 2. Solve for the temperature Tn+1

Tn+1 − T̃n

∆t
− 1

PrRe
∇2Tn+1/2 =

1
PrRe

1
τP l

(
B(T̃n)− ϕn+1

)
. (29)
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Step 3. Solve for the velocity ūn+1

ūn+1 − ũn

∆t
+∇pn − 1

Re
∇2ūn+1/2 =

(
Tn+1 − 1

2

)
e. (30)

Step 4. Solve for the pressure p̄

∇2p̄ =
1

∆t
∇ · ūn+1. (31)

Step 5. Update the velocity un+1

un+1 − ūn+1

∆t
+∇p̄ = 0. (32)

Step 6. Update the pressure pn+1

pn+1 = pn + 2p̄. (33)

Note that the Poisson problem (31) is obtained by taking the divergence of equation (32) and using the
fact that ∇ · u = 0. In the solution procedure, four linear systems have to be solved at each time step
to update the solution

{
pn+1, un+1, vn+1, Tn+1, ϕn+1

}
from (28)-(33). To solve these linear systems in our

method we have implemented a preconditioned conjugate gradient algorithm. It should be noted that the
finite element discretization of the equations (28)-(32) is trivial and is omitted here. It is described in many
text books, see for example [12]. In addition, a detailed reconstruction of the mass and stiff matrices in
Galerkin-characteristic solution of convection-dominated flows can be found in [21] among others.

5. Results and Discussions

In this section we present numerical results obtained for the radiation-convection flow past a circular
cylinder. In all our computations we set L = 20, H = 9, L′ = 11, D = 1, Pr = 0.71, Pl = 1 and
u∞ = 1. The dimensionless temperature TC = −0.5 and TH = 0.5. A time step of ∆t = 0.1 is used and
computational results are illustrated at time t = 100 for different optical scales τ and Reynolds numbers Re.
We perform computations with the triangular finite element P2/P1 using the unstructured meshes shown
in Figure 3. All the linear systems of algebraic equations are solved using the conjugate gradient solver
with incomplete Cholesky decomposition (ICCG) as a preconditioner. Furthermore, all stopping criteria
for iterative solvers were set to 10−5. In order to quantify our results we compute the force coefficients

lift coefficient =
Fx

1
2ρ∞u2∞D

=
∮ 2π

0
T2 dx, drag coefficient =

Fy
1
2ρ∞u2∞D

=
∮ 2π

0
T1 dx,

where T = (T1, T2)T is the traction vector on the cylinder boundary. We also calculate the Strouhal number
St = D/u∞T with T is the time period. This dimensionless number is widely used in experimental studies
to quantify the periodic feature in flows past solid bodies.

First we examine the grid convergence in the Galerkin-characteristic method. To this end, we consider
four unstructured meshes with different element densities, see Figure 3. Their corresponding statistics are
listed in Table 1. In this table we also include the Strouhal number obtained using Mesh A, Mesh B,
Mesh C and Mesh D. As can be seen, for the last two mesh levels Mesh C and Mesh D the differences in
Strouhal number are very small. To further qualify the results for these meshes we plot in Figure 4 the cross
section of the flow variables p, T , u and v obtained for nonradiating (SP0) model at the mid-height of the
channel, y = H/2, just behind the cylinder. The results obtained using the coupled convection-radiation
SP1 model are shown in Figure 5. It is easy to see that solutions obtained using the Mesh A are far from
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Figure 3. Unstructured meshes used in computations.

Table 1. Mesh statistics and Strouhal numbers for τ = 0.5 and Re = 100.

Number of nodes Strouhal number

u, T and ϕ p SP0 model SP1 model

Mesh A 1227 326 0.1466 0.1311
Mesh B 4188 1084 0.1722 0.1844
Mesh C 5628 1452 0.1750 0.1833
Mesh D 14792 3772 0.1761 0.1834

those obtained by the other meshes. Increasing the density of elements, the results for the Mesh C and
Mesh D are roughly similar. Results for other values of optical scales and other Reynolds numbers show
the same trends. This ensures grid convergence of the numerical results. Hence, the Mesh C is used in all
our next computations. The reasons for choosing this mesh structure lie essentially on the computational
cost required for each mesh configuration and also on the numerical resolution obtained.

In order to have a comparison between the nonradiating convection flow (SP0 model) and the radiating
convection flow (SP1 model) we display in Figure 6 the isotherms obtained using τ = 0.5 and three
Reynolds numbers Re = 60, Re = 100 and Re = 200. The velocity fields are presented in Figure 7
for the selected Reynolds numbers. These figures indicate circulation zones moving downstream for both
computations with or without including radiation effects. The results also indicate that the inclusion of
radiation, by means of the SP1 model, alters the flow features and also the temperature distribution past
the cylinder. For instance, the size of the recirculation zones increase with the flow exhibiting eddies with
different magnitudes and separating shear layers. We can see the small complex structures of the flow
being captured by the Galerkin-characteristic method.

A numerical comparison between simulations with different optical scales and Reynolds numbers have
been also carried out for this problem. The evolution in time of the lift and drag forces for these simulations
are displayed in Figure 8. As can be seen, there are little differences in the results obtained without
accounting for radiation and those obtained with the SP1 model with Re = 60. These differences become
more pronounced in the drag coefficient for the simulation with Re = 200.

As a final remark we want to comment on the computational cost for the presented approximations. In
Table 2 we summarize the CPU times for the SP0 and SP1 models measured on a PC with AMD-K6 200
processor running Fortran codes under Linux 2.2. It is clear that the CPU times required by SP0 solutions
were slightly lower than the respective SP1 solutions. In all considered Re regimes, the additional work
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Figure 4. Results for the SP0 model using four different meshes using τ = 0.5 and Re = 100.
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Figure 5. Results for the SP1 model using four different meshes using τ = 0.5 and Re = 100.
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Figure 6. Isotherms for SP0 model (left column) and SP1 model (right column) using τ = 0.5.
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Figure 7. Velocity vectors for SP0 model (left column) and SP1 model (right column) using τ = 0.5.
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Figure 8. Time evolution of the lift and drag coefficients for Re = 60, Re = 100 and Re = 200.
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Table 2. CPU times (in seconds) for the SP0 and SP1 models for different Reynolds numbers.

τ = 0.5 τ = 10

Re = 60 Re = 100 Re = 200 Re = 60 Re = 100 Re = 200

without radiation 260 256 249 260 256 249

with SP1 model 318 307 302 383 380 373

needed to include radiation effects into the thermal flow was less than 60 seconds for τ = 0.5 and 125
seconds for τ = 10.

It is worth remarking that the main part of the computational work in the solution procedure was
consumed by the ICCG solver. In our Galerkin-characteristic algorithm, the number of iterations to reach
the tolerance of 10−5 do not overpass 15 iterations for the velocity/temperature and 40 iterations for
the Poisson problems for the pressure and radiative energy at most Re numbers. Needless to say that
the algorithm presented in this paper can be highly optimized for the vector computers, because they
not require nonlinear solvers and contain no recursive elements. Some difficulties arise from the fact that
for efficient vectorization the data should be stored continuously within long vectors rather than two-
dimensional arrays.

6. Concluding Remarks

In the present study, the laminar radiation-convection flow past a circular cylinder is numerically solved
by a robust Galerkin-characteristic finite element method. The method uses primitive variables in the
governing equations and belongs to the class of fractional step procedures where convection part and
Stokes/Boussinesq part are treated separately. Second-order accuracy in time is achieved thanks to the
Crank-Nicolson differentiation of the total derivative for velocity and temperature fields. The inclusion
of radiation is carried out using the simplified P1 approximation of the radiative transfer equation. The
numerical simulations are performed and comparisons are presented for simulations with and without
taking into account the radiation effects in thermal flow past a circular cylinder. The presented results
demonstrate the capability of the Galerkin-characteristic finite element method that can provide insight
to complex radiation-convection flow behaviors.

Future work will concentrate on developing efficient solvers for the associated linear systems and exten-
sion of these techniques to higher order simplified PN approximations.
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