

Prediction of the chemical and physical characteristics oand nutritive value of wheat by near infrared reflectance spectroscopy

Bronagh Owens, Elizabeth Ball (nee Mccann), Kelvin John Mccracken, Rae

Park

► To cite this version:

Bronagh Owens, Elizabeth Ball (nee Mccann), Kelvin John Mccracken, Rae Park. Prediction of the chemical and physical characteristics oand nutritive value of wheat by near infrared reflectance spectroscopy. British Poultry Science, 2009, 50 (01), pp.103-122. 10.1080/00071660802635347 . hal-00545341

HAL Id: hal-00545341 https://hal.science/hal-00545341

Submitted on 10 Dec 2010

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Prediction of the chemical and physical characteristics oand nutritive value of wheat by near infrared reflectance spectroscopy

Journal:	British Poultry Science
Manuscript ID:	CBPS-2008-063.R1
Manuscript Type:	Original Manuscript
Date Submitted by the Author:	24-Jun-2008
Complete List of Authors:	Owens, Bronagh; AFESD Ball (nee McCann), Elizabeth; AFBI, AFESD McCracken, Kelvin Park, Rae; AFBI
Keywords:	Broilers, Diet, Feedstuffs, Nutrition
	·

Prediction of wheat chemical and physical characteristics and nutritive value by nearinfrared reflectance spectroscopy

B. OWENS¹, M. E. E. MCCANN², K. J. MCCRACKEN^{1,2} AND R. S. PARK³

¹Agricultural and Environmental Science Division, Department of Agriculture and Rural Development (now Agri-Food and Biosciences Institute), Newforge Lane, Belfast BT9 5PX, ²Queen's University, Belfast and ³Agri-Food and Biosciences Institute, Large Park, Hillsborough, Northern Ireland, UK.

RUNNING TITLE: PREDICTING WHEAT CHARACTERISTICS WITH NIRS

Corresponding author:

Dr Bronagh Owens, 13 The Demesne, Fortwilliam Park,

Belfast, BT15 4FD.

Accepted for publication 18th August 2008

Abstract 1. The aims of this study were to investigate the potential of near infrared reflectance spectroscopy (NIRS) to predict the chemical and physical characteristics of wheat and also to predict the nutritive value of wheat for broiler chickens.

2. A total of 164 wheat samples, collected from a wide range of different sources (England, Northern Ireland and Canada), varieties and years, were used in this study.

3. Chemical and physical parameters measured included specific weight, thousand grain weight, *in vitro* viscosity, gross energy, nitrogen, neutral detergent fibre (NDF), starch, total and soluble non-starch polysaccharides (NSP), lysine, threonine, amylose, hardness, rate of starch digestion and protein profiles.

4. A total of 94 wheat samples were selected for inclusion in three bird trials and included at 650g/kg in a typical UK starter/grower diet. Birds were housed in individual wire metabolism cages from 7-28 d and offered water and food *ad libitum*. Dry matter intake (DMI), live weight gain (LWG) and gain:feed ratio were measured weekly. A balance collection was carried out from d 14 - d 21 for determination of apparent metabolisable energy (AME), ME:gain and dry matter retention. At 28 d the birds were humanely killed, the contents of the jejunum removed for determination of *in vivo* viscosity and the contents of the ileum removed for determination of ileal dry matter, starch and protein digestibility.

5. The wheat samples were scanned as whole and milled wheat, both dried and undried and NIRS calibrations, first excluding and then including the Canadian wheat samples, were developed.

6. NIRS calibrations for milled wheat samples may be useful for determining specific weight $(R^2_{cv} = 0.75, \text{ for milled wheat dried}), \text{ nitrogen } (R^2_{cv} = 0.983 \text{ for milled and dried}) \text{ and rate of starch digestion } (R^2_{cv} = 0.791 \text{ for milled, dried and undried}).$

British Poultry Science

7. NIRS calibrations for whole wheat samples (undried) may be useful for determining wheat nutritive value, with good predictions for live weight gain ($R^2_{cv} = 0.817$) and feed conversion efficiency ($R^2_{cv} = 0.825$).

8. Inclusion of the Canadian wheat samples in the NIRS analysis provided additional robust calibrations for gross energy ($R^2_{cv} = 0.86$, dried and milled) and starch content ($R^2_{cv} = 0.79$, undried and milled).

8. This study shows that NIR is a useful tool in the accurate and rapid determination of wheat chemical parameters and nutritive value and could be extremely beneficial to both the poultry and wheat industry.

9. Further extension of the dataset would be recommended to further validate these findings.

INTRODUCTION

Wheat is an important component of poultry diets. The chemical and structural properties of wheat are not constant, and there can ultimately be significant variation in feed intake and performance by animals and birds offered wheat-based diets. Rose *et al.* (1993), Scott *et al.* (1998) and McCracken and Quintin (2000) all reported a range of over 10% in the growth rates of chickens fed on different wheat samples. Internationally, specific weight continues to be used as a measure of feed wheat quality, despite reports showing a lack of a relationship between specific weight and nutritive value for poultry (Wiseman, 2000; Miller *et al.*, 2001; McCracken *et al.*, 2002). There is therefore a clear need for an alternative, accurate and rapid method of assessing wheat quality.

The chemical analysis of wheat is time consuming and costly and the assessment of nutritive value *in vivo* is considerably more time consuming, expensive and also requires specialised resources (Garnsworthy *et al.*, 2000). A more beneficial method would be near-infrared spectroscopy (NIRS), which is routinely used in the flour milling industry for the rapid

determination of moisture and protein in wheat and is now used to predict the nutritive value of forage for ruminants (Park *et al.*, 1998).

Garnsworthy *et al.* (2000) found that NIRS could accurately estimate the chemical composition and agronomic characteristics of wheat, but accurate prediction of nutritive value from chemical or agronomic characteristics were very inaccurate (coefficients of determination varied from zero to 0.25). Rose *et al.* (2001) found NIRS useful for determining endosperm hardness and suggested it has the potential as a rapid test of nutritional value for wheat samples arriving at poultry feed mills.

The main objectives of this study were to investigate the potential of NIRS to predict the chemical and physical characteristics of wheat and also to predict the nutritive value of wheat for broiler chickens.

MATERIALS AND METHODS

Animal ethics

This study was conducted according to the Animals (Scientific Procedures) Act 1986 and was approved by the Newforge Ethical Committee.

Sample collection

The 164 wheat samples used in this study were gathered over a wide range of different locations, varieties and years. A total of 62 of the wheat samples were taken from Miller *et al.* (2001). By analysing these older samples for total starch, crude protein and dry matter content we ensured the samples had not deteriorated over time. Of these, 30 were from the 1998 harvest from Northern Irish plant testing sites at Crossnacreevy, Downpatrick and Limavady (10 varieties: Cantata, Ritmo, Riband, Chaucer, Reaper, Brigadier, Madrigal, Hussar, Harrier and Equinox from each site). The other 32, from this study reported by Miller *et al.* (2001), consisted of eight 1999 Northern Ireland varieties (Aardvark, Charger, Hereward, Reaper, Equinox, Napier, Rialto,

British Poultry Science

Savannah and Consort) from two plant testing sites (Downpatrick and Limavady) and 16 wheats from Great Britain (GB), of 4 different varieties (Buster, Consort, Riband and Haven) at 4 levels of specific weight. In addition, 10 samples: Claire, Consort, Malacca, Tanker, Napier, Savannah, Aarvark, Rialto, Riband and Soissons; were collected from each of the 2003 and 2004 harvests at Crossnacreevy, Northern Ireland. Another 20 samples: Claire, Consort, Malacca, Tanker, Soissons, Riband, Napier, Goodwood, Savannah and Vector, at high and low nitrogen levels (180 kg N/ha and 260 kg N/ha), were collected from the 2005 harvest at Crossnacreevy. Another 30 samples were taken from HGCA Project 2979 entitled "GREEN Grain" currently being undertaken by ADAS. Ten samples were obtained from shipments from GB containing commercial wheat samples for Moy Park Limited (Dungannon, Northern Ireland) and the remaining 22 samples were sourced from Canada (Pacific Agri-Food Research Centre, Agassiz, B.C.).

Diets

Of the above wheat samples, 94 were selected for inclusion in three animal trials. By exactly replicating the design from Miller *et al.* (2001), results for 32 wheat samples from this previous animal trial were combined with results from three animal trials (62 wheat samples) in the present study. Wheats were selected to give as wide a range of bird performance results as possible. Insufficient Canadian wheat sample was available for inclusion in the experimental diets. Wheat was ground in a hammer-mill using a 5 mm screen. The diet formulation (Table 1) was a typical UK starter/grower with a small inclusion of lysine, threonine and methionine to equalise these across all diets based on amino acid analysis of the wheat samples. Titanium dioxide was added as an indigestible marker. The diets were mixed, heat treated (80°C, 90 s) and pelleted (3 mm die) at the Agri-Food and Biosciences Institute, Belfast.

Experimental design

The first broiler trial investigated 20 wheat samples, 10 from each of the 2003 and 2004 Crossnacreevy harvest. A total of 60 birds were used in each of three replicates (9 birds/treatment), with three weight blocks of 20 in each replicate. All 20 treatments were randomly allocated within a weight block of 20 birds. The second broiler trial investigated 32 wheat samples selected from the 2005 Crossnacreevy harvest, HGCA Project 2979 and GB commercial samples. A total of 64 birds were used in each of 5 replicates (10 birds/treatment), with two weight blocks of 32 in each replicate. All 32 treatments were randomly allocated within a weight block of 32 birds. The third trial investigated 10 wheat samples selected from the 2005 Crossnacreevy harvest and HGCA Project No. 2979. A total of 60 birds were used in each of two replicates (12 birds/treatment), with 6 weight blocks of 10 in each replicate. All 10 treatments were randomly allocated within a weight block of 10 birds.

Birds and management

For each experimental replicate, 100 male Ross broiler chicks from 30-40 week old breeders and one breeder farm were obtained at hatching from Moy Park Ltd. (Dungannon, Northern Ireland). They were placed in a commercial brooder for 7 d with *ad libitum* access to water and a crumbled starter diet (Hi-Grain Chick Crumbs, John Thompson and Sons, Belfast). At 7 d, all birds were weighed and the heaviest and lightest discarded, leaving a sufficient number so that the birds could be allocated to experiment according to the randomisation. Birds were placed in individual wire metabolism cages at an initial room temperature of 33° C, reduced by 1° C every 2 d down to 24° C. The light:dark cycle was 18:6 and relative humidity was set at 50%. Birds were offered water and food *ad libitum* from d 7 – d 28, with dry matter intake, live weight gain and gain:feed being recorded on a weekly basis.

The balance procedure for determination of apparent metabolisable energy was carried out from d 14 – d 21. The individual bird excreta were collected daily and stored at 4° C. At the

British Poultry Science

end of the balance week the excreta were weighed and then oven-dried at 80°C. The sample weights were allowed to equilibrate and the sample was then milled through a hammer mill fitted with a 0.75 mm screen and stored for subsequent analysis. At 28 d, the birds were humanely killed by dislocation of the spinal cord and the contents of the proximal jejunal removed for determination of *in vivo* viscosity and the contents of the ileum collected to determine ileal digestibility.

Analysis of wheat samples, diets, excreta and ileal digesta

The wheat samples were analysed for dry matter, specific weight, thousand grain weight, *in vitro* viscosity, gross energy, nitrogen (N), neutral detergent fibre (NDF), starch, total and soluble non-starch polysaccharides (NSP), lysine, threonine, amylose, hardness, rate of starch digestion and protein profiles. The diets were analysed for titanium dioxide, dry matter, crude protein (N \times 6.25), crude fat, NDF, ash, starch and gross energy. The excreta samples were analysed for dry matter and gross energy. The ileal digesta were analysed for dry matter, titanium dioxide, crude protein (N \times 6.25) and starch. All analyses were carried out in duplicate and results reported on a dry matter (DM) basis.

Dry matter was determined by oven drying at 100°C for 24h and ash content was determined by ashing samples in a muffle furnace at 450°C for 16 h (AOAC, 1990). Specific weight was measured using a Digi-sampler hectolitre test weight machine (ELE International Limited), and thousand grain weight by using a Numigral seed counter (Tecator Ltd, Sweden) and measuring the weight of 1000 grains in duplicate. *In vitro* viscosity was determined using a modification of the method described by Bedford and Classen (1993). The digesta were centrifuged (13400 g for 8 min) and viscosity measured using a Brookfield LVDV II cone and plate viscometer at 20°C. Nitrogen was determined using the LECO FP-2000 dry combustion analyser (Leco Corporation, Michigan, USA) and oil B by acid hydrolysis (3M HCl), followed

by solvent extraction with petroleum ether ($40-60^{\circ}$ C) in a Soxtec system (Stoldt, 1952). NDF was determined using the Fibertec system (Tecator Ltd, UK) according to the method of Van Soest (1963). Cold NDF reagent (sodium dodecyl sulphate, EDTA disodium salt, $Na_2B_4O_710H_2O$, Na_2HPO_4 and 2-ethoxyethanol and water) and enzyme solution (amylase, BDH, cat. no. 39004) were added to the sample, then boiled and dried. Total starch was determined using a commercial enzyme assay kit (Megazyme International Ireland Ltd) as described by McCleary et al. (1997). Total and soluble NSP content were determined using a commercial enzyme assay kit as described by Englyst et al. (1994). Amino acid content was determined, following acid hydrolysis (6M HCl), on a Biochrom 20 amino acid analyser, using norleucine as internal standard. Gross energy was determined using an isothermal automated bomb calorimeter Amylose content was determined using a commercial assay kit (PARR, Model 1271). (Megazyme International Ireland Limited), which is a modification of the procedure described by Yun and Matheson (1990). The hardness of the wheat samples was firstly measured using a single kernel characterisation system (SKCS) (Harper Adams University) and then repeated at AFBI, Hillsborough, using a more recent version of the equation obtained from Campden Chorleywood Food Research Association (CCFRA), Gloucestershire. Rate of starch digestion was determined by the Englyst method (Englyst et al., 1996). In vitro starch digestion follows first-order kinetics, and *in vitro* starch digestion rate was estimated using the following equation: $DC_t = D \cdot (1 - e^{-k(d) \cdot t})$, where DC_t is the starch fraction at time t and fraction D is the potentially digestible starch fraction that will digest at a fractional rate of k_d (h^{-1}). This terminology was the same as used by Weurding et al. (2001). The % starch at each time period was expressed as a fraction of the maximum starch obtained from the above equation. Profiling of the protein fractions was measured by electrophoretic and densitometric analysis and this was carried out by CCFRA. The detected bands were grouped into 5 major bands. These were, band 1: HMW-

British Poultry Science

glutenin subunits, band 2: larger LMW-glutenin and ω -gliadin subunits, band 3: smaller LMWglutenin and ω -gliadin subunits, band 4: α -, β -, γ -gliadin subunits and band 5: albumins and globulins. Titanium dioxide content was determined by ashing the sample and then digesting with concentrated sulphuric acid. Colour development was obtained with hydrogen peroxide and absorbance measured by spectrophotometry (U-2010 spectrophotometer, Davidson and Hardy Ltd) at wavelength 408nm.

Statistical analysis

The results of the animal trials were subjected to analysis of variance using Genstat Release 9.2, with initial weight as a co-variate for growth parameters.

Near Infrared Reflectance Spectroscopy (NIRS)

Preparation of wheat samples

The milled wheat samples were milled through a hammer-mill (Cross Beater MK II, Glen Creston Ltd, Middlesex, England) fitted with a 0.75 mm screen and stored in polyethylene jars with metal screw caps and kept in the laboratory at room temperature. The dried wheat samples were dried for 24 h in an oven at 100°C.

NIRS scanning

The wheat samples were scanned on a Foss NIRSystems 6500 spectrophotometer (FOSS UK Ltd, Warrington, UK). Samples were presented in a transport quarter cell for (a) undried and (b) dried whole wheat samples and in a static ring cell for (c) undried and (d) dried milled wheat samples. Two separate packings per sample were scanned at 2 nm intervals over the visible and near infrared wavelength range, (*i.e.* 400 to 2500 nm) and the optical data recorded as log 1/Reflectance (log 1/R) values using the ISI-NIRS3 Version 4.00 (Infrasoft International, Port Matilda, PA, USA) software. The NIR spectra were subsequently trimmed to 1100-2498 nm before mathematical treatment of the data. Sub-sampling error was reduced by setting the root

mean square (RMS) difference from the mean of each sub-sample at each wavelength to 700 and 2000 μ log optical density (OD) for milled and whole kernel samples respectively.

Development of NIRS calibrations

The spectrum contains information about the chemical nature of the sample plus extraneous noise. Mathematical first order derivation and Standard Normal Variate and Detrend (SNV-D) (Barnes *et al.*, 1989) scatter correction procedure were applied as there is evidence that these techniques can reduce spectral interference from particle size and other extraneous effects (Baker and Barnes, 1990). Modified partial least squares (MPLS) regression technique (Martens and Naes, 1989) was used to develop the NIRS calibrations. In the MPLS regressions, the spectral data are reduced to a few independent factors, thus retaining most of the spectral information. These independent factors were regressed against the reference laboratory data (*i.e.* SW, TG, *in vitro* viscosity, N, NDF, starch, NSP, lysine, threonine, gross energy, amylose, rate of starch digestion, hardness and protein profiles) and animal performance data (*i.e.* DMI, LWG, G:F, *in vivo* viscosity, ME:GE, AME content, ME:Gain, DM retention and ileal DM, starch and protein digestibility).

When developing MPLS equations, cross-validation was used to select the optimum number of factors and so avoid over-fitting which occurs where the R^2 continues to increase but the error for the calibration, after reaching a minimum value, also starts to increase as more factors are added. The number of factors was set at an upper limit of 11. Cross-validation occurred by first splitting the populations into 6 groups, with one group removed in turn from the database until all 6 groups had been removed. Calibrations were formed using the remaining five groups, and the excluded group was then predicted. Validation errors were combined into a

British Poultry Science

standard error of cross-validation (SECV) and the optimum number of factors was taken as the number resulting in the lowest prediction error. The datasets for each wheat type (milled – undried and dried; kernels – undried and dried) were then split randomly taking every 5th sample to form a true validation set and the remaining 4/5 were used to develop a calibration for each parameter (we shall call these sub-calibrations). The validation sets were then predicted using the respective sub-calibration set and the results compared to the actual laboratory and animal data. The Standard Error of Prediction (SEP) was calculated as: SEP = $\sqrt{\left[\sum (D)^2\right]}/n$

Where D = the difference between the reference value and the predicted value.

The NIR equation statistics were performed with and without the Canadian wheats (on milled samples only).

RESULTS

Chemical and physical analysis of wheat samples

The minimum, maximum and mean values from the chemical and physical analysis of the wheat samples are shown in Table 2. Unfortunately, problems occurred with both the hardness methods. The first method could not incorporate all the wheat samples as they were not available and also more recent and accurate methods are available. For the second method, the SKCS NIRS equation, which was developed at CCFRA, was skewed and biased in order to predict samples scanned on the NIRSystems 6500 instrument at AFBI, Hillsborough. However, we cannot be certain that the results obtained from the adjusted SKCS equation are correct as the H value (Mahalanobis distance) is not affected by skewing and biasing, only the predicted results. Therefore the H value was large (average H value of 35.04). Normally the H value should be less than 3, indicating that the samples are similar to those in the sample database.

Animal trials

Unfortunately, one of the diets had to be eliminated from the third animal trial due to water damage during storage (Spark, -N, High Mowthorpe). Therefore, results are only reported for the remaining 93 wheat samples used in the animal trials (Table 3).

When the three animal trials from this study were combined with the results of Miller et al. (2001), it was found that there were very highly significant (P < 0.001) differences between diet treatments for all the measured parameters (total DMI, LWG and gain:feed, *in vivo* viscosity, ME:GE, AME content, ME:Gain, dry matter retention, ileal dry matter, starch and protein digestibility). Total DMI ranged from 61.6 (Ambrosia, -F, HM) to 85.7 g/d (Buster 71, 1998/99, total LWG ranged from 41.9 (Ambrosia, -F, HM) to 64.2 g/d (Buster 71, 1998/99) and total gain: feed ranged from 0.67 (Predator, -N, Terr) to 0.82 (Riband, 2004). In vivo viscosity ranged from 3.3 (Riband, 2003) to 13.0 cps (Malacca, high N, 2005), ME:GE ranged from 0.67 (Buster 67, 1998/99) to 0.78 (Predator, -N, HM) and AME content ranged from 12.67 (Buster 67, 1998/9) to 14.79 MJ/kg (Malacca, high N, 2005). ME: Gain ranged from 16.72 (Soissons, high N, 2005) to 20.86 MJ/kg (Zebedee –N, Terr), dry matter retention ranged from 0.70 (Napier, S/R 640, Rose) to 0.75 (Napier, high N, 2005) and ileal dry matter ranged from 0.63 (Claire, high N, 2005) to 0.76 (Consort, 2003)). Starch digestibility ranged from 0.83 (Aardvark, 2004) to 0.97 (Goodwood, low N, 2005)) and ileal protein digestibility ranged from 0.70 (Consort, high N, 2005) to 0.83 (Savannah, 2004).

NIRS

Full calibrations based on all wheats but excluding Canadian wheats

Table 3 presents the range, standard deviation and number of samples analysed for each parameter using all the wheat samples but excluding the Canadian wheat. Tables 4(a), 5(a), 6(a) and 7(a) present the statistics for the calibrations developed for each parameter using the full database, excluding the Canadian wheat. Overall good NIRS calibrations with high R^2 and low

British Poultry Science

errors (SEC) were produced for the majority of parameters across all sample types. Milled wheat samples typically produced better correlation statistics as the sample is more homogeneous than Standard error of cross validation (SECV) and the the whole kernel wheat samples. corresponding coefficient of determination of cross validation (R^2_{cv}) are the statistics which better reflect how the calibration will perform when predicting unknown wheat samples. SECV expressed as a percentage of the mean reference value is presented to give a clearer indication of the error associated with the prediction equations. Ideally percentage error would be $\leq 2\%$ for laboratory analyses. Biological parameters are much more difficult to estimate and therefore larger errors are acceptable. NIRS errors are typically greater than the errors associated with the reference method. Dried milled wheat samples, yielded some strong calibrations, with high R^2 for SW (0.82), TG (0.75), in vitro viscosity (0.79), N (0.99), starch (0.78), total NSP (0.77), threonine (0.77), GE (0.82), RSD (0.125h) (0.84), RSD (0.250h) (0.87), RSD (0.375h) (0.87), RSD (0.5h) (0.83), RSD (0.75h) (0.83), RSD (1h) (0.83), RSD rate constant (0.83), hardness (0.87), protein profile bands 1 (0.83), 2 (0.87), 3 (0.76) and 4 (0.88), ME:GE (0.79), AME content (0.72) and ME:Gain (0.88). Good cross validation statistics, $R^2_{cv} \ge 0.75$ were achieved for SW (0.75), N (0.98), GE (0.76), RSD (0.125h) (0.81), RSD (0.250h) (0.80), RSD (0.375h) (0.80), RSD (0.5h) (0.77), RSD (0.75h) (0.78), RSD rate constant (0.78), hardness (0.79) and protein profile bands 1 (0.75), 2 (0.78), 4 (0.77) and ME:gain (0.78) (Table 4(a)).

The NIR equation statistics for the undried milled wheats (Table 5(a)) also achieved good correlations similar to the dried wheats with R^2 values for SW (0.80), TG (0.77), N (0.99), starch (0.77), threonine (0.80), GE (0.86), RSD (0.125h) (0.87), RSD (0.250h) (0.86), RSD (0.375h) (0.79), RSD (0.5h) (0.84), RSD (0.75h) (0.80), RSD (1h) (0.78), RSD rate constant (0.81) and protein profile bands 1 (0.84), 2 (0.78), 4 (0.92) and 5 (0.85), 7-14d DMI (0.82), 7-14d LWG (0.86), 14-21d LWG (0.83), 21-28d LWG (0.82), total LWG (0.84), 14-21d gain:feed (0.81),

total gain:feed (0.84) and ME:Gain (0.82). High R^2_{cv} results were still achieved for N (0.98), RSD (0.125h) (0.83), RSD (0.250h) (0.83), RSD (0.375h) (0.77), RSD (0.5h) (0.79), RSD (0.75h) (0.76), RSD rate constant (0.80), protein profile band 4 (0.86) and 7-14d LWG (0.75).

Tables 6(a) and 7(a), presenting the calibration statistics for the dried and undried whole wheat, show that fewer calibrations produced $R^2_{cv} \ge 0.75$ when their spectra were regressed against the reference data for the chemical and physical parameters. Of particular interest are the biological parameters, DMI, LWG and gain:feed, which produced robust calibrations (R^2_{CV} ranging from 0.76 - 0.83 and corresponding SECV as percentage of the mean from 2.35 – 6.50%) for the undried whole kernel wheats, which is the natural state that we would wish to use routinely to predict chemical composition and feed value.

Independent validation using a NIRS sub-calibration (excluding Canadian wheats)

In order to assess fully the NIRS calibrations, sub-calibrations were developed for each sample type, based on randomly selecting 4/5 of the database and these sub-calibrations were then used to predict the remaining 1/5 of samples. The reference values for the independent samples and the NIRS predicted values were compared and the standard error of prediction (SEP) calculated. Tables 4b, 5b, 6b and 7b show the sub-calibration and the true validation statistics for each parameter. Nitrogen prediction equations performed strongly for all wheat types with R^2 values ranging from 0.82 for undried whole wheat to 0.91 for dried milled wheat and SEP values of 1.03 - 0.65 respectively. Figure 1 shows a regression plot of the dried and undried milled wheat nitrogen predictions versus the reference values. The validation results for dried milled wheats show that the NIRS sub-calibrations performed well for nitrogen, total NSP, threonine, GE, RSD (0.125, 0.25, and 0.375h), RSD rate constant and protein band 1 and 4, with R^2 of 0.91, 0.71, 0.70, 0.82, 0.75, 0.70, 0.70, 0.74, 0.75, and 0.77 respectively. The SEP expressed as a percentage

Figure 1 near here

British Poultry Science

of the mean ranged from 0.22% for GE to 12.9% for the RSD rate constant which would be a difficult measurement.

SW, TG, starch, amylose, RSD (0.5, 0.75 and 1h), ME:GE and ileal starch digestibility all produced correlations $R^2 > 0.60$ and SEP as % of mean of 3.67, 10.85, 3.60, 4.82, 6.78, 5.25, 3.61, 2.31 and 4.79 respectively. These results are very encouraging and additional wheat samples may improve the calibrations. Similar results were observed for the undried milled wheats. Regression plots of actual and predicted RSD rate constant for dried and undried milled wheat are presented in Figure 2.

Whole dried wheat validations only produced good correlations ($\mathbb{R}^2 > 0.60$) for SW, nitrogen, total LWG and ileal DM digestibility although low SEP % errors of 3.16, 0.43, 4.66, 2.64, 5.47, 7.20, 4.60, 1.93, 3.74, 2.90, 3.58, 2.78 for starch, GE, RSD (1h), RSD(2h), total DMI, total LWG, total gain:feed, ME:GE. ME:gain, ileal DM digestibility, ileal starch digestibility and ileal CP digestibility would indicate the potential to improve these equations. In most cases similar or poorer relationships were found with undried whole wheat comparisons. However, for total gain:feed very good calibrations ($\mathbb{R}^2 = 0.75$) were observed for undried whole wheat with low SEP percentage errors of 3.19%. Figures 3 and 4 show the validation statistics when LWG and total gain:feed reference and predicted values were compared for dried and unfield whole and total gain:feed reference and predicted values were compared for dried and unfield whole and total gain:feed reference and predicted values were compared for dried and unfield whole wheat hear he wheat.

Full calibrations based on all wheats including Canadian wheats

Canadian wheats had been analysed for TG, *in vitro* viscosity, nitrogen, NDF, starch, GE, RSD (0.125, 0.250, 0.375, 0.50, 0.75, 1 and 2h, and RSD rate constant. The spectral data for dried and undried milled wheats plus the reference data for the Canadian wheats were added to the original dried and undried databases and full calibrations produced. Table 8 shows the total number of samples, the range and standard deviation of the parameters used to develop the new NIRS

E-mail: br.poultsci@bbsrc.ac.uk URL: http://mc.manuscriptcentral.com/cbps-

Tables 8,9,10 near here

calibrations. The calibration statistics for the dried and undried milled wheats are presented in Tables 9(a) and 10(a) respectively.

Including the Canadian wheat samples produced good predictive equations with high R^2 and very good R^2_{CV} values for almost all parameters for both dried and undried milled wheats. However, *in vitro* viscosity appears to be a poor equation with SECV as % of the mean of 26.28 and 25.09% for dried and undried samples respectively.

Independent validation using a NIRS sub-calibration including the Canadian wheats

Again sub-calibration databases including the Canadian wheats were randomly selected and the equations produced predicted the remaining 1/5 of samples excluded from the calibration. The calibration statistics for the sub-calibration and true validation statistics are presented in Tables 9(b) and 10(b). Both the dried and undried validations produced fairly good correlations $R^2 > 0.60$ for nitrogen, GE, RSD digestibility parameters and the RSD rate constant. SEP % errors are particularly low for nitrogen, starch, GE, RSD (0.75, 1 and 2h) ranging from 0.28 – 5.32. A correlation plot (Figure 5) of the actual laboratory GE values and the NIRS predicted values show R^2 of 0.90 for undried and 0.88 for dried wheat samples respectively. Although the GE range is small the predictive equations are robust.

Figure 5 near here

In summary, the milled samples, dried and undried, produced good calibrations for SW, N, RSD, hardness, and some of the protein bands. The whole wheat samples, dried and undried, produced good calibrations for N, LWG and gain:feed. By including the Canadian wheat, additional strong calibrations were obtained for GE and starch content.

DISCUSSION

Many papers discussing NIRS do not go beyond the internal calibrations carried out initially in this study. Therefore any calibrations considered strong after an independent validation with a separate set of samples in this study can be considered more robust than those reported by others.

British Poultry Science

A coefficient of cross validation (R^2_{cv}) greater than 0.75 is accepted by industry, as an indicator that a strong calibration has been achieved for predictive purposes. The errors (SECV and SEP) associated with the predictions have to be taken into consideration as high correlations alone may sometimes be misleading. Only by taking into account both correlation and error statistics can one decide if the equation is acceptable for the parameter of interest. Laboratories usually accept 2-3% error for repeatability while errors associated with biological parameters will be higher.

In general, NIRS calibrations for the chemical parameters of wheat were best predicted by the milled wheat samples, while calibrations for the nutritive value of wheat were best predicted by the whole wheat samples. The calibrations for specific weight were good for the dried wheat samples, with the calibration for milled dried wheat being stronger, producing a coefficient of cross validation of 0.747 and a 2.72 % error of cross validation. The determination of protein content in wheat is historically the most important application of NIR analysis and NIR is now widely used for this purpose in the flour milling industry (Osbourne et al., 1993). In the current study, the nitrogen content of the wheat samples was well predicted by all forms of wheat. Unsurprisingly, the milled and dried wheat had the highest coefficient of cross validation (0.983), with only a 1.63% error of cross validation. This compares favourably with Garnsworthy et al. (2000), who reported a standard error of cross validation of 0.89. The rate of starch digestion is well predicted using NIRS, but only on the wheat that was milled. Coefficients of cross validation from 0.699 - 0.829 were achieved when predicting the amount of starch digested at 7.5, 15, 22.5, 30, 45 and 60 minutes and 0.791 when predicting the rate of starch digestion. This result is particularly exciting as the determination of the rate of starch digestion is a costly and time consuming analysis and therefore a quick and reliable method would be well received. A possible explanation for the calibrations being strong in the milled wheat samples, but not in the whole kernel, is that the particle size of ground wheat has a significant effect on starch

digestibility. It is generally thought that smaller particles with an increased surface area will allow increased access to digestive enzymes and enhance digestion of nutrients (Waldroup, 1997). Péron *et al.* (2005) reported positive effects of fine grinding of wheat on starch digestibility. Calibrations for NDF, total NSP and soluble NSP were weak, the highest coefficients of cross validation being 0.54, 0.69 and 0.48 respectively. The calibrations for starch and amylose were not as good as would be expected for chemical parameters with R^2_{CV} of 0.711 and 0.632 respectively for milled and dried wheat. Garnsworthy *et al.* (2000) also produced similar calibrations for starch (0.74) and speculated that because starch is not a single entity, differences occur in the size of starch granules and their interaction with the protein matrix of the endosperm may cause interference with the spectral patterns.

Gross energy also produced a good calibration in the current study, the highest R^2_{cv} being 0.760 for milled wheat undried. This may have been improved if the variation in the reference values (18.09-18.84 MJ//kg DM, without Canadian wheat) had been greater. As expected, the coefficients of cross validation of ME:GE and AME content were poorer (0.683 and 0.608 respectively) than for gross energy, as they were also subject to animal variation. Prediction of the different bands of proteins seems possible when observing the R^2_{cv} values ranging up to 0.86. However, the corresponding errors of cross validation as a percentage of the mean, reached as high as 13.15%. This is a relatively large error and therefore may render the use of the calibration for the prediction of protein bands as impractical.

For the first time, good predictions for live weight gain and feed conversion efficiency were achieved using the undried whole wheat samples ($R^2_{cv} = 0.817$ and 0.825 respectively). This could have major benefits to the feed wheat industry. Potentially, a wheat sample, without drying, can be scanned for a few seconds on an NIR machine and from the spectra produce a very reasonable prediction of broiler performance, with only a small error associated with the equation

British Poultry Science

(2.35% for gain:feed and 4.9% for live weight gain). The accuracy of all these predictions may even be improved further by eliminating outliers, which can justifiably be excluded and clearly seen from the actual versus predicted regression plots.

By including the Canadian wheat in the NIRS analysis of the dried and milled wheat samples the R^2_{cv} values were increased for most parameters and improvements observed in the R^2_{cv} values for TG (0.76), starch (0.79) and GE (0.86) are significant, in that, they are now greater than 0.75. A similar trend was observed when the Canadian wheat was included in the NIRS analysis of the undried and milled samples. Most parameters obtained increased R^2_{cv} values, with starch and GE having significant improvement, with small SECVs as a percentage of the mean (2.6 and 0.3 respectively). Therefore NIRS may also be an extremely useful tool for the determination of starch and gross energy content of a milled wheat sample. This could be an extremely beneficial finding, as the determination of these parameters by traditional methods can be costly and time consuming.

Conclusions

1. NIRS calibrations for milled wheat samples may be useful for determining specific weight, crude protein and rate of starch digestion.

2. NIRS calibrations for whole wheat samples (not dried) may be useful for determining wheat nutritive value.

3. Inclusion of the Canadian wheat samples to the NIRS analysis provides additional robust calibrations for gross energy and starch content of the milled wheat samples.

This study provides clear evidence that NIRS could be used as a rapid and accurate method for determining feed wheat quality, however, expansion of the dataset would be strongly recommended to further validate these findings.

ACKNOWLEDGEMENTS

The authors gratefully acknowledge the cooperation of Dr Ethel White (Plant Testing Station, AFBI), Professor Roger Sylvester-Bradley (ADAS), Mr John Sloss (Moy Park) and Dr Tom Scott (Agri-Food Research Centre) in obtaining the samples. Dr David Kilpatrick and Mrs Sally Dawson (Biometrics Division, AFBI) who provided advice and help with the statistical analysis. We would also like to recognise the contribution of Mr Nicholas Grant in the development of NIRS calibrations. The work was funded by the Department of Agriculture and Rural Development and the Home Grown Cereals Authority.

REFERENCES

Association of Official Analytical Chemists. (1990). *Official Methods of Analysis 15th ed.*, Washington DC: AOAC.

Baker, C.W. and Barnes, R. (1990). The application of near infra-red spectroscopy to forage evaluation in the Agricultural Development and Advisory Service. In: J. Wiseman and D.J.A. Cole (Editors), *Feedstuff Evaluation*. Butterworths, London, pp. 337-354.

Barnes, R.J., Dhanoa, M.S. and Lister, S.J. (1989). Standard normal variate transformation and de-trending of near infrared diffuse reflectance spectra. *Applied Spectroscopy*, **43**: 772-777.

Bedford, M.R. and Classen, H.L. (1993). An *in vitro* assay for prediction of broiler intestinal viscosity and growth when fed rye-based diets in the presence of exogenous enzymes. *Poultry Science*, **72**: 137-143.

Englyst, H.N., Quigley, M.E. and Hudson, G.J. (1994). Determination of dietary fibre as nonstarch polysaccharides with gas-liquid-chromatographic, high-performance liquid-chromatographic or spectrophotometric measurement of constituent sugars. *Analyst*, **119**: 1497-1509.

British Poultry Science

Englyst, H.N., Veenstra, J. and Hudson, G.J. (1996). Measurement of rapidly available glucose (RAG) in plant foods: a potential *in vitro* predictor of the glycaemic response. *British Journal of Nutrition*, **75**: 327-337.

Garnsworthy, P.C., Wiseman, J. and Fegeros, K. (2000). Prediction of chemical, nutritive and agronomic characteristics of wheat by near infrared spectroscopy. *Journal of Agricultural Science, Cambridge*, **135**: 409-417.

Martens, H. and Naes, T. (1989). Multivariate Calibration. John Wiley and Sons, Chichester, pp 419.

McCleary, B.V., Gibson, T.S. and Mugford, D.C. (1997). Measurement of total starch in cereal products by amyloglucosidase-α-amylase method: Collaborative Study. *Journal of the Association of Official Analytical Chemists International*, **80**: 571-579.

McCracken, K.J. and Quintin, G. (2000). Metabolisable energy content of diets and broiler performance as affected by wheat specific weight and enzyme supplementation. *British Poultry Science*, **41**: 332-342.

McCracken, K.J., Preston, C.M. and Butler, C. (2002). Effects of wheat variety and specific weight on dietary apparent metabolisable energy concentration and performance of broiler chicks. *British Poultry Science*, **43**:253-260.

Miller, H.M., Wilkinson, J.M., McCracken, K.J., Knox, A., McNab, J. and Rose, S.P. (2001). Nutritional value to farm livestock of wheat of low specific weight. HGCA Project Report No. 260, HGCA, London.

Wiseman, J. and Haresign, W. pp87-110. Nottingham: Nottingham University Press.

Osbourne, B.G., Fearn, T. and Hindle, P.H. (1993). *Practical NIR Spectroscopy with Applications in Food and Beverage Analysis*. Harlow, Essex: Longman Scientific and Technical.

Park, R.S., Agnew, R.E., Gordon, F.J. and Steen, R.W.J. (1998). The use of near infrared spectroscopy (NIRS) on undried samples of grass silage to predict chemical composition and digestibility parameters. *Animal Feed Science and Technology*, **72**: 155-167.

Péron, A., Bastianelli, D., Oury, F.-X., Gomez, J. and Carré, B. (2005). Effects of food deprivation and particle size of ground wheat on digestibility of food components in broilers fed on a pelleted diet. *British Poultry Science*, **46**: 223-230.

Rose, S.P., Kettlewell, P.S., Reynolds, M.S. and Watts, M.R. (1993). The nutritive value of different wheat varieties for poultry. *Prodeedings of the Nutrition Society*, **52**: 206A.

Rose, S.P., Tucker, L.A., Kettlewell, P.S. and Collier, J.D.A. (2001). Rapid tests of wheat nutritive value for growing chickens. *Journal of Cereal Science*, **34**: 181-190.

Scott, T.A., Silversides, F.G., Classen, H.L., Swift, M.L. and Bedford, M.R. (1998). Effect of cultivar and environment on the feeding value of Western Canadian wheat and barley samples with and without enzyme supplementation. *Canadian Journal of Animal Science*, **78**: 649-656.

Stoldt, W. (1952). Vorslag zur Vereinheitlichung der Fettbestimmung in Lebensmitteln (Suggestion to standardise the determination of fat in foodstuffs). *Fette, Seifen und Anstrichmittel*, **54**: 206-207.

Van Soest, P.J. (1963). Use of detergents in the analysis of fibrous feeds. 1. Preparation of fibre residues of low nitrogen contents. *Journal of the Association of Agricultural Chemists*, **46**: 825.

Waldroup, P.W. (1997). Particle size reduction of cereal grains and its significance in poultry nutrition. *Technical Bulletin PO 34-1997*. American Soybean Association, Singapore, pp14.
Weurding, R.E., Veldman, A., Veen, W.A.G., Van der Aar, P.J. and Verstegen, M.W.A. (2001).
Starch digestion rate in the small intestine of broiler chickens differs among feedstuffs. *Journal of Nutrition*, 131: 2329-2335.

Wiseman, J. (2000). Correlation between physical measurements and dietary energy values of wheat for poultry and pigs. *Animal Feed Science and Technology*, **84**: 1-11.

Yun, S.H. and Matheson, N.K. (1990). Estimation of amylase content of starches after precipitation of amylopectin by concanavalin-A. *Starch*, **42**: 302-305.

Component	g/kg
Wheat	650
Hipro soya bean meal	200.5
Full fat soya bean	40
Fish meal	40
Soya bean/tallow blend	25
Limestone	8
Dicalcium phosphate	14
Trace minerals/ vitamins*	5
Sodium bicarbonate	2
Sodium chloride	2
Choline chloride	0.5
Lysine**	2.5
Methionine**	4.7
Threonine**	2.8
Maize starch**	3.0
	- Q ,

Table 1. Composition of diets

*The trace mineral/vitamin mixture supplied (per kg feed): retinol 3.6 mg, cholecalciferol 0.125 mg, α -tocopherol 50 mg, thiamine 2 mg, riboflavin 7 mg, phylloquinone/menaquinone/menadione 3 mg, pyridoxine 5 mg, nicotininc acid 50 mg, calcium pantothenate 15 mg, folic acid 1 mg, biotin 0.2 mg, cobalamin 15 µg, manganese 100 mg, iron 80 mg, zinc 80 mg, copper 10 mg, iodine 1 mg, cobalt 0.5 mg, selenium 0.2 mg, molybdenum 0.5 mg.

**For each wheat sample inclusions of lysine, methionine, threonine and maize starch were adjusted on the basis of the determined amino acid analysis of the wheat to equalise total concentrations across all diets.

Parame	ter	Minimum	Maximum	Mean
Specific weigh	nt (kg/hl)	59	78	71
Thousand grain	weight (g)	21.7	60.8	43.1
In vitro viscos	sity (cp)	3.2	44	12
N (g/kg E	DM)	12.5	32.7	20.2
NDF (g/kg	DM)	101	195	141
Starch (g/kg	g DM)	547	719	633
Total NSP (g/kg DM)		81.7	138.8	107
Soluble NSP (g/kg DM)		8.4	38	23
GE (MJ/kg	DM)	18.06	18.84	18.40
Amylose (g/k	kg DM)	115	211	159
Hardnes	ss ^a	8.4	66.7	42.1
Hardnes	ss ^b	2.9	74.1	36.0
RSD rate co	onstant	1.33	4.35	2.50
Protein profile	Band 1	2.1	7.9	5.0
(%)	Band 2	9.1	18.8	14.5
	Band 3	10.2	23.6	18.4
	Band 4	24.3	48.1	35.4
	Band 5	20.9	37.4	26.6

Table 2. Chemical and physical analysis of the wheat samples

^a = old SKCS equation ^b = new SKCS equation

						No of
Variable	Units	Mean	Min	Max	Std Dev	samples
Specific weight	kø/hl	70.72	59.00	78.00	4.03	138
Thousand grain weight	g	44.63	28.70	60.80	6.86	139
In vitro viscosity	cp	13.36	4.30	44.00	6.40	141
Nitrogen	g/kg DM	19.13	12.49	24.03	2.40	141
NDF	g/kg DM	138.87	101.30	178.60	12.72	141
Starch	g/kg DM	641.14	567.00	719.00	29.42	141
Total NSP	g/kg DM	106.96	81.70	138.80	11.24	141
Soluble NSP	g/kg DM	23.52	8.40	38.00	5.39	141
Lysine	g/kg DM	3.51	1.80	5.80	0.59	141
Threonine	g/kg DM	3.31	1.20	4.90	0.70	141
Gross Energy	MJ/kg DM	18.35	18.06	18.70	0.11	141
Amvlose	g/kg DM	159.05	115.00	182.30	11.47	141
RSD (0.125h)	% starch	36.70	20.41	51.60	7.01	141
RSD (0.250h)	% starch	48.65	29.90	67.12	7.36	141
RSD(0.375h)	% starch	58.80	38.98	74.64	7.31	141
RSD(0.5h)	% starch	67.65	47.64	83.02	7 84	141
RSD(0.5h)	% starch	81 57	58 73	98.90	7.01	141
RSD(1h)	% starch	90.28	71.97	100.82	5 71	141
RSD(2h)	% starch	102.38	93.61	110.62	3 39	141
RSD Rate Constant	% degradation/h	2 58	1 34	4 35	0.60	141
Hardness	*	35.68	8 41	66 65	12.80	107
Protein profile (Band 1)	0%	5.00	2 10	7 90	1.08	84
Protein profile (Band 2)	/c 0/c	14 47	9.10	18.80	2.06	84
Protein profile (Band 3)	/0 0/0	18 37	10.20	23.60	3.48	84
Protein profile (Band 4)	/0 0/0	35 30	24.30	48 10	J.+0 4 43	84
Protein profile (Band 5)	/0 0/c	26.60	24.50	37.40	3 30	84
DMI (7.14d)	a/d	20.00	28.80	30.30	2.40	03
DMI(14,21d)	g/u g/d	71 51	28.60	83.10	2.40	93
DMI(21, 28d)	g/d g/d	115 25	02.20	134.00	4.73	93
Total DMI	g/u g/d	115.25	92.20	134.90 85 70	0.04	93
1000000000000000000000000000000000000	g/d a/d	13.11	01.00	83.70	4.94	95
LWG(7-14d)	g/d a/d	28.32	21.40	55.20	5.54	93
LWG(14-21d)	g/d a/d	37.47 91.97	42.40	05.10	5.90 8.45	95
LWG (21-280)	g/d	01.04 55.02	38.10	90.50	8.4 <i>3</i>	93
Total LWG	g/a	55.95 82.75	41.90	04.20	5.07	93
Gain: leed (7-14d)	*	82.75	75.10	90.00	5.00	93
Gain: feed (14-21d)	*	80.41	/1.90	88.40	4.40	93
Gain: feed (21-28d)	*	/1.11	61.50	/8.20	3.20	93
I otal gain:feed	^	/5./9	67.20	81.70	3.59	93
In vivo viscosity	cp	5.89	5.31	12.98	1.97	93
ME:GE ratio		/3.81	67.10	/8.40	2.30	93
AME Content	MJ/kg DM	13.92	12.67	14.79	0.46	93
ME:Gain ratio	MJ/kg	18.31	16.72	20.86	0.90	93
DM Retention	% ~	72.13	69.70	75.30	1.31	61
Ileal DM Digestibility	%	69.98	62.70	75.60	2.66	61
Ileal Starch Digestibility	%	91.71	83.20	97.20	3.30	61
Ileal CP Digestibility	%	76.92	70.30	83.20	3.26	61

Fable 3.	Range and	standard	deviation	of all	wheats	(excluding	the	Canadian	wheats)
----------	-----------	----------	-----------	--------	--------	------------	-----	----------	---------

= no units, R_{cv}^{-} = correlation coefficient of cross validation.

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
50	
60	
00	

Table 4(a).	NIRS calibration statistics for chemical, physical and biological parameters for all dried
	milled wheat samples (excluding Canadian wheats)

Variable	Ν	Mean	SEC	\mathbf{R}^2	SECV	\mathbf{R}^2	Factors	SECV as %
	11		520		5201	0	1 400015	of mean
Specific weight	261	70.87	1.638	0.817	1.927	0.747	10	2.72
Thousand grain weight	272	44.81	3.314	0.754	3.997	0.643	10	8.92
In vitro viscosity	265	12.37	2.180	0.786	2.744	0.661	11	22.18
Nitrogen	272	19.12	0.249	0.989	0.312	0.983	11	1.63
NDF	277	138.81	7.797	0.600	8.825	0.495	8	6.36
Starch	273	640.69	13.642	0.778	15.555	0.711	9	2.43
Total NSP	274	106.60	5.157	0.768	6.010	0.685	9	5.64
Soluble NSP	267	23.72	3.049	0.622	3.572	0.480	9	15.06
Lysine	268	3.48	0.298	0.656	0.333	0.575	8	9.56
Threonine	266	3.38	0.291	0.765	0.312	0.731	8	9.24
Gross Energy	274	18.36	0.045	0.818	0.052	0.760	8	0.28
Amylose	268	160.44	4.983	0.735	5.863	0.632	10	3.65
RSD (0.125h)	274	36.47	2.717	0.840	2.972	0.808	8	8.15
RSD (0.250h)	276	48.49	2.590	0.872	3.233	0.800	10	6.67
RSD (0.375h)	272	58.79	2.634	0.867	3.235	0.799	11	5.50
RSD (0.5h)	277	67.65	3.163	0.834	3.704	0.771	9	5.48
RSD(0.75h)	275	81.52	3 021	0.831	3 422	0.782	9	4 20
RSD(0.1011)	281	90.26	2.376	0.826	2.911	0.739	10	3.22
RSD(2h)	278	102.43	1 768	0.020	2.911	0.630	10	2.00
RSD Rate Constant	270	2 55	0.234	0.826	0.263	0.780	9	10.33
Hardness	204	35 72	4 530	0.865	5 592	0.794	9	15.66
Protein profile (Band 1)	165	5.05	0.447	0.831	0.546	0.724	10	10.81
Protein profile (Band 2)	161	14 42	0.727	0.851	0.944	0.747	10	6 55
Protein profile (Band 3)	166	18 33	1 714	0.007	2 145	0.618	9	11 70
Protein profile (Band 4)	164	35.41	1.714	0.755	2.145	0.771	10	6.03
Protein profile (Band 5)	167	26 56	1.547	0.677	2.133	0.613	6	0.05 7.61
DMI (7-14d)	182	20.30	1.000	0.007	1.616	0.546	9	4 70
DMI(14-21d)	170	71 43	2 550	0.699	2 932	0.540	8	4.10
DMI(21, 28d)	177	115 20	3.964	0.077	1 937	0.680	0	4.10
Total DMI	176	73.02	1 017	0.794	2.600	0.080	10	4.29
I WG (7 14d)	170	73.92	1.517	0.788	1.863	0.705	0	5.55 6.54
LWG(7-14d)	170	20.49 57 44	2 718	0.785	3 4 4 2	0.654	9	5.00
LWG(14-21d)	170	87.44	2.718	0.785	3.442	0.034	9 10	J.99 4 03
Total LWC	172	55.00	2 308	0.839	2 0 2 2	0.720	10	4.95
Goin:feed (7, 14d)	182	55.90 82.63	2.398	0.810	2.933	0.723	9	J.2J 4 15
Gain:feed (14, 21d)	102	82.03	2.041	0.724	2.040	0.531	9	4.13
Gain:feed (14-210)	105	00.39 71.27	2.411	0.099	2.949	0.349	9	2.07
Total gain:food	101	75.91	2.018	0.520	2.304	0.344	0 10	2.55
	104	5 5 2	1.967	0.083	2.005	0.430	10	5.45 10.84
ME-CE	172	5.55	0.909	0.307	1.090	0.505	0	19.04
ME.UE	1/8	13.74	1.025	0.787	1.249	0.083	ð	1.09
AME Content	162	13.92	0.229	0.723	0.272	0.008	ð 10	1.95
ME:Gain	108	18.28	0.285	0.8/9	0.389	0.775	10	2.13
DM Retention	122	12.13	1.06/	0.334	1.124	0.264	4	1.50
Iteal DM Digestibility	118	/0.03	1.900	0.407	1.957	0.376	3	2.79
Ileal Starch Digestibility	117	91.94	1./89	0.647	2.158	0.506	6	2.35
lieal CP Digestibility	118	77.03	2.269	0.476	2.370	0.427	4	3.08

N = number of spectra in the calibration equation, SEC = standard error of calibration, R^2 = coefficient of determination of the calibration, SECV = standard error of cross validation, R^2_{cv} = correlation coefficient of cross validation, factors = number of actual terms used to estimate the parameter.

2
2
3
4
5
6
7
0
0
9
10
11
12
12
13
14
15
16
17
17
18
19
20
21
21
22
23
24
25
20
20
27
28
29
20
30
31
32
33
24
34
35
36
37
20
30
39
40
41
12
40
43
44
45
46
47
4/
48
49
50
51
51
52
53
54
55
55
56
57
58
50
03
bυ

 Table 4(b). NIRS sub-calibration and validation statistics for chemical, physical and biological parameters of dried milled wheat (excluding Canadian wheats)

Variahle	N	Mean .	SEC	\mathbf{R}^2 .	Mean ,	SED	\mathbf{R}^2 .	SEP as % of
v al lable	1	Wicancal	SEC	K cal	Wicanyal	5121	IX val	Mean _{val}
Specific weight	206	70.79	1.494	0.846	71.02	2.605	0.619	3.668
Thousand grain weight	211	45.14	3.025	0.785	44.18	4.794	0.633	10.852
In vitro viscosity	209	12.43	2.279	0.770	13.68	6.692	0.262	48.905
Nitrogen	213	19.07	0.257	0.990	19.31	0.649	0.906	3.360
NDF	220	138.30	6.745	0.749	140.01	10.274	0.171	7.338
Starch	220	641.37	13.229	0.769	639.41	23.012	0.597	3.599
Total NSP	220	107.10	5.141	0.776	106.71	6.437	0.713	6.032
Soluble NSP	216	23.72	3.034	0.642	23.26	4.012	0.512	17.249
Lysine	215	3.50	0.275	0.733	3.57	0.455	0.525	12.743
Threonine	209	3.37	0.251	0.820	3.38	0.418	0.697	12.390
Gross Energy	221	18.36	0.051	0.772	18.36	0.041	0.824	0.224
Amylose	213	160.51	4.916	0.745	158.26	7.626	0.617	4.819
RSD (0.125h)	211	36.17	1.982	0.915	38.09	3.921	0.752	10.296
RSD (0.250h)	219	47.96	2.248	0.901	50.38	4.410	0.697	8.754
RSD (0.375h)	220	58.14	2.759	0.853	60.53	4.270	0.698	7.054
RSD (0.5h)	218	67.25	2.657	0.885	68.78	4.660	0.614	6.775
RSD (0.75h)	217	81.49	2.657	0.876	82.57	4.335	0.626	5.251
RSD(1h)	224	90.01	2.373	0.830	91.31	3.295	0.671	3.609
RSD(2h)	219	102.24	1.455	0.806	103.11	2.449	0.497	2.375
RSD Rate Constant	208	2.50	0.164	0.911	2.70	0.348	0.745	12.904
Hardness	160	36.63	4.132	0.891	34.45	9.812	0.481	28,482
Protein profile (Band 1)	136	4.97	0.438	0.818	5.39	0.624	0.752	11.577
Protein profile (Band 2)	132	14.57	0.787	0.867	14.11	1.202	0.544	8.516
Protein profile (Band 3)	133	18.25	1.308	0.860	18.86	2.305	0.476	12.222
Protein profile (Band 4)	128	35.27	1.135	0.935	35.37	2.412	0.766	6.819
Protein profile (Band 5)	132	26.66	1.193	0.887	26.15	1.797	0.371	6.874
DMI (7-14d)	151	34.48	1.373	0.644	34.04	2.220	0.407	6.523
DMI (14-21d)	148	71.50	2.402	0.700	71.36	4.898	0.349	6.864
DMI (21-28d)	146	114 74	3 559	0.834	116 79	7 446	0.368	6 375
Total DMI	149	73.66	2.164	0.792	74.14	4.598	0.377	6.202
LWG (7-14d)	148	28.44	1.378	0.824	28.41	2.517	0.584	8.862
LWG(14-21d)	145	57 30	2 160	0.860	57.92	4 182	0.621	7 219
LWG(21-28d)	144	81 57	3 006	0.852	82.96	5 883	0.531	7 092
Total LWG	147	55.62	2.222	0.841	56 41	4 613	0.406	8 177
Gain feed (7-14d)	150	82.75	2.543	0.751	82.38	3 546	0 584	4 304
Gain:feed (14-21d)	150	80.18	2.119	0.775	81.15	2 729	0.519	3 363
Gain:feed (21-28d)	148	71.16	1 873	0.599	71 14	3 181	0.118	4 471
Total gain feed	150	75.67	1.859	0.738	76.06	2 736	0.325	3 598
In vivo viscosity	142	5 73	0.927	0.790	5 36	1 014	0.124	18 911
MEGE	142	73.93	1 143	0.000	73 30	1.69	0.124	2 31
AME Content	145	13.93	0.166	0.848	13.84	0.33	0.56	2.31
ME:Gain	145	18.30	0.100	0.809	18 11	0.55	0.50	3.97
DM Retention	102	72 21	1 120	0.307	71 75	1 330	0.009	1 853
Ileal DM Digestibility	102	69 97	2 167	0.272	60.00	2 023	0.330	2 800
Ileal Starch Digestibility	96	92.57	2.107	0.374	89 74	2.025 A 208	0.550	2.390
Ileal CP Digestibility	100	76 75	2.428	0.487	77 84	2.631	0.181	3 381

N = number of spectra in the calibration equation, $Mean_{cal} = mean$ of calibration dataset, SEC = standard error of calibration, $R^2_{cal} = coefficient$ of determination of the calibration, SEP = standard error of prediction, $R^2_{val} = correlation coefficient of the validation, Mean_{val} = mean of independent validation set.$

1	
2	
3	
4 5	
6	
7	
8	
9	
10	
11	
12	
14	
15	
16	
17	
18	
19	
∠0 21	
∠ı 22	
23	
24	
25	
26	
27	
28	
29 30	
31	
32	
33	
34	
35	
36	
38 38	
39	
40	
41	
42	
43	
44 15	
40	
47	
48	
49	
50	
51	
52 52	
53 54	
55	
56	
57	
58	
59	
60	

Variable	N	Mean	SEC	\mathbf{R}^2	SECV	\mathbf{R}^2	Factors	SECV as %
v un unoic	11	Wittan	ble	K	SLUV	IX CV	1 400015	of mean
Specific weight	265	70.75	1.802	0.798	2.213	0.697	10	3.13
Thousand grain weight	275	44.65	3.272	0.770	4.192	0.624	10	9.39
In vitro viscosity	263	12.27	2.314	0.745	2.888	0.602	9	23.54
Nitrogen	267	19.10	0.252	0.989	0.315	0.983	10	1.65
NDF	273	138.98	7.011	0.670	8.773	0.494	10	6.31
Starch	271	641.09	13.855	0.773	17.050	0.655	10	2.66
Total NSP	275	106.74	5.700	0.724	6.110	0.683	8	5.72
Soluble NSP	271	23.68	4.032	0.354	4.069	0.342	2	17.19
Lysine	267	3.45	0.326	0.438	0.341	0.392	4	9.89
Threonine	269	3.30	0.300	0.800	0.383	0.675	10	11.60
Gross Energy	274	18.35	0.038	0.856	0.052	0.739	11	0.28
Amylose	268	160.15	6.152	0.600	6.638	0.533	7	4.14
RSD (0.125h)	273	36.67	2.501	0.871	2.883	0.828	8	7.86
RSD (0.250h)	268	48.36	2.726	0.855	2.958	0.829	7	6.12
RSD (0.375h)	269	58.57	3.239	0.788	3.345	0.774	5	5.71
RSD (0.5h)	273	67.58	3.051	0.842	3.552	0.786	8	5.26
RSD (0.75h)	271	81.70	3.117	0.804	3.449	0.760	7	4.22
RSD(1h)	278	90.27	2.592	0.783	3.046	0.699	8	3.37
RSD (2h)	268	102.54	1.820	0.694	1.991	0.634	8	1.94
RSD Rate Constant	270	2.55	0.246	0.807	0.252	0.797	5	9.89
Hardness	205	36.07	6.366	0.735	6.584	0.716	5	18.25
Protein profile (Band 1)	167	5.04	0.439	0.835	0.663	0.625	10	13.15
Protein profile (Band 2)	164	14.48	0.963	0.780	1.164	0.680	8	8.04
Protein profile (Band 3)	166	18.36	2.045	0.653	2.150	0.618	6	11.71
Protein profile (Band 4)	156	35.39	1.217	0.917	1.579	0.860	10	4.46
Protein profile (Band 5)	164	26.57	1.271	0.850	1.848	0.682	10	6.95
DMI (7-14d)	183	34.40	1.029	0.817	1.408	0.657	9	4.09
DMI (14-21d)	180	71.52	2.347	0.741	2.810	0.627	9	3.93
DMI (21-28d)	177	115.49	4.308	0.740	5.118	0.632	8	4.43
Total DMI	181	73.89	2.421	0.752	2.878	0.647	8	3.89
LWG (7-14d)	178	28.64	1.189	0.864	1.607	0.751	10	5.61
LWG(14-21d)	175	58.02	2.279	0.832	2.860	0.734	9	4 93
LWG (21-28d)	175	82.31	3.294	0.819	4.382	0.678	10	5.32
Total LWG	177	56.31	2.157	0.838	2.750	0.736	9	4.88
Gain feed (7-14d)	178	83.10	2.508	0734	2,991	0.619	7	3 60
Gain feed (14-21d)	178	80.52	1 870	0.813	2.552	0.650	10	3.17
Gain feed (21-28d)	180	71.22	2,290	0.361	2.360	0.325	4	3 31
Total gain feed	177	75.87	1 418	0.838	2.036	0.665	11	2.68
In vivo viscosity	180	5 77	1 190	0.537	1 361	0.402	7	23 57
ME.GE	179	73.80	1.170	0.746	1 3 3 9	0.402	8	1.81
AME Content	182	13.92	0.230	0.740	0.273	0.598	8	1.01
ME:Gain	173	18.26	0.341	0.818	0.441	0.696	9	2 42
DM Retention	118	72.05	0.013	0.458	1 068	0.0267	6	1 48
Ileal DM Digestibility	120	70.10	1 550	0.400	2 215	0.207	8	3 16
Ileal Starch Digestibility	110	91 90	2 162	0.009	2.215	0.222	о Д	2 53
Ileal CP Digestibility	122	76.92	2.840	0.233	2.907	0.193	2	3.78

 Table 5(a).
 NIRS calibration statistics for chemical, physical and biological parameters for all undried milled wheat samples (excluding Canadian wheats)

N = number of spectra in the calibration equation, SEC = standard error of calibration,

 R^2 = coefficient of determination of the calibration, SECV = standard error of cross validation,

 R_{cv}^2 = correlation coefficient of cross validation, factors = number of terms used to estimate the parameter.

2	
3	
4	
5	
6	
0	
1	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
10	
20	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
21	
21	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
12	
12	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
55	
20	
5/	
58	
59	
60	

 Table 5(b).
 NIRS sub-calibration and validation statistics for chemical, physical and biological

parameters of	fundried	milled wheat	(excluding	Canadian	wheats)
---------------	----------	--------------	------------	----------	---------

Variable	Ν	Mean	SEC	\mathbf{R}^2_{aal}	Mean	SEP	$\mathbf{R}^{2}_{\rm rel}$	SEP as % of
(uniusie	11	Treatical	SEC		1/10011vai		- vai	Mean _{val}
Specific weight	215	70.70	1.492	0.850	71.02	2.853	0.517	4.017
Thousand grain weight	217	44.82	3.308	0.762	44.18	4.791	0.628	10.845
In vitro viscosity	206	12.22	2.237	0.757	13.68	6.179	0.458	45.162
Nitrogen	216	19.09	0.318	0.984	19.31	0.707	0.888	3.661
NDF	215	138.39	6.976	0.720	140.01	10.644	0.194	7.602
Starch	214	642.04	12.361	0.785	639.41	27.124	0.411	4.242
Total NSP	218	106.75	5.447	0.737	106.71	6.587	0.682	6.172
Soluble NSP	217	23.66	4.240	0.321	23.26	4.366	0.411	18.773
Lysine	212	3.44	0.323	0.419	3.57	0.511	0.476	14.318
Threonine	220	3.31	0.338	0.748	3.38	0.556	0.458	16.478
Gross Energy	216	18.35	0.044	0.810	18.36	0.051	0.734	0.276
Amylose	212	160.72	5.989	0.622	158.26	8.313	0.491	5.253
RSD (0.125h)	211	36.11	2.540	0.861	38.09	3.936	0.741	10.335
RSD (0.250h)	214	48.06	2.264	0.905	50.38	5.233	0.595	10.387
RSD (0.375h)	213	58.08	3.070	0.806	60.53	4.356	0.685	7.196
RSD (0.5h)	213	67.26	3.008	0.852	68.78	4.383	0.663	6.372
RSD(0.75h)	211	81.57	2.563	0.876	82.57	4.352	0.605	5.271
RSD(1h)	216	90.12	2.237	0.834	91.31	3.530	0.602	3.866
RSD(2h)	214	102.39	1.726	0.727	103.11	2.607	0.433	2.528
RSD Rate Constant	208	2.50	0.157	0.915	2.70	0.349	0.745	12.933
Hardness	161	36.59	4.410	0.875	34.45	11.212	0.358	32.544
Protein profile (Band 1)	136	4 97	0.361	0.876	5 39	0.851	0 548	15 782
Protein profile (Band 2)	127	14 51	0.691	0.904	14 11	1 948	0.293	13 800
Protein profile (Band 3)	136	18.26	1 948	0.694	18.86	2,737	0.289	14 515
Protein profile (Band 4)	131	35 34	1.078	0.943	35 37	2.782	0.627	7 865
Protein profile (Band 5)	130	26.73	1.046	0.916	26.15	2.268	0.240	8 674
DMI (7-14d)	148	34 55	1 399	0.621	34.04	1 906	0.557	5 601
DMI (14-21d)	146	71.61	2.455	0.663	71.36	3 762	0.611	5 272
DMI (21-28d)	145	114 97	4 080	0.762	116 79	7 436	0.445	6 367
Total DMI	150	73 75	2.461	0.729	74 14	4 042	0.527	5 452
LWG (7-14d)	152	28.55	1 383	0.825	28.41	1 753	0.786	6.172
LWG(14-21d)	146	57.69	1.839	0.892	57.92	3 611	0.685	6 233
LWG(21-28d)	144	82.44	3 356	0.810	82.96	6 2 2 6	0.493	7 504
Total LWG	148	56.04	2,300	0.826	56.41	3 580	0.660	6 346
Gain feed (7-14d)	152	82.84	2.298	0 799	82.38	3 399	0.615	4 126
Gain feed (14-21d)	152	80.24	1 912	0.817	81.15	3 199	0.512	3 942
Gain:feed (21-28d)	144	71.29	1 628	0.655	71 14	2 781	0 349	3 910
Total gain feed	146	75 77	1 401	0.850	76.06	2 910	0.399	3 826
In vivo viscosity	137	5.61	1 160	0.370	5 36	0.878	0.230	16 360
ME:GE	147	73.95	1.100	0.570	73 30	1 74	0.230	2 38
AME Content	147	13.94	0.266	0.752	13.84	0.41	0.37	2.50
ME Comen	144	18.79	0.200	0.815	18 11	0.77	0.32	2.95 4.26
DM Retention	102	72 21	0.572	0.573	71 75	1 300	0.32	1 811
Ileal DM Digestibility	102	70.12	2 410	0.115	69 00	1.300	0.230	2 657
Ileal Starch Digostibility	100	02 24	1 863	0.115	80 71	3 836	0.230	2.037 A 275
Ileal CP Digestibility	102	76 74	2.957	0.259	77 84	2 171	0.012 0.275	2.789

N = number of spectra in the calibration equation, $Mean_{cal} = mean$ of calibration dataset, SEC = standard error of calibration, $R^2_{cal} = coefficient$ of determination of the calibration, SEP = standard error of prediction, $R^2_{val} = correlation coefficient of the validation, Mean_{val} = mean of independent validation set.$

 Table 6(a). NIRS calibration statistics for chemical, physical and biological parameters for all dried

 whole kernel wheat samples (excluding Canadian wheats)

Variable	N	Mean	SEC	\mathbf{R}^2	SECV	R ² _{cv}	Factors	SECV as %
								of mean
Specific weight	208	71.02	1.606	0.783	1.847	0.720	9	2.60
Thousand grain weight	206	43.98	2.983	0.739	3.280	0.686	9	7.46
In vitro viscosity	206	12.50	2.487	0.782	3.121	0.655	11	24.98
Nitrogen	207	18.85	0.641	0.922	0.732	0.898	8	3.88
NDF	216	140.89	7.359	0.643	8.365	0.540	8	5.94
Starch	213	631.53	13.281	0.712	14.761	0.643	8	2.34
Total NSP	208	104.20	4.883	0.730	5.714	0.629	10	5.48
Soluble NSP	208	22.70	3.970	0.156	3.996	0.141	2	17.61
Lysine	203	3.52	0.307	0.637	0.357	0.512	10	10.16
Threonine	208	3.17	0.354	0.631	0.421	0.478	10	13.29
Gross Energy	204	18.34	0.049	0.741	0.058	0.649	10	0.32
Amylose	208	158.80	6.683	0.614	7.306	0.539	7	4.60
RSD (0.125h)	216	36.13	4.071	0.657	4.849	0.516	10	13.42
RSD (0.250h)	215	47.83	4.159	0.678	4.844	0.565	11	10.13
RSD (0.375h)	213	57.76	4.086	0.677	4.915	0.533	11	8.51
RSD (0.5h)	209	66.60	4.067	0.724	4.711	0.630	10	7.07
RSD (0.75h)	213	80.53	3.956	0.709	4.432	0.636	9	5.50
RSD (1h)	212	89.02	3.099	0.685	3.520	0.595	8	3.95
RSD (2h)	214	102.61	2.210	0.592	2.665	0.413	9	2.60
RSD Rate Constant	208	2.47	0.283	0.726	0.350	0.584	11	14.19
Hardness	210	35.47	7.383	0.664	8.046	0.601	8	22.68
Protein profile (Band 1)	99	5.16	0.377	0.880	0.544	0.752	11	10.53
Protein profile (Band 2)	104	15.57	1.290	0.186	1.330	0.140	3	8.54
Protein profile (Band 3)	101	18.62	1.333	0.815	1.582	0.738	8	8.50
Protein profile (Band 4)	101	33.39	1.776	0.710	1.830	0.690	5	5.48
Protein profile (Band 5)	99	26.98	1.517	0.750	1.793	0.649	8	6.64
DMI (7-14d)	120	33.50	1.524	0.616	1.609	0.572	4	4.80
DMI (14-21d)	115	69.84	2.159	0.770	2.850	0.597	10	4.08
DMI (21-28d)	116	112.97	3.348	0.867	4.695	0.738	11	4.16
Total DMI	115	72.12	1.794	0.866	2.444	0.749	11	3.39
LWG(7-14d)	118	27.50	1.944	0.723	2.020	0.700	4	7.35
LWG (14-21d)	120	55 99	3 849	0.673	4 003	0.645	4	7.15
LWG (21-28d)	118	80.07	4 537	0 784	4 990	0.738	6	6.23
Total LWG	117	54 50	2.684	0.827	3.052	0.776	7	5.60
Gain feed (7-14d)	122	82.02	3 566	0.628	3 604	0.618	3	4 39
Gain:feed (14-21d)	116	80.23	1 688	0.896	1 903	0.868	7	2 37
Gain:feed (21-28d)	112	71.86	1.000	0.570	2 022	0.551	, 1	2.87
Total gain feed	112	75 58	2.065	0.570	2.022	0.551	4	2.86
In vivo viscosity	121	6 4 5	1 499	0.469	1 664	0.362	6	25.00
ME:GE	121	75.03	0.947	0.402	1.004	0.265	8	1.53
AME Content	118	14 16	0.27	0.348	0 231	0.205	3	1.55
ME Content	117	18.63	0.227	0.540	0.231	0.520	5 Д	2.61
DM Retention	12	72 12	1 1/1	0.074	1 203	0.039	+ /	2.01
Ilan DM Digastibility	122	60.09	1.140	0.223	2.205	0.140	+	2.07
Ileal Starch Digestibility	122	09.98	1.009	0.005	2.000	0.390	9 6	2.93
Ileal CD Digestibility	11/	71.94 76.92	1.701	0.382	2.201	0.403	0	2.39
near CP Digestibility	119	10.83	1.383	0.739	1.988	0.017	9	2.39

N = number of spectra in the calibration equation, SEC = standard error of calibration,

 R^2 = coefficient of determination of the calibration, SECV = standard error of cross validation,

 R_{cv}^2 = correlation coefficient of cross validation, factors = number of actual terms used to estimate the parameter.

Table 6(b).	NIRS	sub-cal	ibra	ition	ı anı	d va	lidation	statis	tics fo	r chemic	al,	physical	and	biological

parameters of	dri	ed w	hole	kernel	wl	heat (excl	ud	ing (Canad	lian	wheats)
---------------	-----	------	------	--------	----	--------	------	----	-------	-------	------	--------	---

Variable	N	Mean _{cal}	SEC	\mathbf{R}^2	Mean _{val}	SEP	R ² _{val}	SEP as % of Mean _{val}
Specific weight	160	70.85	1.240	0.874	71.76	2.245	0.596	3.128
Thousand grain weight	166	44.10	2.545	0.822	43.83	4.331	0.493	9.882
In vitro viscosity	163	12.25	2.343	0.753	13.60	5.119	0.590	37.629
Nitrogen	162	18.95	0.530	0.944	18.92	0.894	0.851	4.728
NDF	168	141.44	7.224	0.641	138.72	8.200	0.551	5.912
Starch	169	630.60	11.774	0.764	635.09	20.048	0.490	3.157
Total NSP	164	104.74	3.932	0.813	103.05	8.460	0.366	8.210
Soluble NSP	165	23.01	3.646	0.291	21.63	4.812	0.067	22.245
Lysine	162	3.51	0.345	0.540	3.49	0.665	0.060	19.051
Threonine	163	3.15	0.305	0.730	3.19	0.487	0.450	15.283
Gross Energy	162	18.34	0.051	0.712	18.35	0.079	0.550	0.432
Amylose	163	158.26	6.064	0.699	159.45	9.144	0.239	5.735
RSD(0.125h)	172	36.09	5.039	0.472	36.31	5.332	0.511	14.687
RSD (0.250h)	172	47.80	4.814	0.569	48.00	6.377	0.462	13.285
RSD (0.375h)	169	57.83	4.933	0.529	57.99	6.063	0.450	10.455
RSD (0.5h)	166	66.75	3.836	0.761	66.42	5.567	0.542	8.382
RSD (0.75h)	167	80.64	3.973	0.707	80.40	6.605	0.423	8.215
RSD (1h)	169	89.06	3.029	0.695	89.38	4.165	0.588	4.660
RSD (2h)	167	102.62	1.725	0.767	102.51	2.702	0.391	2.636
RSD Rate Constant	167	2.50	0.337	0.634	2.50	0.488	0.482	19.516
Hardness	167	36.01	6.738	0.716	35.32	10.657	0.385	30.168
Protein profile (Band 1)	81	5.13	0.360	0.905	5.46	0.882	0.239	16.150
Protein profile (Band 2)	80	15.45	1.021	0.373	16.01	1.684	0.008	10.520
Protein profile (Band 3)	78	18.68	1.032	0.890	18.49	2.823	0.516	15.268
Protein profile (Band 4)	84	33.31	1.143	0.878	33.82	3.930	0.147	11.622
Protein profile (Band 5)	81	27.17	1.719	0.629	26.10	2.830	0.391	10.844
DMI (7-14d)	93	33.20	1.290	0.728	34.32	2.323	0.294	6.769
DMI (14-21d)	94	69.47	3.117	0.496	70.57	4.027	0.409	5.706
DMI (21-28d)	93	112.34	4.737	0.705	113.38	8.515	0.476	7.510
Total DMI	96	71.98	3.126	0.601	72.85	3.986	0.523	5.471
LWG(7-14d)	93	27.27	1.244	0.880	28.26	2.882	0.572	10.197
LWG(14-21d)	94	55.65	3 866	0.648	56.67	4 266	0.660	7 529
LWG (21-28d)	91	79 94	4 041	0.874	80.32	7 256	0.559	9.034
Total LWG	95	54 68	2 485	0.850	55.08	3 965	0.673	7 197
Gain feed (7-14d)	95	81.88	2 324	0.833	82.26	4 657	0.528	5 661
Gain:feed (14-21d)	92	80.18	1 680	0.000	80.21	1.758	0.820	2 192
Gain:feed (21-28d)	93	71.69	1.500	0.901	70.92	3 654	0.170	5 151
Total gain:feed	93	75.83	1.327	0.895	75.50	3 475	0.170	4 603
In vivo viscosity	96	6 57	1.545	0.522	6.00	2 044	0.232	34 049
ME:GE	94	75.01	0.878	0.522	75.08	1.45	0.19	1 03
AME Content	04	14 15	0.220	0.309	14.13	0.31	0.19	2.17
ME:Gain	02	14.15	0.220	0.528	18.56	0.51	0.41	2.17
DM Retention	96	72 12	0.395	0.334	72 20	1 404	0.49	2.74
Ileal DM Digestibility	96	70.06	1.622	0.582	60.66	2 024	0.197	2.009
Ileal Starch Digastibility	96 06	01 / Q1	1.622	0.362	92.55	2.024	0.007	2.905
	90	77.10	1.007	0.740	75.04	2.215	0.323	2.200

N = number of spectra in the calibration equation, Mean_{cal} = mean of calibration dataset, SEC = standard error of calibration, R^2 = coefficient of determination of the calibration, SEP = standard error of prediction, R^2_{val} = correlation coefficient of the validation, $Mean_{val}$ = mean of independent validation set.

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

Table 7(a).	NIRS calibration statistics for chemical, physical and biological parameters for all undried
	whole kernel wheats (excluding Canadian wheats)

Variable	N	Mean	SEC	\mathbf{R}^2	SECV	\mathbf{R}^2	Factors	SECV as %
variable	1	Witan	SEC	K	SEC V	IX cv	racions	of mean
Specific weight	180	71.66	1.235	0.806	1.528	0.703	10	2.13
Thousand grain weight	186	44.27	2.834	0.785	3.380	0.695	11	7.63
In vitro viscosity	183	12.43	2.385	0.808	2.899	0.717	10	23.33
Nitrogen	186	18.86	0.663	0.918	0.751	0.896	7	3.98
NDF	193	141.82	8.254	0.527	8.735	0.473	6	6.16
Starch	189	630.04	13.416	0.702	13.987	0.675	6	2.22
Total NSP	187	103.71	5.648	0.641	5.950	0.599	6	5.74
Soluble NSP	190	22.52	4.238	0.157	4.279	0.138	1	19.00
Lysine	185	3.56	0.278	0.778	0.344	0.660	10	9.66
Threonine	187	3.13	0.417	0.577	0.473	0.453	8	15.10
Gross Energy	184	18.34	0.054	0.707	0.062	0.618	7	0.34
Amylose	189	158.51	7.010	0.569	7.246	0.539	5	4.57
RSD (0.125h)	196	35.61	5.126	0.445	5.507	0.370	5	15.47
RSD (0.250h)	194	47.53	5.508	0.430	5.686	0.402	4	11.96
RSD (0.375h)	192	57.42	5.418	0.428	5.622	0.390	4	9.79
RSD (0.5h)	194	65.79	5.260	0.520	5.909	0.400	7	8.98
RSD (0.75h)	194	79.47	4.752	0.536	5.247	0.439	6	6.60
RSD (1h)	194	88.34	3.580	0.525	3.916	0.435	6	4.43
RSD(2h)	193	102.76	2.083	0.607	2.666	0.368	10	2.59
RSD Rate Constant	189	2.42	0.397	0.429	0.419	0.371	4	17.31
Hardness	189	34.40	8.401	0.523	8.940	0.462	6	25.99
Protein profile (Band 1)	104	5.19	0.450	0.834	0.580	0.725	9	11.19
Protein profile (Band 2)	104	15.57	1.325	0.142	1.343	0.122	1	8.62
Protein profile (Band 3)	104	18.59	1.879	0.641	2.025	0.582	4	10.90
Protein profile (Band 4)	102	33.36	1.804	0.700	1.889	0.668	4	5.66
Protein profile (Band 5)	104	27.12	2.179	0.510	2.399	0.404	5	8.85
DMI (7-14d)	118	33.49	1.284	0.725	1.460	0.645	6	4.36
DMI (14-21d)	118	69.96	3.261	0.472	3.279	0.464	2	4.69
DMI (21-28d)	118	112.35	3.703	0.833	4.561	0.746	10	4.06
Total DMI	121	72.11	2.790	0.694	2.985	0.647	6	4.14
LWG (7-14d)	118	27.56	1.636	0.804	1.792	0.763	6	6.50
LWG (14-21d)	116	56.01	2.728	0.823	3.030	0.780	6	5.41
LWG (21-28d)	120	80.28	3.926	0.840	4.737	0.767	9	5.90
Total LWG	118	54.75	2.253	0.873	2.698	0.817	8	4.93
Gain:feed (7-14d)	118	81.88	2.529	0.816	2.870	0.761	7	3.51
Gain:feed (14-21d)	118	80.04	1.948	0.865	2.315	0.810	8	2.89
Gain:feed (21-28d)	115	71.35	1.942	0.717	2.009	0.703	5	2.82
Total gain:feed	115	75.69	1.554	0.866	1.777	0.825	7	2.35
In vivo viscosity	117	6.43	0.928	0.781	1.371	0.537	11	21.34
ME:GE	122	75.08	0.905	0.586	1.186	0.274	8	1.58
AME Content	118	14.14	0.218	0.729	0.221	0.420	12	1.56
ME:Gain	112	18.61	0.344	0.836	0.472	0.690	11	2.54
DM Retention	122	72.13	0.850	0.578	1.132	0.246	9	1.57
Ileal DM Digestibility	120	70.10	2.005	0.353	2.214	0.207	5	3.16
Ileal Starch Digestibility	117	91.92	1.804	0.662	2.091	0.545	7	2.27
Ileal CP Digestibility	118	77.12	2.038	0.571	2.219	0.491	6	2.88

N = number of spectra in the calibration equation, SEC = standard error of calibration,

 R^2 = coefficient of determination of the calibration, SECV = standard error of cross validation,

 R_{cv}^2 = correlation coefficient of cross validation, factors = number of actual terms used to estimate the parameter.

Table 7(b).	NIRS sub-calibration	n and validation	statistics for	chemical, p	hysical and	biological

parameters of undried whole kernel wheat (excluding Canadian wheats)

Variation Netar _{cal} Size R Netar _{cal} Oth Netar _{cal} Mean _{cal} Specific weight 146 71.34 1.299 0.819 72.21 2.237 0.414 3.098 Thousand grain weight 148 44.32 2.903 0.784 44.05 3.949 0.602 8.966 In vitro viscosity 145 12.40 2.152 0.812 13.21 4.832 0.602 36.580 Nitrogen 146 18.74 0.481 0.960 18.95 1.026 0.819 5.413 NDF 156 142.75 8.925 0.447 139.54 8.823 0.517 6.323 Starch 154 630.44 10.621 0.818 633.80 20.083 0.466 7.150 Soluble NSP 150 2.78 3.687 0.343 21.58 5.232 0.042 24.240 Lysine 148 3.55 0.277 0.787 3.51 0.664 0.159 1
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
Thousand grain weight 148 44.32 2.903 0.784 44.05 3.949 0.602 8.966 In vitro viscosity 145 12.40 2.152 0.812 13.21 4.832 0.602 36.580 Nitrogen 146 18.74 0.481 0.960 18.95 1.026 0.819 5.413 NDF 156 142.75 8.925 0.447 139.54 8.823 0.517 6.323 Starch 154 630.44 10.621 0.818 633.80 20.083 0.461 3.169 Total NSP 150 22.78 3.687 0.343 21.58 5.232 0.042 24.240 Lysine 148 3.55 0.277 0.787 3.19 0.566 0.367 17.714 Gross Energy 146 18.34 0.055 0.686 18.36 0.083 0.546 0.452 Amylose 149 158.04 6.931 0.641 159.13 7.393 0.292
In vitro viscosity 145 12.40 2.152 0.812 13.21 4.832 0.602 36.580 Nitrogen 146 18.74 0.481 0.960 18.95 1.026 0.819 5.413 NDF 156 142.75 8.925 0.447 139.54 8.823 0.517 6.323 Starch 154 63.044 10.621 0.818 633.80 20.083 0.461 3.169 Total NSP 152 104.45 5.359 0.677 102.69 7.342 0.466 7.150 Soluble NSP 150 22.78 3.687 0.343 21.58 5.232 0.042 24.240 Lysine 148 3.55 0.277 0.787 3.19 0.566 0.367 17.714 Gross Energy 146 18.34 0.055 0.686 18.36 0.083 0.546 0.452 Amylose 149 158.04 6.931 0.641 159.13 7.393 0.292 4.6
Nitrogen 146 18.74 0.481 0.960 18.95 1.026 0.819 5.413 NDF 156 142.75 8.925 0.447 139.54 8.823 0.517 6.323 Starch 154 630.44 10.621 0.818 633.80 20.083 0.461 3.169 Total NSP 152 104.45 5.359 0.677 102.69 7.342 0.466 7.150 Soluble NSP 150 22.78 3.687 0.343 21.58 5.232 0.042 24.240 Lysine 148 3.55 0.277 0.787 3.51 0.664 0.159 18.910 Threonine 150 3.13 0.403 0.577 3.19 0.566 0.367 17.714 Gross Energy 146 18.34 0.055 0.686 18.36 0.083 0.546 0.452 Amylose 149 158.04 6.931 0.641 159.13 7.393 0.292 4.646
NDF 156 142,75 8.925 0.447 139,54 8.823 0.517 6.323 Starch 154 630.44 10.621 0.818 633.80 20.083 0.461 3.169 Total NSP 152 104.45 5.359 0.677 102.69 7.342 0.466 7.150 Soluble NSP 150 22.78 3.687 0.343 21.58 5.232 0.042 24.240 Lysine 148 3.55 0.277 0.787 3.51 0.664 0.159 18.910 Threonine 150 3.13 0.403 0.577 3.19 0.566 0.367 17.714 Gross Energy 146 18.34 0.055 0.686 18.36 0.083 0.546 0.452 Amylose 149 158.04 6.931 0.641 159.13 7.393 0.292 4.646 RSD (0.250h) 156 47.43 5.292 0.480 47.32 6.496 0.302 13.728
Starch 154 630.44 10.621 0.818 633.80 20.083 0.461 3.169 Total NSP 152 104.45 5.359 0.677 102.69 7.342 0.466 7.150 Soluble NSP 150 22.78 3.687 0.343 21.58 5.232 0.042 24.240 Lysine 148 3.55 0.277 0.787 3.51 0.664 0.159 18.910 Threonine 150 3.13 0.403 0.577 3.19 0.566 0.367 17.714 Gross Energy 146 18.34 0.055 0.686 18.36 0.083 0.546 0.452 Amylose 149 158.04 6.931 0.641 159.13 7.393 0.292 4.646 RSD (0.125h) 156 35.67 4.869 0.494 35.36 5.994 0.325 16.950 RSD (0.51b) 156 47.43 5.292 0.480 47.32 6.496 0.302 13.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Soluble NSP 150 22.78 3.687 0.343 21.58 5.232 0.042 24.240 Lysine 148 3.55 0.277 0.787 3.51 0.664 0.159 18.910 Threonine 150 3.13 0.403 0.577 3.19 0.566 0.367 17.714 Gross Energy 146 18.34 0.055 0.686 18.36 0.083 0.546 0.452 Amylose 149 158.04 6.931 0.641 159.13 7.393 0.292 4.646 RSD (0.125h) 156 35.67 4.869 0.494 35.36 5.994 0.325 16.950 RSD (0.250h) 156 47.43 5.292 0.480 47.32 6.496 0.302 13.728 RSD (0.5h) 155 65.94 5.480 0.503 65.59 6.507 0.274 9.922 RSD (1h) 156 79.64 4.801 0.512 88.80 4.653 0.325 5.23
Lysine1483.550.2770.7873.510.6640.15918.910Threonine1503.130.4030.5773.190.5660.36717.714Gross Energy14618.340.0550.68618.360.0830.5460.452Amylose149158.046.9310.641159.137.3930.2924.646RSD (0.125h)15635.674.8690.49435.365.9940.32516.950RSD (0.250h)15647.435.2920.48047.326.4960.30213.728RSD (0.375h)15457.315.3650.44057.315.9150.39010.321RSD (0.5h)15565.945.4800.50365.596.5070.2749.922RSD (1h)15679.644.8010.55179.796.9460.2548.705RSD (2h)153102.922.5840.442102.342.4900.3142.433RSD Rate Constant1552.440.3900.4752.440.5100.30220.880Hardness15234.925.9790.75734.3810.7880.41431.376Protein profile (Band 1)835.110.3080.9295.460.9620.26617.627Protein profile (Band 2)8415.471.1930.24716.011.8150.00711.339Protein profile (Band 3)8418.611.607 </td
Threonine1503.130.4030.5773.190.5660.36717.714Gross Energy14618.340.0550.68618.360.0830.5460.452Amylose149158.046.9310.641159.137.3930.2924.646RSD (0.125h)15635.674.8690.49435.365.9940.32516.950RSD (0.250h)15647.435.2920.48047.326.4960.30213.728RSD (0.375h)15457.315.3650.44057.315.9150.39010.321RSD (0.5h)15565.945.4800.50365.596.5070.2749.922RSD (1h)15679.644.8010.55179.796.9460.2548.705RSD (2h)153102.922.5840.442102.342.4900.3142.433RSD Rate Constant1552.440.3900.4752.440.5100.30220.880Hardness15234.925.9790.75734.3810.7880.41431.376Protein profile (Band 1)835.110.3080.9295.460.9620.26617.627Protein profile (Band 2)8415.471.1930.24716.011.8150.00711.339Protein profile (Band 3)8418.611.6070.74018.492.8190.39615.245Protein profile (Band 3)8418
Gross Energy14618.340.0550.68618.360.0830.5460.452Amylose149158.046.9310.641159.137.3930.2924.646RSD (0.125h)15635.674.8690.49435.365.9940.32516.950RSD (0.250h)15647.435.2920.48047.326.4960.30213.728RSD (0.375h)15457.315.3650.44057.315.9150.39010.321RSD (0.5h)15565.945.4800.50365.596.5070.2749.922RSD (1h)15679.644.8010.55179.796.9460.2548.705RSD (0.75h)15688.333.6540.51288.804.6530.3255.239RSD (2h)153102.922.5840.442102.342.4900.3142.433RSD Rate Constant1552.440.3900.4752.440.5100.30220.880Hardness15234.925.9790.75734.3810.7880.41431.376Protein profile (Band 1)835.110.3080.9295.460.9620.26617.627Protein profile (Band 2)8415.471.1930.24716.011.8150.00711.339Protein profile (Band 3)8418.611.6070.74018.492.8190.39615.245Protein profile (Band 5)84 <td< td=""></td<>
Amylose149158.046.9310.641159.137.3930.2924.646RSD (0.125h)15635.674.8690.49435.365.9940.32516.950RSD (0.250h)15647.435.2920.48047.326.4960.30213.728RSD (0.375h)15457.315.3650.44057.315.9150.39010.321RSD (0.5h)15565.945.4800.50365.596.5070.2749.922RSD (1h)15679.644.8010.55179.796.9460.2548.705RSD (0.75h)15688.333.6540.51288.804.6530.3255.239RSD (2h)153102.922.5840.442102.342.4900.3142.433RSD Rate Constant1552.440.3900.4752.440.5100.30220.880Hardness15234.925.9790.75734.3810.7880.41431.376Protein profile (Band 1)835.110.3080.9295.460.9620.26617.627Protein profile (Band 2)8415.471.1930.24716.011.8150.00711.339Protein profile (Band 3)8418.611.6070.74018.492.8190.39615.245Protein profile (Band 4)8133.601.6150.69833.822.5870.4727.650Protein profile (Band 5) <td< td=""></td<>
RSD (0.125h) 156 35,67 4.869 0.494 35,36 5.994 0.325 16.950 RSD (0.250h) 156 47.43 5.292 0.480 47.32 6.496 0.302 13.728 RSD (0.375h) 154 57.31 5.365 0.440 57.31 5.915 0.390 10.321 RSD (0.5h) 155 65.94 5.480 0.503 65.59 6.507 0.274 9.922 RSD (1h) 156 79.64 4.801 0.551 79.79 6.946 0.254 8.705 RSD (0.75h) 156 88.33 3.654 0.512 88.80 4.653 0.322 5.239 RSD (2h) 153 102.92 2.584 0.442 102.34 2.490 0.314 2.433 RSD Rate Constant 155 2.44 0.390 0.475 2.44 0.510 0.302 20.880 Hardness 152 34.92 5.979 0.757 34.38 10.788 0.414 31.376 Protein profile (Band 1) 83 5.11 0.308 0.9
RSD (0.250h) 156 47.43 5.292 0.480 47.32 6.496 0.302 13.728 RSD (0.375h) 154 57.31 5.365 0.440 57.31 5.915 0.390 10.321 RSD (0.5h) 155 65.94 5.480 0.503 65.59 6.507 0.274 9.922 RSD (1h) 156 79.64 4.801 0.551 79.79 6.946 0.254 8.705 RSD (0.75h) 156 88.33 3.654 0.512 88.80 4.653 0.322 5.239 RSD (2h) 153 102.92 2.584 0.442 102.34 2.490 0.314 2.433 RSD Rate Constant 155 2.44 0.390 0.475 2.44 0.510 0.302 20.880 Hardness 152 34.92 5.979 0.757 34.38 10.788 0.414 31.376 Protein profile (Band 1) 83 5.11 0.308 0.929 5.46 0.962 0.266 17.627 Protein profile (Band 3) 84 15.67 0.740
RSD (0.375h)15457.315.3650.44057.315.9150.39010.321RSD (0.5h)15565.945.4800.50365.596.5070.2749.922RSD (1h)15679.644.8010.55179.796.9460.2548.705RSD (0.75h)15688.333.6540.51288.804.6530.3255.239RSD (2h)153102.922.5840.442102.342.4900.3142.433RSD Rate Constant1552.440.3900.4752.440.5100.30220.880Hardness15234.925.9790.75734.3810.7880.41431.376Protein profile (Band 1)835.110.3080.9295.460.9620.26617.627Protein profile (Band 2)8415.471.1930.24716.011.8150.00711.339Protein profile (Band 3)8418.611.6070.74018.492.8190.39615.245Protein profile (Band 4)8133.601.6150.69833.822.5870.4727.650Protein profile (Band 5)8427.362.2660.41026.102.7440.43110.515DMI (7-14d)9133.401.1320.79234.322.4440.1537.121DMI (14-21d)9669.693.3780.45670.574.6370.2246.571
RSD (0.5h)15565.945.4800.50365.596.5070.2749.922RSD (1h)15679.644.8010.55179.796.9460.2548.705RSD (0.75h)15688.333.6540.51288.804.6530.3255.239RSD (2h)153102.922.5840.442102.342.4900.3142.433RSD Rate Constant1552.440.3900.4752.440.5100.30220.880Hardness15234.925.9790.75734.3810.7880.41431.376Protein profile (Band 1)835.110.3080.9295.460.9620.26617.627Protein profile (Band 2)8415.471.1930.24716.011.8150.00711.339Protein profile (Band 3)8418.611.6070.74018.492.8190.39615.245Protein profile (Band 4)8133.601.6150.69833.822.5870.4727.650Protein profile (Band 5)8427.362.2660.41026.102.7440.43110.515DMI (7-14d)9133.401.1320.79234.322.4440.1537.121DMI (14-21d)9669.693.3780.45670.574.6370.2246.571
RSD (1h) 156 79.64 4.801 0.551 79.79 6.946 0.254 8.705 RSD (0.75h) 156 88.33 3.654 0.512 88.80 4.653 0.325 5.239 RSD (2h) 153 102.92 2.584 0.442 102.34 2.490 0.314 2.433 RSD Rate Constant 155 2.44 0.390 0.475 2.44 0.510 0.302 20.880 Hardness 152 34.92 5.979 0.757 34.38 10.788 0.414 31.376 Protein profile (Band 1) 83 5.11 0.308 0.929 5.46 0.962 0.266 17.627 Protein profile (Band 2) 84 15.47 1.193 0.247 16.01 1.815 0.007 11.339 Protein profile (Band 3) 84 18.61 1.607 0.740 18.49 2.819 0.396 15.245 Protein profile (Band 4) 81 33.60 1.615 0.698 33.82
RSD (0.75h) 156 88.33 3.654 0.512 88.80 4.653 0.325 5.239 RSD (2h) 153 102.92 2.584 0.442 102.34 2.490 0.314 2.433 RSD Rate Constant 155 2.44 0.390 0.475 2.44 0.510 0.302 20.880 Hardness 152 34.92 5.979 0.757 34.38 10.788 0.414 31.376 Protein profile (Band 1) 83 5.11 0.308 0.929 5.46 0.962 0.266 17.627 Protein profile (Band 2) 84 15.47 1.193 0.247 16.01 1.815 0.007 11.339 Protein profile (Band 3) 84 18.61 1.607 0.740 18.49 2.819 0.396 15.245 Protein profile (Band 4) 81 33.60 1.615 0.698 33.82 2.587 0.472 7.650 Protein profile (Band 5) 84 27.36 2.266 0.410
RSD (2h)153102.922.5840.442102.342.4900.3142.433RSD Rate Constant1552.440.3900.4752.440.5100.30220.880Hardness15234.925.9790.75734.3810.7880.41431.376Protein profile (Band 1)835.110.3080.9295.460.9620.26617.627Protein profile (Band 2)8415.471.1930.24716.011.8150.00711.339Protein profile (Band 3)8418.611.6070.74018.492.8190.39615.245Protein profile (Band 4)8133.601.6150.69833.822.5870.4727.650Protein profile (Band 5)8427.362.2660.41026.102.7440.43110.515DMI (7-14d)9133.401.1320.79234.322.4440.1537.121DMI (14-21d)9669.693.3780.45670.574.6370.2246.571
RSD Rate Constant 155 2.44 0.390 0.475 2.44 0.510 0.302 20.880 Hardness 152 34.92 5.979 0.757 34.38 10.788 0.414 31.376 Protein profile (Band 1) 83 5.11 0.308 0.929 5.46 0.962 0.266 17.627 Protein profile (Band 2) 84 15.47 1.193 0.247 16.01 1.815 0.007 11.339 Protein profile (Band 3) 84 18.61 1.607 0.740 18.49 2.819 0.396 15.245 Protein profile (Band 4) 81 33.60 1.615 0.698 33.82 2.587 0.472 7.650 Protein profile (Band 5) 84 27.36 2.266 0.410 26.10 2.744 0.431 10.515 DMI (7-14d) 91 33.40 1.132 0.792 34.32 2.444 0.153 7.121 DMI (14-21d) 96 69.69 3.378 0.456 <td< td=""></td<>
Hardness15234.925.9790.75734.3810.7880.41431.376Protein profile (Band 1)835.110.3080.9295.460.9620.26617.627Protein profile (Band 2)8415.471.1930.24716.011.8150.00711.339Protein profile (Band 3)8418.611.6070.74018.492.8190.39615.245Protein profile (Band 4)8133.601.6150.69833.822.5870.4727.650Protein profile (Band 5)8427.362.2660.41026.102.7440.43110.515DMI (7-14d)9133.401.1320.79234.322.4440.1537.121DMI (14-21d)9669.693.3780.45670.574.6370.2246.571
Protein profile (Band 1) 83 5.11 0.308 0.929 5.46 0.962 0.266 17.627 Protein profile (Band 2) 84 15.47 1.193 0.247 16.01 1.815 0.007 11.339 Protein profile (Band 3) 84 18.61 1.607 0.740 18.49 2.819 0.396 15.245 Protein profile (Band 4) 81 33.60 1.615 0.698 33.82 2.587 0.472 7.650 Protein profile (Band 5) 84 27.36 2.266 0.410 26.10 2.744 0.431 10.515 DMI (7-14d) 91 33.40 1.132 0.792 34.32 2.444 0.153 7.121 DMI (14-21d) 96 69.69 3.378 0.456 70.57 4.637 0.224 6.571
Protein profile (Band 2) 84 15.47 1.193 0.247 16.01 1.815 0.007 11.339 Protein profile (Band 3) 84 18.61 1.607 0.740 18.49 2.819 0.396 15.245 Protein profile (Band 4) 81 33.60 1.615 0.698 33.82 2.587 0.472 7.650 Protein profile (Band 5) 84 27.36 2.266 0.410 26.10 2.744 0.431 10.515 DMI (7-14d) 91 33.40 1.132 0.792 34.32 2.444 0.153 7.121 DMI (14-21d) 96 69.69 3.378 0.456 70.57 4.637 0.224 6.571
Protein profile (Band 3) 84 18.61 1.607 0.740 18.49 2.819 0.396 15.245 Protein profile (Band 4) 81 33.60 1.615 0.698 33.82 2.587 0.472 7.650 Protein profile (Band 5) 84 27.36 2.266 0.410 26.10 2.744 0.431 10.515 DMI (7-14d) 91 33.40 1.132 0.792 34.32 2.444 0.153 7.121 DMI (14-21d) 96 69.69 3.378 0.456 70.57 4.637 0.224 6.571
Protein profile (Band 4) 81 33.60 1.615 0.698 33.82 2.587 0.472 7.650 Protein profile (Band 5) 84 27.36 2.266 0.410 26.10 2.744 0.431 10.515 DMI (7-14d) 91 33.40 1.132 0.792 34.32 2.444 0.153 7.121 DMI (14-21d) 96 69.69 3.378 0.456 70.57 4.637 0.224 6.571
Protein profile (Band 5) 84 27.36 2.266 0.410 26.10 2.744 0.431 10.515 DMI (7-14d) 91 33.40 1.132 0.792 34.32 2.444 0.153 7.121 DMI (14-21d) 96 69.69 3.378 0.456 70.57 4.637 0.224 6.571
DMI (7-14d) 91 33.40 1.132 0.792 34.32 2.444 0.153 7.121 DMI (14-21d) 96 69.69 3.378 0.456 70.57 4.637 0.224 6.571
DMI (14-21d) 96 69.69 3.378 0.456 70.57 4.637 0.224 6.571
DML (21-28d) 94 112 44 3 490 0 840 113 38 8 932 0 383 7 878
Total DMI 92 71 83 2.022 0.828 72.85 4.014 0.502 5.510
LWG (7-14d) 94 27 33 1 592 0 807 28 26 2 283 0 661 8 077
LWG(14-21d) 94 55.65 3.098 0.774 56.67 4.349 0.625 7.675
LWG (1121a) 91 55.65 5.696 6.771 56.67 1.519 6.625 7.675 LWG (21-28d) 93 80.39 4.026 0.825 80.32 7.216 0.526 8.984
Total LWG 94 54 39 2 372 0 861 55 08 3 817 0 690 6 930
Gain: feed (7-14d) 92 81 77 2 431 0 822 82 26 2 534 0 851 3 080
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Gain feed $(21-28d)$ 88 71 71 0.012 0.012 0.012 0.007 2.012 Gain feed $(21-28d)$ 88 71 71 1 101 0 893 70 92 3 598 0 265 5 073
Total gain feed 89 75 69 1 408 0 888 75 50 2 409 0 754 3 190
$In vivo viscosity \qquad 92 \qquad 6.49 \qquad 1.376 \qquad 0.478 \qquad 6.00 \qquad 1.660 \qquad 0.314 \qquad 27.649$
ME:GE 96 75.08 0.798 0.641 75.08 1.63 0.13 2.17
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
DM Retention 96 72.12 0.744 0.622 72.20 1.454 0.252 2.013
Ileal DM Digestibility 93 70.27 1.904 0.276 69.66 3.257 0.004 4.675
Ideal Directionity 75 70.27 1.504 0.270 07.00 5.257 0.004 4.075 Ileal Starch Digestibility 96 91.48 2.369 0.487 92.55 2.312 0.522 2.408
Ileal CP Digestibility 89 77.62 1.447 0.730 75.94 3.965 0.015 5.222

N = number of spectra in the calibration equation, $Mean_{cal} = mean$ of calibration dataset, SEC = standard error of calibration, $R^2 = coefficient$ of determination of the calibration, SEP = standard error of prediction, $R^2_{val} = correlation$ coefficient of the validation, Mean_{val} = mean of independent validation set.

Variable	Units	Mean
Specific weight	kg/hl	70.72
Thousand grain weight	g	43.11
In vitro viscosity	cp	12.40
Nitrogen	g/kg DM	20.17
NDF	g/kg DM	140.74
Starch	g/kg DM	632.82
Total NSP	g/kg DM	106.96
Soluble NSP	g/kg DM	23.52
Lysine	g/kg DM	3.51
Threonine	g/kg DM	3.31
Gross Energy	MJ/kg DM	18.40
Amylose	g/kg DM	159.03
RSD (0.125h)	% starch	36.31
RSD (0.250h)	% starch	48.04
RSD(0.375n)	% starch	58.04
RSD (0.5h)	% starch	66.51
RSD(0.75n)	% starch	80.52
RSD(In)	% starch	89.32
RSD (211) RSD Rate Constant	% starch	2 51
KSD Rate Collisiant		2.51
Drotain profile (Band 1)	0%	5.08
Protein profile (Band 2)	70 0%	14 47
Protein profile (Band 2)	70 0/2	14.47
Protein profile (Band 4)	70 0/2	35 30
Protein profile (Band 5)	/0 %	26.60
DMI (7, 14d)	% م/ط	20.00
DMI(14-21d)	g/d g/d	71 51
DMI (14 21d)	g/d g/d	115.25
Total DMI	g/d g/d	73 77
LWG (7-14d)	g/d g/d	28.52
LWG(14-21d)	g/d g/d	57 47
LWG (21-28d)	g/d	81.84
Total LWG	g/d	55.93
Gain:feed (7-14d)	*	82.75
Gain:feed (14-21d)	*	80.41
Gain:feed (21-28d)	*	71.11
Total gain:feed	*	75.79
In vivo viscosity	ср	5.89
ME:GE ratio	*	73.81
AME Content	MJ/kg DM	13.92
ME:Gain ratio	MJ/kg	18.31
DM Retention	%	72.13
Ileal DM Digestibility	%	69.98
Ileal Starch Digestibility	%	91.71
Ileal CP Digestibility	%	76.92
\star \mathbf{p}^2	lation apofficiant of a	one volidat

59 60 dard deviation of all wheats (including the Canadian wheats)

Min

59.00

21.70

3.20

12.49

101.30

547.10

81.70

8.40

1.80

1.20

18.06

115.00

20.41

29.90

38.98

46.05

57.95

70.06

93.61

1.33

8.41

2.10

9.10

10.20

24.30

20.90

28.80

58.60

92.20

61.60

21.40

42.40

58.10

41.90

73.10

71.90

61.50

67.20

3.31

67.10

12.67

16.72

69.70

62.70

83.20

70.30

Max

78.00

60.80

44.00

32.74

195.00

719.00

138.80

38.00

5.80

4.90

18.84

182.30

51.60

67.12

74.64

83.02

98.90

100.82

110.62

4.35

66.65

7.90

18.80

23.60

48.10

37.40

39.30

83.10

134.90

85.70

33.20

65.10

96.30

64.20

90.60

88.40

78.20

81.70

12.98

78.40

14.79

20.86

75.30

75.60

97.20

83.20

Std Dev

4.03

7.85

6.50

3.68

13.79

35.34

11.24

5.39

0.59

0.70

0.15

11.47

6.86

7.31

7.40

8.16

7.82

6.22

3.33

0.60

12.80

1.08

2.06

3.48

4.43

3.30

2.40

4.73

8.84

4.94

3.34

5.90

8.45

5.67

5.06

4.40

3.20

3.59

1.97 2.30

0.46

0.90

1.31

2.66

3.30

3.26

No of

Samples

138

159

163

163

163

163 141

141

141

141

163

141

163

163

163

163

163

163

163

163 107

> 84 84

> 84

84

84

93

93

93

93

93

93

93 93

93

93 93

93

93

93

93

93

61

61

61

61

2
3
4
5
6
0
1
8
9
10
10
11
12
13
14
15
15
16
17
18
10
00
20
21
22
23
21
24
25
26
27
28
20
29
30
31
32
22
33
34
35
36
37
00
38
39
40
41
42
10
43
44
45
46
47
יד 10
40
49
50
51
52
52
23
54
55
56
57
51
58
59

1

Table 9(a). NIRS full calibration	n statistics for dried milled wheat,	including Canadian samples
-----------------------------------	--------------------------------------	----------------------------

Variable	Ν	Mean	SEC	R ²	SECV	R ² _{cv}	Terms	SECV as % of mean
Thousand grain weight	313	43.31	3.487	0.796	4.193	0.705	11	9.68
In vitro viscosity	313	11.59	2.796	0.693	3.044	0.635	9	26.28
Nitrogen	309	20.05	0.283	0.994	0.335	0.991	11	1.67
NDF	315	140.36	7.935	0.616	8.926	0.517	8	6.36
Starch	316	632.32	13.086	0.861	15.296	0.809	11	2.42
Gross Energy	316	18.40	0.052	0.873	0.055	0.858	6	0.30
RSD (0.125h)	313	36.25	2.427	0.871	2.947	0.810	11	8.13
RSD (0.250h)	318	47.92	2.898	0.837	3.276	0.791	10	6.84
RSD (0.375h)	313	58.05	2.884	0.845	3.282	0.799	10	5.65
RSD (0.5h)	321	66.49	3.258	0.838	3.734	0.787	10	5.62
RSD (0.75)	314	80.57	2.818	0.867	3.276	0.820	11	4.07
RSD (1h)	321	89.35	2.483	0.836	3.041	0.754	11	3.40
RSD (2h)	317	102.54	1.731	0.720	2.034	0.613	11	1.98
RSD Rate Constant	315	2.48	0.216	0.858	0.260	0.795	10	10.47

N = number of spectra in the calibration equation, SEC = standard error of calibration, RSQ = coefficient of determination of the calibration, SECV = standard error of cross validation, R^2_{CV} = coefficient of cross validation, factors = number of actual terms used to estimate the parameter.

British Poultry Science

Table 9(b).	NIR sub-calibration and true validation statistics for chemical and physical parameters of
	dried milled wheat, including Canadian samples

Variable	Ν	Mean _{cal}	SEC	\mathbf{R}^2	Mean _{val}	SEP	R ² _{val}	SEP as % of Mean _{val}
Thousand grain weight	245	43.19	3.101	0.850	43.44	5.44	0.505	12.52
In vitro viscosity	248	11.62	2.979	0.641	12.60	6.69	0.262	53.05
Nitrogen	245	20.01	0.291	0.993	20.38	0.77	0.957	3.80
NDF	245	139.56	6.325	0.771	142.33	11.41	0.957	8.02
Starch	249	632.62	13.581	0.843	632.36	25.29	0.216	4.00
Gross Energy	256	18.39	0.052	0.865	18.40	0.04	0.571	0.24
RSD (0.125h)	249	35.72	2.152	0.894	38.00	4.59	0.914	12.07
RSD (0.250h)	248	47.33	2.462	0.876	50.15	5.23	0.658	10.42
RSD (0.375h)	249	57.51	2.908	0.841	60.12	4.83	0.592	8.04
RSD (0.5h)	255	66.09	2.886	0.877	68.12	4.37	0.632	6.41
RSD (0.75)	254	80.23	2.690	0.877	82.02	3.63	0.680	4.43
RSD (1h)	250	89.05	2.553	0.833	90.70	3.71	0.737	4.09
RSD (2h)	257	102.27	1.550	0.770	103.27	3.33	0.632	3.23
RSD Rate Constant	252	2.43	0.170	0.904	2.66	0.37	0.122	13.85

N = number of spectra in the calibration equation, $Mean_{cal} = mean$ of calibration dataset, SEC = standard error of calibration, $R^2 = coefficient$ of determination of the calibration, SEP = standard error of prediction, $R^2_{val} = correlation$ coefficient of the validation, Mean_{val} = mean of independent validation set.

2
3
4
5
6
0
7
8
9
10
10
11
12
13
11
14
15
16
17
18
10
19
20
21
22
22
23
24
25
26
27
21
28
29
30
21
51
32
33
34
35
00
36
37
38
30
40
40
41
42
43
11
44
45
46
47
<u>4</u> 8
40
49
50
51
52
52
53
54
55
56
57
57
58
59
60

Variable	Ν	Mean	SEC	R ²	SECV	R ² _{cv}	Factors	SECV as % of Mean
Thousand grain weight	317	43.14	3.363	0.815	4.183	0.714	11	9.70
In vitro viscosity	305	11.28	2.579	0.701	2.830	0.639	9	25.09
Nitrogen	309	20.14	0.330	0.991	0.389	0.988	10	1.93
NDF	319	140.71	8.613	0.597	9.569	0.509	8	6.80
Starch	314	632.18	14.189	0.839	16.703	0.776	10	2.64
Gross Energy	320	18.40	0.046	0.904	0.056	0.860	9	0.30
RSD (0.125h)	317	36.10	3.013	0.797	3.197	0.771	7	8.86
RSD (0.250h)	309	47.86	3.143	0.797	3.181	0.791	7	6.65
RSD (0.375h)	318	57.96	3.109	0.815	3.679	0.740	10	6.35
RSD (0.5h)	319	66.51	3.330	0.831	3.802	0.779	10	5.72
RSD (0.75h)	316	80.63	3.212	0.826	3.640	0.776	9	4.51
RSD (1h)	324	89.43	2.713	0.800	3.250	0.713	10	3.63
RSD (2h)	309	102.58	1.930	0.627	2.067	0.571	7	2.01
RSD Rate Constant	306	2.47	0.214	0.853	0.241	0.813	9	9.75

Table 10(a). NIRS full calibration statistics for undried milled wheat, including Canadian samples

N = number of spectra in the calibration equation, SEC = standard error of calibration, RSQ = coefficient of determination of the calibration, SECV = standard error of cross validation, R^2_{CV} = coefficient of cross

validation, factors = number of actual terms used to estimate the parameter.

1	
2	
3	
4	
5	
6	
7	
0	
0	
9	
10	
11	
12	
13	
1/	
14	
15	
16	
17	
18	
19	
20	
21	
∠ I 20	
22	
23	
24	
25	
26	
27	
28	
20	
29	
30	
31	
32	
33	
34	
35	
26	
30	
37	
38	
39	
40	
41	
42	
12	
44	
45	
46	
47	
48	
49	
50	
50	
51	
52	
53	
54	
55	
56	
57	
52	
00	
59	

60

 Table 10(b). NIR sub-calibration and true validation statistics for chemical and physical parameters of undried milled wheat, including Canadian samples

Variable	Ν	Mean _{cal}	SEC	\mathbf{R}^2	Mean _{val}	SEP	\mathbf{R}^2_{val}	SEP as % of Mean _{val}
Thousand grain weight	248	43.23	3.722	0.781	43.44	5.77	0.481	13.29
In vitro viscosity	241	11.25	2.499	0.707	12.60	6.24	0.497	49.48
Nitrogen	251	20.10	0.375	0.989	20.38	0.78	0.956	3.81
NDF	250	139.70	7.089	0.704	142.33	10.04	0.956	7.05
Starch	252	632.94	13.412	0.850	632.36	26.60	0.308	4.21
Gross Energy	256	18.39	0.051	0.879	18.40	0.05	0.536	0.27
RSD (0.125h)	249	35.84	2.322	0.883	38.00	4.37	0.895	11.49
RSD (0.250h)	248	47.40	2.689	0.846	50.15	4.72	0.685	9.42
RSD (0.375h)	249	57.45	2.874	0.840	60.12	4.91	0.648	8.17
RSD (0.5h)	251	66.12	2.936	0.869	68.12	4.61	0.600	6.77
RSD (0.75h)	250	80.13	2.768	0.873	82.02	4.25	0.642	5.19
RSD (1h)	254	89.19	2.678	0.808	90.70	3.36	0.655	3.70
RSD (2h)	246	102.44	1.801	0.681	103.27	2.89	0.665	2.80
RSD Rate Constant	246	2.42	0.172	0.901	2.66	0.37	0.279	13.79

N = number of spectra in the calibration equation, Mean_{cal} = mean of calibration dataset, SEC = standard error of calibration, R^2 = coefficient of determination of the calibration, SEP = standard error of prediction, R^2_{val} = correlation coefficient of the validation, Mean_{val} = mean of independent validation set

British Poultry Science

 Predicted GE

18.40

18.30

18.20

18.10

18.00-

18.90

