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We propose a finite element method for solving combined convection and radiation in laminar flow past a circular cylinder. The flow problem is described by the thermal incompressible Navier-Stokes equations subject to a Boussinesq approach. To incorporate radiation into the model we consider a simplified P 1 approximation of the radiative transfer equation. The numerical solution of the governing equations is performed by a Galerkin-characteristic method using finite element discretization. The method is accurate and stable for a wide range of optical scales and Reynolds numbers. In addition, the characteristic treatment in the method eliminates most of the numerical difficulties appear usually in the Eulerian-based methods for convection-dominated problems. Numerical results are presented and comparisons between simulations with and without radiation are also illustrated.

Introduction

Numerical study of flow past a cylinder is of practical importance in engineering applications. In many engineering designs, circular cylinders constitute the basic component of structures, for example, heat exchange tubes, cooling systems for nuclear power plants, offshore structures, cooling towers, chimney stacks and transmission cables, etc. The fluid flow in those structures can be gas, water or malted glass, among others. In many interesting situations, experimental and numerical simulations help to enrich the knowledge concerned. The isothermal incompressible flow past a cylinder has been well studied and considered as a benchmark problem for validating new numerical techniques in computational fluid dynamics (CFD), compare [START_REF] El-Amrani | Convergence and stability of finite element modified method of characteristics for the incompressible Navier-Stokes equations[END_REF][START_REF] Mr | The effects of waves on vortex shedding from cylinders[END_REF][START_REF] Schäfer | Benchmark computations of laminar flow around a cylinder[END_REF][START_REF] Simo | Unconditional Stability and Long-term Behavior of Transient Algorithms for the Incompressible Navier-Stokes and Euler Equations[END_REF] and further references are therein. Recently, the thermal version of this problem has been investigated in [START_REF] El-Amrani | Numerical simulation of natural and mixed convection flows by Galerkin-characteristic method[END_REF][START_REF] Rn | On the Wake Structure Behind a Heated Horizontal Cylinder in Cross-Flow[END_REF]. In the above mentioned references no radiation effects have been incorporated in the system. However, growing concern with high temperature processes has emphasized the need for an evaluation of the effect of radiative heat transfer. Nevertheless, it is common for work on convective flows to neglect thermal radiation mainly because it involves tedious mathematics, which increase the computational work, and also because of the lack of detailed information on optical properties of the participating media and surfaces. However, radiation can strongly interact with convection in many situations of engineering interest and neglecting its effects may have significant consequences in the overall predictions. The aim of the present work is to demonstrate the effect of radiation in producing benchmark results, in this case for laminar flow past a circular cylinder, as now illustrated.

In this paper, we provide our numerical solutions for radiation-convection flow past a circular cylinder. The radiation effects are included into the thermal incompressible Navier-Stokes equations through a simplified P 1 (SP 1 ) problem. The SP 1 model is obtained using an asymptotic analysis in the radiative transfer equation, we refer the reader to [START_REF] Larsen | Simplified P N Approximations to the Equations of Radiative Heat Transfer and Applications[END_REF] for details on the derivation of generalized simplified P N approximations. The SP 1 model has proved its capability to provide efficient and yet accurate approximation of radiative heat transfer problems in optically thick media. To the best of our knowledge, this paper is the first to report numerical results for coupled radiation-convection flow over a circular cylinder. The results of the present study are useful for providing comparative data and developing accurate and robust solvers for radiative heat transfer and fluid flow computations.

To numerically solve the governing equations we develop a characteristic-based method in finite elements framework. In Galerkin-characteristic methods, the time derivative and the advection term are combined as a directional derivative along the characteristics, leading to a characteristic time-stepping procedure. Consequently, the Galerkin-characteristic methods symmetrize and stabilize the governing equations, allow for large time steps in a simulation without loss of accuracy, and eliminate the excessive numerical dispersion and grid orientation effects present in many upwind methods, compare for example [START_REF] Bermejo | A Finite Element Semi-Lagrangian Explicit Runge-Kutta-Chebyshev Method for Convection Dominated Reaction-Diffusion Problems[END_REF][START_REF] El-Amrani | Numerical simulation of natural and mixed convection flows by Galerkin-characteristic method[END_REF][START_REF] Klar | Adaptive Solutions of SP N -Approximations to Radiative Heat Transfer in Glass[END_REF]. A Galerkin-characteristic algorithm has been successfully applied to isothermal incompressible Navier-Stokes equations in [START_REF] El-Amrani | Convergence and stability of finite element modified method of characteristics for the incompressible Navier-Stokes equations[END_REF]. Application of this method to thermal viscous incompressible flows has recently been investigated by the authors in [START_REF] El-Amrani | Numerical simulation of natural and mixed convection flows by Galerkin-characteristic method[END_REF]. The current work presents an extension of the method to combined radiation and convection flows.

This paper is organized as follows. The governing equations for coupled radiation and convection are presented in section 2. In section 3 we introduce the simplified P 1 approximation of the radiative transfer equation. The solution procedure and the numerical methods are formulated in section 4. Section 5 contains the numerical results showing the performance of the proposed methods. Some concluding remarks complete the study in section 6.

Equations for Radiation-Convection Flows

A schematic of the system considered in the present work is shown in Figure 1. The system consists of a viscous thermal radiating flow in a channel containing a circular cylinder. The isothermal version of this example has been subject of many numerical validations for laminar flows, see for instance [START_REF] Mr | The effects of waves on vortex shedding from cylinders[END_REF][START_REF] Schäfer | Benchmark computations of laminar flow around a cylinder[END_REF][START_REF] Simo | Unconditional Stability and Long-term Behavior of Transient Algorithms for the Incompressible Navier-Stokes and Euler Equations[END_REF]. Here, the channel width is L, the channel height is H and the diameter of cylinder is D. A viscous incompressible fluid flow at cold temperature T C enters through the left boundary of channel with uniform velocity u ∞ while, the upper and lower walls are kept at hot temperature T H . The cylinder wall is also kept at the hot temperature T H . The fluid is Newtonian and all the thermophysical properties are assumed to be constant, except for density in the buoyancy term that can be adequately modelled by the Boussinesq approximation [START_REF] Jaluria | Natural Convection Heat and Mass Transfer[END_REF] and that compression effects and viscous dissipation are neglected. With these assumptions, the governing equations are Conservation of mass: Conservation of momentum:

∂u ∂x + ∂v ∂y = 0. (1) 
∂u ∂t + u ∂u ∂x + v ∂u ∂y + 1 ρ ∂p ∂x = µ ∂ 2 u ∂x 2 + ∂ 2 u ∂y 2 , ( 2 
)
∂v ∂t + u ∂v ∂x + v ∂v ∂y + 1 ρ ∂p ∂y = µ ∂ 2 v ∂x 2 + ∂ 2 v ∂y 2 + g β T -T ∞ . ( 3 
)
Conservation of energy:

ρ ∞ c p ∂T ∂t + u ∂T ∂x + v ∂T ∂y = λ ∂ 2 T ∂x 2 + ∂ 2 T ∂y 2 -∇ • q R , ( 4 
)
where T ∞ is the reference temperature, ρ ∞ the reference density, u = (u , v ) T the velocity field, p the pressure, T the temperature, µ the dynamic viscosity, c p the specific heat at constant pressure, g the gravity force, β the coefficient of thermal expansion, and λ the thermal diffusivity coefficient. We used primed variables to denote dimensional quantities. The effect of radiation is taken into consideration in the energy equation as the divergence of radiative heat flux, q R . For a grey medium, this term is given by

-∇ • q R = S 2 κ B (T ) -I dω, ( 5 
)
where S 2 denotes the unit sphere and I (ω, x) is the spectral intensity at position x and propagating along direction ω. For a non-scattering medium, the intensity I is obtained from the radiative transfer equation

ω • ∇I + κI = κB (T ), (6) 
where κ is the absorption coefficient and B (T ) is the spectral intensity of the black-body radiation given by the Planck function

B (T ) = σ B T 4 , ( 7 
)
with σ B is the Boltzmann constant. For more details on the equations of radiation hydrodynamics we refer to [START_REF] Mihalas | Foundations of Radiation Hydrodynamics[END_REF][START_REF] Modest | Radiative Heat Transfer[END_REF] among others. Since it is convenient to work with dimensionless formulations, we define the following nondimensional variables

x = x D , t = u ∞ t D , u = u u ∞ , p = p -ρ ∞ ρ ∞ u 2 ∞ , I = I I ∞ , g = Dg u 2 ∞ , T = T -T C T H -T C , β = β (T H -T C ), T 0 = T ∞ T H -T C ,
with the subscript '∞' presents the reference quantities. We also define the optical scale τ , the Prandtl number P r, the Reynolds number Re, and the Planck number P l, as Hence, the equations ( 1)-( 4) can be rewritten in dimensionless form as

τ = 1 κ ref D , P r = µ ρ ∞ λ , Re = ρ ∞ Du ∞ µ , P l = λ (T H -T C ) Dσ B T 4 C . (8) 
∇ • u = 0, Du Dt + ∇p - 1 Re ∇ 2 u = T - 1 2 e, (9) 
DT Dt - 1 P rRe ∇ 2 T = - 1 P rRe ∇ • q R ,
where e = (0, 1) T is the unit vector in direction of the gravitational force and the material derivative Dw Dt of a generic function w is defined as

Dw Dt = ∂w ∂t + u • ∇w. ( 10 
)
The dimensionless radiative heat term is given by

-∇ • q R = 1 τ P l B(T ) -ϕ , ( 11 
)
where ϕ is the radiative energy defined as

ϕ(x) = S 2 I(ω, x) dω. ( 12 
)
The dimensionless function B is given by

B(T ) = 4 T T 0 + 1 4 .
The radiative transfer equation ( 6) can be rewritten in dimensionless form as

τ ω • ∇I + κI = κB(T ). ( 13 
)
The governing equations ( 9) and ( 13) are solved on a computational domain Ω with smooth boundary ∂Ω = Γ w ∪ Γ in ∪ Γ out , as shown in Figure 1, and subject to the following boundary conditions

u(t, x) = 0, ∀ x ∈ Γ w , u(t, x) = u ∞ , ∀ x ∈ Γ in , ( 14 
)
-pn(x) + 1 Re n(x) • ∇u(t, x) = 0, ∀ x ∈ Γ out ,
for the flow, and

T (t, x) = T H , ∀ x ∈ Γ w , T (t, x) = T C , ∀ x ∈ Γ in , ( 15 
) n(x) • ∇T (t, x) = 0, ∀ x ∈ Γ out ,
for the temperature. Here, n(x) denotes the outward unit normal in x with respect to ∂Ω. For the radiative transfer, the boundary conditions are for diffuse emitting and reflecting walls

I(x, ω) = B(T H ), ∀ x ∈ Γ - w , I(x, ω) = B(T C ), ∀ x ∈ Γ - in , (16) 
I(x, ω) = I(x, ω ), ∀ x ∈ Γ - out ,
where ω is the specular reflection of ω on the surface Γ out and the boundary regions Γ - i , i ∈ {w, in, out}, are defined as

Γ - i = {x ∈ Γ i : n(x) • ω < 0} .
It should be stressed that nongrey media and scattering fluids can also be incorporated in our formulation without major conceptual modifications.

The Simplified P 1 Approximation

A class of simplified P N approximations for radiative heat transfer problems have been analyzed in [START_REF] Larsen | Simplified P N Approximations to the Equations of Radiative Heat Transfer and Applications[END_REF].

The simplified P N approximations have also been studied in [START_REF] Klar | Adaptive Solutions of SP N -Approximations to Radiative Heat Transfer in Glass[END_REF][START_REF] Seaïd | Multigrid Newton-Krylov Method for Radiation in Diffusive Semitransparent Media[END_REF][START_REF] Thömmes | Numerical Methods and Optimal Control for Glass Cooling Processes[END_REF] for glass manufacturing, in [START_REF] Backofen | SP N -Approximations of Internal Radiation in Crystal Growth of Optical Materials[END_REF] for crystal growth, in [START_REF] Frank | A Comparison of Approximate Models for Radiation in Gas Turbines[END_REF][START_REF] Seaïd | Numerical Solvers for Radiation and Conduction in High Temperature Gas Flows[END_REF][START_REF] Seaïd | Efficient Numerical Methods for Radiation in Gas Turbines[END_REF] for gas turbines, and in [START_REF] Teleaga | Radiation Models for Thermal Flows at Low Mach Number[END_REF] for low Mach number flows. Recently, validation of the simplified P N approximations with experimental measurements has been carried out in [START_REF] Schneider | Validation of simplified PN models for radiative transfer in combustion systems[END_REF] for a three-dimensional diffusion flame. In the current work, we extend the SP 1 approximations to the radiationconvection flow past a cylinder. The starting point for deriving simplified P N approximations for the radiative heat transfer is to rewrite the equation ( 13) as

1 + τ κ ω • ∇ I = B(T ).
Then, apply a Neumann series to formally invert the transport operator

I = 1 + τ κ ω • ∇ -1 B, ≈ 1 - τ κ ω • ∇ + τ 2 κ 2 (ω • ∇) 2 + • • • B.
Integrating respect to ω over all directions in the unit sphere S 2 and using the relation

S 2 ω • ∇ n dω = 1 + (-1) n 2π n + 1 ∇ n , ∀ n ≥ 1,
we obtain the formal asymptotic equation for ϕ

4πB = 1 - τ 2 3κ 2 ∇ 2 - 4τ 4 45κ 4 ∇ 4 ϕ + O(τ 6 ).
When terms of O(τ 2 ) or O(τ 4 ) are neglected we obtain the simplified P 0 or simplified P 1 approximation, respectively. Higher order approximations can be derived in a similar manner, compare [START_REF] Larsen | Simplified P N Approximations to the Equations of Radiative Heat Transfer and Applications[END_REF] for more details. The simplified P 0 approximation leads Note that the equilibrium (17) cancels the radiation effects in the energy equation [START_REF] Gelbard | Simplified Spherical Harmonics Equations and their Use in Shielding Problems[END_REF]. In this paper, we consider only the simplified P 1 approach and our techniques can be straightforwardly extended to other higher order SP N approximations. Thus, the simplified P 1 approximation gives

ϕ = 4πB(T ). (17) 
4πB = ϕ - τ 2 3κ 2 ∇ 2 ϕ + O(τ 4 ),
and its associated equation is given by

- τ 2 3κ ∇ 2 ϕ + κϕ = 4πκB(T ). ( 18 
)
Once the radiative energy ϕ is obtained from the equation ( 18) the total radiative heat flux is formulated as in [START_REF] Jaluria | Natural Convection Heat and Mass Transfer[END_REF]. The boundary conditions for the simplified P N approximations are derived from variational principles using Marshak conditions [START_REF] Gelbard | Simplified Spherical Harmonics Equations and their Use in Shielding Problems[END_REF][START_REF] Larsen | Asymptotic Derivation of the Multigroup P 1 and Simplified P N Equations with Anisotropic Scattering[END_REF]. Here, we formulate boundary conditions for the SP 1 approximation which are consistent with temperature boundary conditions [START_REF] Larsen | Asymptotic Derivation of the Multigroup P 1 and Simplified P N Equations with Anisotropic Scattering[END_REF]. For more general formulation of these boundary conditions we refer the reader to [START_REF] Larsen | Simplified P N Approximations to the Equations of Radiative Heat Transfer and Applications[END_REF]. Hence, the boundary conditions for the SP 1 equation ( 18) are

τ 3κ n(x) • ∇ϕ(x) + ϕ(x) = 4πB (T H ) , ∀ x ∈ Γ w , τ 3κ n(x) • ∇ϕ(x) + ϕ(x) = 4πB (T C ) , ∀ x ∈ Γ in , ( 19 
) n(x) • ∇ϕ(x) = 0, ∀ x ∈ Γ out .
It should be stressed that the SP 1 model is a promising approach of combining convection and radiation in participating media. The main advantage of the SP 1 equations, apart from the obvious ease with which the models can be incorporated into CFD calculations due to their compatibility with the solutions of differential equations for convective and radiating flows, they are computationally efficient and relatively easy to implement in an existing CFD software.

Solution Procedure

The numerical method we propose for approximating solutions to the fluid dynamics and radiation equations presented in the previous section can be interpreted as a fractional step technique where the radiationconvection part is decoupled from the Stokes/Boussinesq part in the temporal discretization. Thus, at each time step the radiative energy, velocity, temperature and pressure are updated by solving first the SP 1 equation

- τ 2 3κ ∇ 2 ϕ + κϕ = 4πκB(T ), (20) 
subject to boundary conditions [START_REF] Pironneau | On the transport-diffusion algorithm and its applications to the Navier-Stokes equations[END_REF]. Second, the convection equations Then, the Stokes/Boussinesq equations

∂u ∂t + u • ∇u = 0, ( 21 
) ∂T ∂t + u • ∇T = 0.
∇ • u = 0, ∂u ∂t + ∇p - 1 Re ∇ 2 u = T - 1 2 e, ( 22 
) ∂T ∂t - 1 P rRe ∇ 2 T = - 1 P rRe ∇ • q R .
supplied with boundary conditions ( 14) and [START_REF] Larsen | Asymptotic Derivation of the Multigroup P 1 and Simplified P N Equations with Anisotropic Scattering[END_REF]. Remark that the energy equation in [START_REF] Seaïd | Multigrid Newton-Krylov Method for Radiation in Diffusive Semitransparent Media[END_REF] has been decoupled from the momentum equation, which can be solved separately once the convective step ( 21) is approximated.

For the spatial discretization we consider the finite element method. Let h be a spatial discretization parameter such that 0 < h < h 0 with 0 < h 0 < 1. We generate a quasi-uniform partition Ω h ⊂ Ω = Ω ∪ ∂Ω of small triangles T j that satisfy the following conditions:

(i) Ω = N e j=1
T j , where N e is the number of triangles of Ω h . (ii) If T i and T j are two different triangles of Ω h , then

T i ∩ T j =     
P ij , a mesh point, or Γ ij , a common side, or ∅, empty set.

(iii) There exists a positive constant k such that for all j ∈ {1, • • • , N e}, d j hj > k (h j ≤ h), where d j is the diameter of the circle inscribed in T j and h j is the largest side of T j .

The conforming finite element spaces for velocity-temperature-radiation and pressure that we use are Taylor-Hood finite elements P m /P m-1 i.e., polynomial of degree m for the velocity-temperature-radiation and polynomial of degree m -1 for the pressure, respectively. An illustration of such finite element is depicted in Figure 2. These elements can be defined as

V h = v h ∈ C 0 ( Ω) : v h Tj ∈ S(T j ), ∀ T j ∈ Ω h , Q h = q h ∈ C 0 ( Ω) : q h T j ∈ R(T j ), ∀ T j ∈ Ω h ,
where C 0 ( Ω) denotes the space of continuous and bounded functions in Ω, S(T j ) and R(T j ) are polynomial spaces defined in T j as S(T j ) = P m (T j ) and R(T j ) = P m-1 (T j ).

Let us choose a time step ∆t and discretize the time interval into subintervals [t n , t n+1 ] with t n = n∆t. For any generic function w we use the notation w n (x) = w(x, t n ). Hence, we formulate the finite element solutions to u n (x), v n (x), T n (x), ϕ n (x) and p n (x) as

u n h = M j=1 U n j φ j , v n h = M j=1 V n j φ j , T n h = M j=1 Λ n j φ j , ϕ n h = M j=1 ξ n j φ j , p n h = N j=1 P n j ψ j , ( 23 
)
where M and N are respectively, the number of velocity-temperature-radiation and pressure mesh points in the partition Ω h . The functions U n j , V n j , Λ n j , ξ n j and P n j are respectively, the corresponding nodal values of u n h (x), v n h (x), T n h (x), ϕ n h (x) and p n h (x) defined as

U n j = u n h (x j ), V n j = v n h (x j ), Λ n j = T n h (x j ), ξ n j = ϕ n h (x j
) and P n j = p n h (y j ) where {x j } M j=1 and {y j } N j=1 are the set of velocity-temperature-radiation and pressure mesh points in the partition Ω h , respectively, so that N < M and {y 1 , . . . , y N } ⊂ {x 1 , . . . , x M }. In [START_REF] Seaïd | Numerical Solvers for Radiation and Conduction in High Temperature Gas Flows[END_REF], {φ j } M j=1 and {ψ j } N j=1 are respectively, the set of global nodal basis functions of V h and Q h characterized by the property φ i (x j ) = δ ij and ψ i (y j ) = δ ij with δ ij denoting the Kronecker symbol. In what follows we formulate the two main stages in our Galerkin-characteristic method namely, the Lagrangian stage and the Eulerian stage.

Solution Procedure: The Lagrangian Stage

Let us denote by X(x, t n+1 ; t) the characteristic curves associated with the material derivative (10) which solve the following initial value problem

dX(x, t n+1 ; t) dt = u (X(x, t n+1 ; t), t) , ∀ (x, t) ∈ Ω × [t n , t n+1 ], (24) 
X(x, t n+1 ; t n+1 ) = x.
Notice that X(x, t n+1 ; t) = (X(x, t n+1 ; t), Y (x, t n+1 ; t)) T is the departure point and represents the position at time t of a particle that reaches the point x = (x, y) T at time t n+1 . Hence, for all x ∈ Ω and t ∈ [t n , t n+1 ] the solution of (24) can be expressed as

X(x, t n+1 ; t n ) = x - tn+1 tn u (X(x, t n+1 ; t), t) dt. ( 25 
)
Accurate estimation of the characteristic curves X(x, t n+1 ; t n ) is crucial to the overall accuracy of the Galerkin-characteristic method. In this paper, we used a method first proposed in [START_REF] Temperton | An Efficient Two-time-level Semi-Lagrangian Semi-implicit Integration Scheme[END_REF] in the context of semi-Lagrangian schemes to integrate the weather prediction equations. Details on the formulation and the implementation of this step for characteristics-based methods can be found in references [START_REF] El-Amrani | Numerical simulation of natural and mixed convection flows by Galerkin-characteristic method[END_REF][START_REF] El-Amrani | Weakly compressible and advection approximations of incompressible viscous flows[END_REF][START_REF] Seaïd | Semi-Lagrangian Integration Schemes for Viscous Incompressible Flows[END_REF][START_REF] Seaïd | On the Quasi-Monotone Modified Method of Characteristics for Transport-Diffusion Problems with Reactive Sources[END_REF] and are not repeated here. Assuming that a suitable approximation is made for (25), then X(x, t n+1 ; t n ) would not lie on a spatial position of gridpoint, so it is required that the scheme to compute X(x, t n+1 ; t n ) be equipped with a search-locate algorithm to find the host element where such point is located. For structured meshes this step can be simple as index checking or ad hoc searching. To perform this step we have implemented a search-locate algorithm especially designed in [START_REF] Allievi | A generalized particle search-locate algorithm for arbitrary grids[END_REF] for the semi-Lagrangian method that works for triangles elements in unstructured discretizations. Hence, we discretize the Stokes/Boussinesq step in time using the second-order Crank-Nicolson method for all terms involving velocity and temperature, whereas a first-order implicit Euler scheme is used for the pressure variable. This can be formulated as

∇ • u n+1 = 0, u n+1 -ũn ∆t + ∇p n+1 - 1 Re ∇ 2 u n+1/2 = T n+1 - 1 2 e, ( 26 
) T n+1 -T n ∆t - 1 P rRe ∇ 2 T n+1/2 = 1 P rRe 1 τ P l B( T n ) -ϕ n+1 . τ 2 3κ ∇ 2 ϕ n+1 + κϕ n+1 = 4πκB(T n ),
where ũn (x) = u (X(x, t n+1 ; t n ), t n+1 ), T n (x) = T (X(x, t n+1 ; t n ), t n+1 ) and

w n+1/2 = 1 2 wn + 1 2 w n+1 .
Since X(x, t n+1 ; t) would not coincide on a gridpoint, the velocity and temperature fields at the characteristic feet must be obtained by interpolation from known values at the gridpoints of the element where X(x, t n+1 ; t) belongs. Since our objective in this paper is to combine the modified method of characteristics with the finite element spatial discretization, the Lagrangian interpolation is performed in the host element of departure points using the finite element basis functions as

ũn h = M j=1 Ũ n j φ j , ṽn h = M j=1 Ṽ n j φ j , T n h = M j=1 Λn j φ j , ( 27 
)
where Ũ n j , Ṽ n j and Λn j are evaluated by finite element interpolation of u n h (x), v n h (x) and T n h (x) at the feet of characteristic curves X(x, t n+1 ; t). This procedure needs less computational work than using a piecewise exact method for projecting the information from the background Eulerian grid onto the Lagrangian grid as in [START_REF] Douglas | Numerical methods for convection dominated diffusion problems based on combining the method of characteristics with finite elements or finite differences[END_REF][START_REF] Pironneau | On the transport-diffusion algorithm and its applications to the Navier-Stokes equations[END_REF]. Convergence and stability analysis of this class of Eulerian-Lagrangian methods have been studied in [START_REF] Bermejo | A Finite Element Semi-Lagrangian Explicit Runge-Kutta-Chebyshev Method for Convection Dominated Reaction-Diffusion Problems[END_REF] for convection-diffusion equations and in [START_REF] El-Amrani | Convergence and stability of finite element modified method of characteristics for the incompressible Navier-Stokes equations[END_REF] for incompressible Navier-Stokes equations.

Solution Procedure: The Eulerian Stage

Now we are in a position to complete the implementation of our Galerkin-characteristic method for the radiation-convection problem [START_REF] Seaïd | On the Quasi-Monotone Modified Method of Characteristics for Transport-Diffusion Problems with Reactive Sources[END_REF]. Here, we consider a projection-type procedure to solve the Stokes/Boussinesq problem, compare [START_REF] El-Amrani | Numerical simulation of natural and mixed convection flows by Galerkin-characteristic method[END_REF] for a similar method. Given {p n , u n , v n , T n , ϕ n }, we compute the solution p n+1 , u n+1 , v n+1 , T n+1 , ϕ n+1 as follows:

Step 1. Solve for the radiative energy ϕ n+1

τ 2 3κ ∇ 2 ϕ n+1 + κϕ n+1 = 4πκB( T n ). ( 28 
)
Step 2. Solve for the temperature T n+1 Step 3. Solve for the velocity ūn+1

T n+1 -T n ∆t - 1 P rRe ∇ 2 T n+1/2 = 1 P rRe 1 τ P l B( T n ) -ϕ n+1 . ( 29 
ūn+1 -ũn ∆t + ∇p n - 1 Re ∇ 2 ūn+1/2 = T n+1 - 1 2 e. ( 30 
)
Step 4. Solve for the pressure p

∇ 2 p = 1 ∆t ∇ • ūn+1 . ( 31 
)
Step 5. Update the velocity u n+1

u n+1 -ūn+1 ∆t + ∇p = 0. ( 32 
)
Step 6. Update the pressure p n+1

p n+1 = p n + 2p. ( 33 
)
Note that the Poisson problem ( 31) is obtained by taking the divergence of equation ( 32) and using the fact that ∇ • u = 0. In the solution procedure, four linear systems have to be solved at each time step to update the solution p n+1 , u n+1 , v n+1 , T n+1 , ϕ n+1 from ( 28)-(33). To solve these linear systems in our method we have implemented a preconditioned conjugate gradient algorithm. It should be noted that the finite element discretization of the equations ( 28)-( 32) is trivial and is omitted here. It is described in many text books, see for example [START_REF] Johnson | Numerical solution of partial differential equations by the finite element method[END_REF]. In addition, a detailed reconstruction of the mass and stiff matrices in Galerkin-characteristic solution of convection-dominated flows can be found in [START_REF] Seaïd | Lagrange-Galerkin method for unsteady free surface water waves[END_REF] among others.

Results and Discussions

In this section we present numerical results obtained for the radiation-convection flow past a circular cylinder. In all our computations we set L = 20, H = 9, L = 11, D = 1, P r = 0.71, P l = 1 and u ∞ = 1. The dimensionless temperature T C = -0.5 and T H = 0.5. A time step of ∆t = 0.1 is used and computational results are illustrated at time t = 100 for different optical scales τ and Reynolds numbers Re.

We perform computations with the triangular finite element P 2 /P 1 using the unstructured meshes shown in Figure 3. All the linear systems of algebraic equations are solved using the conjugate gradient solver with incomplete Cholesky decomposition (ICCG) as a preconditioner. Furthermore, all stopping criteria for iterative solvers were set to 10 -5 . In order to quantify our results we compute the force coefficients

lift coefficient = F x 1 2 ρ ∞ u 2 ∞ D = 2π 0 T 2 dx, drag coefficient = F y 1 2 ρ ∞ u 2 ∞ D = 2π 0 T 1 dx,
where T = (T 1 , T 2 ) T is the traction vector on the cylinder boundary. We also calculate the Strouhal number St = D/u ∞ T with T is the time period. This dimensionless number is widely used in experimental studies to quantify the periodic feature in flows past solid bodies. First we examine the grid convergence in the Galerkin-characteristic method. To this end, we consider four unstructured meshes with different element densities, see Figure 3. Their corresponding statistics are listed in Table 1. In this table we also include the Strouhal number obtained using Mesh A, Mesh B, Mesh C and Mesh D. As can be seen, for the last two mesh levels Mesh C and Mesh D the differences in Strouhal number are very small. To further qualify the results for these meshes we plot in Figure 4 the cross section of the flow variables p, T , u and v obtained for nonradiating (SP 0 ) model at the mid-height of the channel, y = H/2, just behind the cylinder. The results obtained using the coupled convection-radiation SP 1 model are shown in Figure 5. It is easy to see that solutions obtained using the Mesh A are far from those obtained by the other meshes. Increasing the density of elements, the results for the Mesh C and Mesh D are roughly similar. Results for other values of optical scales and other Reynolds numbers show the same trends. This ensures grid convergence of the numerical results. Hence, the Mesh C is used in all our next computations. The reasons for choosing this mesh structure lie essentially on the computational cost required for each mesh configuration and also on the numerical resolution obtained.

In order to have a comparison between the nonradiating convection flow (SP 0 model) and the radiating convection flow (SP 1 model) we display in Figure 6 the isotherms obtained using τ = 0.5 and three Reynolds numbers Re = 60, Re = 100 and Re = 200. The velocity fields are presented in Figure 7 for the selected Reynolds numbers. These figures indicate circulation zones moving downstream for both computations with or without including radiation effects. The results also indicate that the inclusion of radiation, by means of the SP 1 model, alters the flow features and also the temperature distribution past the cylinder. For instance, the size of the recirculation zones increase with the flow exhibiting eddies with different magnitudes and separating shear layers. We can see the small complex structures of the flow being captured by the Galerkin-characteristic method.

A numerical comparison between simulations with different optical scales and Reynolds numbers have been also carried out for this problem. The evolution in time of the lift and drag forces for these simulations are displayed in Figure 8. As can be seen, there are little differences in the results obtained without accounting for radiation and those obtained with the SP 1 model with Re = 60. These differences become more pronounced in the drag coefficient for the simulation with Re = 200.

As a final remark we want to comment on the computational cost for the presented approximations. In Table 2 we summarize the CPU times for the SP 0 and SP 1 models measured on a PC with AMD-K6 200 processor running Fortran codes under Linux 2.2. It is clear that the CPU times required by SP 0 solutions were slightly lower than the respective SP 1 solutions. In all considered Re regimes, the additional work needed to include radiation effects into the thermal flow was less than 60 seconds for τ = 0.5 and 125 seconds for τ = 10.

It is worth remarking that the main part of the computational work in the solution procedure was consumed by the ICCG solver. In our Galerkin-characteristic algorithm, the number of iterations to reach the tolerance of 10 -5 do not overpass 15 iterations for the velocity/temperature and 40 iterations for the Poisson problems for the pressure and radiative energy at most Re numbers. Needless to say that the algorithm presented in this paper can be highly optimized for the vector computers, because they not require nonlinear solvers and contain no recursive elements. Some difficulties arise from the fact that for efficient vectorization the data should be stored continuously within long vectors rather than twodimensional arrays.

Concluding Remarks

In the present study, the laminar radiation-convection flow past a circular cylinder is numerically solved by a robust Galerkin-characteristic finite element method. The method uses primitive variables in the governing equations and belongs to the class of fractional step procedures where convection part and Stokes/Boussinesq part are treated separately. Second-order accuracy in time is achieved thanks to the Crank-Nicolson differentiation of the total derivative for velocity and temperature fields. The inclusion of radiation is carried out using the simplified P 1 approximation of the radiative transfer equation. The numerical simulations are performed and comparisons are presented for simulations with and without taking into account the radiation effects in thermal flow past a circular cylinder. The presented results demonstrate the capability of the Galerkin-characteristic finite element method that can provide insight to complex radiation-convection flow behaviors.

Future work will concentrate on developing efficient solvers for the associated linear systems and extension of these techniques to higher order simplified P N approximations. 
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 516 Figure 5. Results for the SP 1 model using four different meshes using τ = 0.5 and Re = 100.
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 7 Figure 7. Velocity vectors for SP 0 model (left column) and SP 1 model (right column) using τ = 0.5.
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Table 1 .

 1 Mesh statistics and Strouhal numbers for τ = 0.5 and Re = 100.

		Number of nodes	Strouhal number
		u, T and ϕ	p	SP 0 model	SP 1 model
	Mesh A	1227	326	0.1466	0.1311
	Mesh B	4188	1084	0.1722	0.1844
	Mesh C	5628	1452	0.1750	0.1833
	Mesh D	14792	3772	0.1761	0.1834

Table 2 .

 2 CPU times (in seconds) for the SP 0 and SP 1 models for different Reynolds numbers. τ = 0.5 τ = 10 Re = 60 Re = 100 Re = 200 Re = 60 Re = 100 Re = 200

	without radiation	260	256	249	260	256	249
	with SP 1 model	318	307	302	383	380	373
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