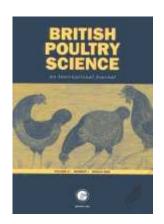


Breast meat traits of Muscovy ducks fed on a microalga (Crypthecodinium cohnii) meal supplemented diet

Achille Schiavone, Riccardo Chiarini, Margherita Marzoni, Annelisse Castillo,

Sonia Tassone, Isabella Romboli

▶ To cite this version:


Achille Schiavone, Riccardo Chiarini, Margherita Marzoni, Annelisse Castillo, Sonia Tassone, et al.. Breast meat traits of Muscovy ducks fed on a microalga (Crypthecodinium cohnii) meal supplemented diet. British Poultry Science, 2007, 48 (05), pp.573-579. 10.1080/00071660701615796 . hal-00545321

HAL Id: hal-00545321 https://hal.science/hal-00545321

Submitted on 10 Dec 2010

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

British Poultry Science

Breast meat traits of Muscovy ducks fed on a microalga (Crypthecodinium cohnii) meal supplemented diet

Journal:	British Poultry Science
Manuscript ID:	CBPS-2007-022.R1
Manuscript Type:	Original Manuscript
Date Submitted by the Author:	11-Apr-2007
Complete List of Authors:	Schiavone, Achille; Università di Torino, Produzioni Animali, Epidemiologia ed Ecologia Chiarini, Riccardo; Università di Pisa, Produzioni Animali Marzoni, Margherita; Università di Pisa, Produzioni Animali Castillo, Annelisse; Università di Pisa, Produzioni Animali Tassone, Sonia; Università di Torino, Scienze Zootecniche Romboli, Isabella; Università di Pisa, Produzioni Animali
Keywords:	Ducks, Meat, Fats and fatty acids
	- -

E-mail: br.poultsci@bbsrc.ac.uk URL: http://mc.manuscriptcentral.com/cbps

1	Breast me	at traits of Muscovy ducks fed on a microa	lga
2	(Cryptheco	odinium cohnii) meal supplemented diet	
3			
4	A. SCHIA	VONE, R. CHIARINI ¹ , M. MARZONI ² , A. C	CASTILLO ¹ ,
5	S. TASSO	NE ² AND I. ROMBOLI ¹	
6			
7	Faculty of V	eterinary Medicine, Dipartimento di Produzioni Anin	nali,
8	Epidemiolog	ia ed Ecologia, Università degli Studi di Torino, ¹ Fa	culty of
9	Veterinary M	ledicine, Dipartimento di Produzioni Animali, Unive	rsità degli Studi
10	di Pisa, ² Fac	culty of Agriculture, Dipartimento di Scienze Zootecn	iche, Università
11	degli Studi d	i Torino, Italy	
12			
13	R	UNNING TITLE: DIETARY MICROALGA IN D	UCKS
14			
15			
16			
17			
18			
19			
	* Correspond	lence address: A. Schiavone, Dipartimento di Produz	ioni Animali,
		ia ed Ecologia, Facoltà di Medicina Veterinaria, 100	
	(TO), Italy.		
	Tel.:	+39-011-6709208	
	Fax:	+39-011-6709240	
	E-mail:	achille.schiavone@unito.it	
		Accepted for publication 15 th May 2007	

1	Abstract 1. A trial was conducted in order to increase the docosahexaenoic acid
2	(DHA) content in the meat of Muscovy ducks (Cairina moschata domestica L.)
3	fed on a diet supplemented with the microalga Crypthecodinium cohnii.
4	2. Two diets were provided to 48 male and 48 female ducks, belonging to an
5	Italian rural strain during the last three weeks of life: a maize-soybean based diet
6	as the control diet and the same diet supplemented with 5 g/kg microalga meal.
7	3. Dietary treatment did not induce differences in growth performances and
8	slaughter traits. Similarly, chemical composition, colour, pH, oxidative stability
9	and sensory characteristics of breast muscle were not influenced by the diet.
10	4. A significant increase of DHA content in breast meat of ducks fed on the
11	Crypthecodinium cohnii enriched diet was observed.
12	INTRODUCTION
13	In human nutrition, the biological effect of n-3 long chain polyunsaturated fatty
14	acids (LC-PUFAs) has received great interest as they play an active role in the
14 15	acids (LC-PUFAs) has received great interest as they play an active role in the prevention and management of several pathologies such as coronary heart disease,
15	prevention and management of several pathologies such as coronary heart disease,
15 16	prevention and management of several pathologies such as coronary heart disease, hypertension, type 2 diabetes, renal disease, ulcerative colitis, chronic obstructive
15 16 17	prevention and management of several pathologies such as coronary heart disease, hypertension, type 2 diabetes, renal disease, ulcerative colitis, chronic obstructive pulmonary disease and Crohn's disease (Simopoulos, 2000). The main molecules
15 16 17 18	prevention and management of several pathologies such as coronary heart disease, hypertension, type 2 diabetes, renal disease, ulcerative colitis, chronic obstructive pulmonary disease and Crohn's disease (Simopoulos, 2000). The main molecules of the n-3 LC-PUFAs family involved in the beneficial biological effects are
15 16 17 18 19	prevention and management of several pathologies such as coronary heart disease, hypertension, type 2 diabetes, renal disease, ulcerative colitis, chronic obstructive pulmonary disease and Crohn's disease (Simopoulos, 2000). The main molecules of the n-3 LC-PUFAs family involved in the beneficial biological effects are eicosapentaenoic acid (EPA, C20:5 n-3), docosapentaenoic acid (DPA, C22:5 n-3)
15 16 17 18 19 20	prevention and management of several pathologies such as coronary heart disease, hypertension, type 2 diabetes, renal disease, ulcerative colitis, chronic obstructive pulmonary disease and Crohn's disease (Simopoulos, 2000). The main molecules of the n-3 LC-PUFAs family involved in the beneficial biological effects are eicosapentaenoic acid (EPA, C20:5 n-3), docosapentaenoic acid (DPA, C22:5 n-3) and docosahexaenoic acid (DHA, 22:6 n-3). The current Western diet is
15 16 17 18 19 20 21	prevention and management of several pathologies such as coronary heart disease, hypertension, type 2 diabetes, renal disease, ulcerative colitis, chronic obstructive pulmonary disease and Crohn's disease (Simopoulos, 2000). The main molecules of the n-3 LC-PUFAs family involved in the beneficial biological effects are eicosapentaenoic acid (EPA, C20:5 n-3), docosapentaenoic acid (DPA, C22:5 n-3) and docosahexaenoic acid (DHA, 22:6 n-3). The current Western diet is characterised by low fish consumption, representing the main source of n-3 LC-

British Poultry Science

1	as poultry meat, could be enhanced by increasing the n-3 LC-PUFAs content. In
2	fact, several studies aimed to enrich poultry products with n-3 LC-PUFAs
3	indicated fish oil as the most effective source for this purpose (Hargis and Van
4	Elswyk, 1993; Leskanich and Noble, 1997). Our previous experience showed an
5	increase in the amount of LC-PUFAs in duck meat with dietary fish oil
6	(Schiavone et al., 2004). The recommendation of the European Union (decision
7	00/766/EU), concerning the ban on the use of animal proteins in animal nutrition,
8	and the consumers' preferences, stimulated the interest in making diets for birds
9	using exclusively vegetable ingredients.
10	This investigation aimed to increase the docosahexaenoic acid (DHA)
11	content of the breast muscle of Muscovy ducks. Therefore, ducks were fed on a
12	diet supplemented with marine microalga meal at the end of the finisher period.
13	The microalga Crypthecodinium cohnii, a non-photosynthetic marine
14	dinoflagellate, rich in DHA (Jiang et al., 1999) was included in the diet and its
15	effect evaluated at the minimum slaughter age for Muscovy ducks. Besides, meat
16	sensory evaluation was performed to exclude the presence of a disagreeable taste.
17	MATERIALS AND METHODS
18	Animals and diets
19	Muscovy ducklings (Cairina moschata domestica L.) of both sexes of an Italian
20	rural strain, hatched at the Experimental Avian Station of the Department of
21	Animal Production of Pisa (Italy), were used for this trial. The experimental
22	protocol was approved by the Ethics Committee of the Faculty of Veterinary
23	Medicine of Pisa, Italy. All animal housing conformed to European Union
24	guidelines.

1	A total of 48 males and 48 females were distributed by sex in 6 pens,
2	respectively. Density was 3.5 males/m 2 and 4 females/m 2 . All ducks received the
3	same diet before the beginning of the experimental trial: a starter diet (12.1 MJ
4	ME/kg and 240 g of crude protein/kg), and a finisher diet (12.0 MJ ME/kg and
5	200 g of crude protein/kg). The trial began when male ducks and female ducks
6	were 50 and 43 d old, respectively. During the 21-d experimental period the
7	finisher diet (Control diet, C) was compared with the same diet enriched with 5
8	g/kg dried microalga Crypthecodinium cohnii (Microalga diet, MA) (Algamix -
9	AG DHA ®). The two diets were formulated to be isoenergetic and
10	isonitrogenous (Table 1). Each diet was randomly assigned to three pens for each
11	sex. Olive oil was used as fat source for both diets. During the trial, individual
11	
12	duck body weight and feed consumption per pen were recorded weekly to
12	duck body weight and feed consumption per pen were recorded weekly to
12 13	duck body weight and feed consumption per pen were recorded weekly to calculate the feed conversion ratio (FCR).
12 13 14	duck body weight and feed consumption per pen were recorded weekly tocalculate the feed conversion ratio (FCR).Carcase assessment and meat quality
12 13 14 15	duck body weight and feed consumption per pen were recorded weekly to calculate the feed conversion ratio (FCR).Table 1 near hereCarcase assessment and meat qualityAt the minimum slaughter age, seven 71-d old males and seven 64-d old females
12 13 14 15 16	duck body weight and feed consumption per pen were recorded weekly to calculate the feed conversion ratio (FCR).Table 1 near hereCarcase assessment and meat qualityAt the minimum slaughter age, seven 71-d old males and seven 64-d old females per dietary treatment were sacrificed by electrical stunning followed by neck-
12 13 14 15 16 17	duck body weight and feed consumption per pen were recorded weekly to calculate the feed conversion ratio (FCR).Table 1 near hereCarcase assessment and meat qualityAt the minimum slaughter age, seven 71-d old males and seven 64-d old females per dietary treatment were sacrificed by electrical stunning followed by neck- cutting, after a 12-h starving period. Eviscerated and plucked carcases were
12 13 14 15 16 17 18	duck body weight and feed consumption per pen were recorded weekly to calculate the feed conversion ratio (FCR). Table 1 near here Carcase assessment and meat quality At the minimum slaughter age, seven 71-d old males and seven 64-d old females per dietary treatment were sacrificed by electrical stunning followed by neck- cutting, after a 12-h starving period. Eviscerated and plucked carcases were weighted after removal of the feet and abdominal fat to obtain ready to cook
12 13 14 15 16 17 18 19	duck body weight and feed consumption per pen were recorded weekly to calculate the feed conversion ratio (FCR). Table 1 near here Carcase assessment and meat quality At the minimum slaughter age, seven 71-d old males and seven 64-d old females per dietary treatment were sacrificed by electrical stunning followed by neck- cutting, after a 12-h starving period. Eviscerated and plucked carcases were weighted after removal of the feet and abdominal fat to obtain ready to cook carcases (RCC). Breast fillets and liver were excised from refrigerated RCC (6

major muscles were determined. pH was measured using a Hanna Instruments
8417 pH-meter supplied with a Hamilton Biotrode electrode. Meat colour
(CIELAB system: L*, a*, b*) was measured on breast muscle surface using a
Minolta Chroma-Meter CR-300 colour analyser.

E-mail: br.poultsci@bbsrc.ac.uk URL: http://mc.manuscriptcentral.com/cbps

British Poultry Science

Pectoralis major muscle was vacuum-packaged and frozen (-20°C) for analytical and sensory determinations described below. AOAC methods (1990) were used to assess moisture, ash, protein and ether extract and results were expressed as percentage on a fresh matter basis. Fatty acid composition of both breast muscle and diets was ascertained by capillary gas chromatography after lipid extraction (Folch et al., 1957) and esterification (Christie, 1982), using sodium methoxide as catalyst. Fatty acid methyl esters were analysed by a Perkin-Elmer AutoSystem gas-chromatograph, equipped with a flame ionisation detector and a Supelco Omegawax 320 capillary column (30 m x 0.32 mm, 0.25 µm film). Each fatty acid peak was identified by pure methyl ester standards (Supelco and Restek Corporation, Bellefonte, PA) and data were conveyed as relative values.

Susceptibility to lipid oxidation was estimated from thiobarbituric acid reactive substances (TBARS) according to the iron-induced TBARS procedure, described by Huang and Miller (1993): 3 g of minced breast were homogenised in 57 ml of a chilled 1.15% KCl solution; 30 ml of the homogenate were incubated at 37°C in a shaking water bath with 8.34 mg FeSO₄·7H₂O (final concentration 1 mM Fe⁺³) as oxidative agent. The iron-induced TBARS assay was performed at 0, 60 and 120 minutes of incubation and the absorbance was read at 532 nm. Liquid malonaldehyde bis (diethyl acetal) (MDA) (Aldrich Chemical Co Ltd, Dorset England) was used as the standard to determine the linear standard response and recovery. TBARS values were calculated by multiplying absorbance by a constant coefficient K (23.58), combining standard response, recovery (93.4%), molecular weight of the MDA and sample weight. TBARS values were expressed as mg MDA/kg fresh meat.

1	A sensory panel test was performed on Pectoralis major muscle, without
2	skin, roasted in a hot air oven at 165°C until an internal temperature of 70°C,
3	without salt or spices and skin. Cooked samples were immediately sliced into 8
4	pieces and randomly offered to 6 trained panellists. The trial consisted of 4
5	sessions and the traits assessed were: tenderness, juiciness, fibrousnesses and
6	acceptability. A 5-point scale was used: 1 referring to very disagreeable, very
7	tough, very dry, very fibrous and 5 to very agreeable, extremely tender, very
8	juicy, without fibre (Cross et al. 1986).
9	Statistical analysis
10	Measurements of in vivo performances, slaughter traits, chemical composition,
11	fatty acid profile and sensory analysis of meat were split by sex and analysed with
12	a linear model including the fixed effect of diet (SPSS, 1997). Significance of
13	differences was evaluated by t-test.
14	RESULTS
15	Fatty acid composition of microalga meal was characterised by a 30.6% DHA
16	content. The 5 g/kg inclusion of microalga meal in MA diet resulted in a 2.3 g/kg
17	content of DHA of total fatty acids, while DHA in the C diet was not detected
18	(Table 1). Growth performances, slaughter traits and breast muscle traits (colour,
19	pH and chemical composition) were not influenced by dietary treatments (Tables
20	2, 3 and 4). Similarly, susceptibility to lipid oxidation was not affected by the
21	diet (Table 4). Besides, the inclusion of microalga did not influence tenderness,
22	juiciness, fibrousness and acceptability of meat (Table 4). Tables 2,3,4 near here
23	Fatty acid composition of breast meat (Table 5) was affected ($P < 0.05$) by
24	the diet. In particular DHA content was significantly higher in birds fed on the
25	MA diet (+ 2.9 fold in males and + 2.8 fold in females, for MA and C diet,

British Poultry Science

1	respectively). The improvement of DHA content in breast muscles due to MA diet
2	significantly influenced the total n-3 PUFAs amount (+ 1.9 fold in males and +
3	1.8 fold in females, for MA and C diet, respectively) and the n-6/n-3 ratio (- 1.8
4	fold in males and – 1.9 fold in females, for MA and C diet respectively). Table 5 near here
5	DISCUSSION
6	Our results of moisture, protein and lipid contents in breast meat, 74.6 - 76.8 %,
7	20.2 - 21.2 %, 0.99 - 1.06 % respectively, are similar to those reported by other
8	authors, (Baéza et al., 1997; Baéza et al., 2002; Koci et al., 1982; Paquin, 1988).
9	Avian fatty acids are typically monounsaturated, due to an active hepatic
10	delta-9 desaturase, and an oleic and palmitoleic acid predominance. Domestic
11	granivores use dietary carbohydrate for de novo fatty acid synthesis. Birds
12	usually, except for some species, lack the enzymatic capacity to introduce double
13	bonds past the ninth carbon of the fatty acid. Thus, they cannot use stearic acid to
14	synthesise linoleic acid or alpha-linolenic acid, which are essential fatty acids in
15	birds (Klasing, 2000). Dietary provision of lipids was shown to influence the
16	composition of phospholipid membranes and adipose depots. In fact,
17	susceptibility of avian tissues and yolk lipids to fatty acid manipulation has been
18	reviewed by Leskanich and Noble (1997) and Hargis and Van Elswyk (1993).
19	Thus, the enrichment of poultry products with n-3 fatty acids, especially those
20	with a number of carbons up to 20, is the main goal of fatty acid manipulation.
21	Maldijan et al. (1996) showed that phospholipid fatty acid composition of eggs
22	from chicken and duck (Anas platyrhynchos L.) markedly differed. The
23	phospholipid fraction of duck eggs has higher proportions of arachidonic acid and
24	lower proportions of DHA than chicken eggs. This shows that duck liver is quiet
25	efficient at converting dietary 18:2 n-6 into 20:4 n-6, whereas in chicken the

1	conversion of 18:3 n-3 into 22:6 n-3 has priority. Thus, variations in the fatty acid
2	profiles of yolk lipids may be derived from dietary provision of PUFAs as well as
3	genetic differences among avian species regarding liver metabolic activities.
4	However, in broiler chicken the capability to transfer LC-PUFAs from liver to
5	peripheral tissue seems to be less effective than the mechanism involved in the
6	incorporation of these in the yolk lipids. In fact Lopez-Ferrer et al. (2001) showed
7	that dietary linolenic acid (28% of total dietary fatty acid) stimulates hepatic
8	metabolic pathways involved in the elongation and desaturation of C18:3 n-3 into
9	22:6 n-3 (5.67%-7.16% of total fatty acid), resulting in an inefficient build-up in
10	thigh muscles (0.25% of total fatty acid). Similarly, in turkey, the conversion of
11	C18:3 n-3 to EPA and DHA is weak. According to Komprda et al. (2005) the
12	administration of three different diets containing 1.9%, 36.5% and 1.1% alpha-
13	linolenic acid resulted in 6.8%, 9.0% and 5.7% EPA+DHA in breast meat.
14	Dietary algae have been successfully used in the nutrition of laying hens
15	(Herber and van Elswyk, 1996; Nitsan et al., 1999; Tallarico et al., 2002), broiler
16	chickens (González-Esquerra and Leeson, 2001; Mooney et al., 1998; Sirri et al.,
17	2003a; Sirri et al., 2003b) to obtain enriched poultry products, characterised by a
18	significant amount of DHA or EPA, which could contribute to the novel concept
19	of "functional food" in human nutrition (Garg et al., 2006; Almeida et al., 2006).
20	In biological tissues and fluids, susceptibility to lipid oxidation is related to fatty
21	acid chain length, number of double bonds (Liu et al., 1997) and amount of
22	antioxidant molecules (Surai, 1999). Our data on iron-induced TBARS showed no
23	differences between groups in spite of the increase in DHA amount in animals fed
24	on the diet supplemented with the microalga meal. This might be explained by the
25	fact that the content of naturally occurring carotenoids, such as beta-carotene and

British Poultry Science

canthaxanthin in the Crypthecodinium cohnii (Barclay et al., 1994), may provide LC-PUFAs stabilisation due to their antioxidant properties (Surai, 2002). Other authors studied the effect of other dietary microalgae on lipid stability of avian meat. No differences were found by Mooney et al. (1998) in breast meat TBARS values among chickens fed on 0%, 2.8% and 5.5% of dried Schizochytrium. Sirri et al. (2003a and 2003b) studied the effect of 0.0%, 0.5% and 1.0% dietary Schizochitrium in broiler chicken on lipid stability of both drumstick and breast meat. TBARS values of drumstick meat were not influenced by dietary Schizochytrium, oppositely breast meat TBARS values of the same birds receiving 1.0% Schizochytrium appeared to be significantly higher than those from birds fed on 0.0 and 0.5% alga meal.

12 The 5 g/kg inclusion of *Crypthecodinium cohnii* did not affect the sensory 13 panel test, agreeing with the results shown by Sirri *et al.* (2003b) when 14 *Schizochytrium* were administered to chickens. Likewise Mooney *et al.* (1998) 15 referred no modification of flavour in fresh chicken meat, while cooked meat 16 samples from the experimental group with the highest level of *Schizochytrium* 17 (5.5% of diet) were judged "undesirable".

In conclusion the 5 g/kg inclusion of microalga *Crypthecodinium cohnii* in the diet, provided for the last 21 d of life, improved DHA content in the duck meat without negative influences on sensory traits of the breast meat.

Also, the dietary microalga did not negatively influence growth performances or slaughter traits. In addition, chemical composition, colour, pH and oxidative stability of breast muscle were not influenced by the microalga supplemented diet. Muscovy duck appeared to react positively to this dietary

supplementation. Thus, the use of Crypthecodinium cohnii could be used as a dietary strategy to enhance n-3 PUFA in duck meat. In conclusion this DHA-enriched meat could contribute to human nutrition, providing an increase of about three-fold in DHA content compared to meat from ducks fed on a diet without microalga meal supplementation. **ACKNOWLEDGEMENTS** We are grateful to Mrs Manuela Baglini for duck breeding and Mrs Chiara Bianchi for technical support. Acknowledgements are due to Bios Pan Srl (Concordia sulla Secchia – MO, Italy) for providing the Algamix –AG DHA ®. REFERENCES ALMEIDA, M.D.V., PINHÃO, S., STEWART-KNOX, B., PARR, H.J, & GIBNEY, M.J. (2006). An overview of findings from a six-country European survey on consumer attitudes to the metabolic syndrome, genetics in nutrition, and potential agro-food technologies. British Nutrition Foundation Nutrition Bulletin, : 239-246. AOAC (1990). Official methods of analysis, 14th ed. Arlington, VA. USA: Association of Official Analytical Chemistry. BAÉZA, E., DE CARVILLE, H., SALICHON, M.R., & LECLERQ, B. (1997). Effect of selection, over three four generations, on meat yield and fatness in Muscovy ducks. British Poultry Science, 38: 359-356. BAÉZA, E., DESSAY, C., WACRENIER, G., MARCHE, G., & LISTRAT, A. (2002). Effect of selection for improved body weight and composition on muscle and meat characteristics in Muscovy duck. British Poultry Science, 4: 560-568.

1	BARCLAY, W.R., MEAGER K.M., & ABRIL, J.R. (1994). Heterotrophic
2	production of long chain omega-3 fatty acid utilizing algae and algae-like
3	microorganisms. Journal of Applied Phycology, 6: 123-129.
4	CHRISTIE, W.W. (1982). A simple procedure for rapid transmethylation of
5	glycerolipids and cholesteryl esters. Journal of Lipid Research, 23: 1072-1075.
6	CIELAB Colour System (1976). Commission International de l'Eclairage. Paris:
7	CIE Publication.
8	CROSS, H.R., DURLAND, P.R., & SEIDEMAN, S.C. (1986). Sensory qualities
9	of meat, in P.J. BECHTEL (Ed.), Muscle as food, pp. 279-3290 (Orlando,
10	Harcourt Brace Jovanovich).
11	FOLCH, J., LEES, M., & SLOANE-STANLEY, H. (1957). A simple method for
12	the isolation and purification of total lipids from animal tissue. Journal of Biology
13	<i>Chemistry</i> , 226 : 479-509.
14	GARG, M.L., WOOD, L.G., SINGH, H., & MOUNGHAN, P.J. (2006). Mean of
15	delivering recommended levels of long chain n-3 polyunsaturated fatty acids in
16	human diets. Journal of Food Science, 71 (5): 66-71.
17	GONZÁLEZ-ESQUERRA, R., & LEESON, S. (2001). Alternatives for
18	enrichment of eggs and chicken meat with omega-3 fatty acids. Journal of Animal
19	Science, 81 (3) : 295-305.
20	HARGIS, P.S., & VAN ELSWYK, M.E. (1993). Manipulation of fatty acid
21	composition of poultry meat and eggs for the health conscious consumer. World's
22	Poultry Science Journal, 49: 257-264.
23	HERBER, S.M., & VAN ELSWYK, M.E. (1996). Dietary marine algae promotes
24	efficient deposition of n-3 fatty acids for the production of enriched shell eggs.
25	<i>Poultry Science</i> , 75 : 1501-1507.

1	HUANG, Y.X., & MILLER, E.L. (1993). Iron-induced TBARs as an indicator of
2	oxidative stability of fresh chicken meat. Proceedings of the 11th European
3	Symposium on the Quality of Poultry Meat, Tours, pp 478-484.
4	JIANG, Y., CHEN, F., & LIANG, SZ. (1999). Production potential of
5	docosahexaenoic acid by the heterotrophic marine dinoflagellate Crypthecodinium
6	cohnii. Process Biochemistry, 34: 633-637.
7	KLASING, K.C. (2000). Lipids, in: KLAISING, K.C. (Eds) Comparative avian
8	nutrition, pp 171-173 (CAB International, Cambridge, UK).
9	KOCI, E., BAUMGARTNER, J., ILLES, V., & PALANSKA, O. (1982). Carcass
10	and nutritive value of the small white broiler duck and its crosses. Archiv für
11	<i>Geflügelkunde</i> , 46 : 157 – 163.
12	KOMPRDA T., ZELENKA J., FAJMONOVA E., FIALOVA M. & KLADROBA
13	D. (2005). Arachidonic acid and long-chain n-3 polyunsaturated fatty acid
14	contents in meat of selected poultry and fish species in relation to dietary fat
15	sources, Journal of Agricultural and Food Chemistry, 53: 6804-6812.
16	LESKANICH, C.O., & NOBLE, R.C. (1997). Manipulation of n-3
17	polyunsaturated fatty acid composition of avian eggs and meat. World's Poultry
18	<i>Science Journal</i> , 53 : 155-183.
19	LIU, J., YEO, H.C., DONIGER, S.J., & AMES, B.N. (1997). Assay of aldehydes
20	from lipid peroxidation: gas chromatography-mass spectrometry compared to
21	thiobarbituric acid. Analytical Biochemistry, 14, 245: 161-166.
22	LOPEZ-FERRER, S., BAUCELLS, M.D., BARROETA, A.C., GALOBART, J.,
23	& GRASHORN, M.A. (2001). n-3 enrichment of chicken meat. Use of precursors
24	of long-chain polyunsaturated fatty acids: linseed oil. Poultry Science 80: 753-

25 761.

British Poultry Science

MALDIJAN, A., CRISTOFORI, C., NOBLE, R.C., & SPEAKE, B.K. (1996).
The fatty acid composition of brain phospholipids from chicken and duck
embryos. Comparative Biochemistry and Physiology B, 115B: 153-158.
MOONEY, J.W., HIRSCHLER, E.M., KENNEDY, A.K., SAMS, A.R., & VAN
ELSWYK, M.E. (1998). Lipid and flavour quality of stored breast meat from
broilers fed marine algae. Journal Science of Food Agriculture, 78: 134-140.
NITSAN, Z., MOKADY, S., & SUKENIK, A. (1999). Enrichment of poultry
products with n-3 fatty acids by dietary supplementation with the alga
Nannochloropsis and mantur oil. Journal of Agriculture Food Chemistry, 47:
5127-5132.
PAQUIN, J. (1988). Valeur nutritionelle des viandes de volailles, in ROSSET, R.
(Ed.) L'aviculture française. Informations Techniques des Services Vétérinaires
(Paris).
SCHIAVONE, A., ROMBOLI, I., CHIARINI, R., & MARZONI, M. (2004).
Influence of dietary lipid source and genotype on fatty acid composition of
Muscovy duck meat. Journal of Animal Physiology and Animal Nutrition, 88: 88-
93.
SIMOPOULOS, A.P. (2000). Human requirement for n-3 polyunsaturated fatty
acid, Poultry Science, 79: 961-970.
SIRRI, F., MINELLI, G., IAFFALDANO, N., TALLARICO, N., &
FRANCHINI, A. (2003a). Oxidative stability and quality traits of n-3 PUFA
enriched chicken meat. Italian Journal of Animal Science, 2(1): 450-452.
SIRRI, F., MINELLI, G., MELUZZI, A., & FRANCHINI, A. (2003b). Quality
traits and oxidative stability of n-3 PUFA enriched meat, in: BAEZA, E. &

1	FERNANDEZ, X. (Eds.). Proceedings of the XVI European Symposium on the
2	Quality of Poultry Meat, Saint-Brieuc, pp. 258-264.
3	SPSS (1997). Guida dell'utente SPSS, base 7.5 per Windows ®. (Inc. Chicago,
4	Illinois. U.S.A.).
5	SURAI, P.F. (1999) Vitamin E in avian reproduction. Poultry and Avian Biology
6	<i>Reviews</i> , 10 (1), 1-60.
7	SURAI, P.F. (2002) Carotenoids in natural antioxidants in avian nutrition and
8	reproduction. Nottingham University Press (U.K), pp 129-200.
9	TALLARICO, N., SIRRI, F., MELUZZI, A., PITTIA, P., PERPINELLO, G.P., &
10	FRANCHINI, A. (2002). Effect of dietary vegetable lipids on functional and
11	sensory properties of chicken eggs. Italian Journal of Food Science, 14 (2): 159-
12	166.

British Poultry Science

	of the diets		
			ental period $d = f(l;f_{r})$
		C diet	<i>d of life)</i> MA diet
Ing	gredients (g/kg)	Cult	ivii i diet
-	aize meal	598	602
So	ybean meal	340	333
Die	calcium phosphate	20	20
Ca	lcium carbonate	17	17
So	dium chloride	2	2
DI	methionine	2	2
	lysine	1	1
	tamin and mineral premix ^a	5	5
	ive oil	15	13
Ch	ypthecodinium cohnii meal emical composition (g/kg)	-	5
	y matter	878.1	878.6
	ude protein	200.1	202.6
	her extract	34.4	37.3
	ude fibre	29.2	31.4
As		67.7	63.2
	etabolisable energy (MJ/kg)	12.09	12.07
	tty acid composition /100 g fatty acid)		
C1	4:0	0.11	0.31
C1	6:0	13.89	13.92
C1	6:1n7	0.33	0.34
C1	8:0	3.06	2.81
C1	8:1n9ct	31.84	31.80
C1	8:2n6c	45.19	45.45
C1	8:3n3	1.99	1.72
C2	2:6n3	_	0.23
SF	As ^b	17.96	17.98
UF	FAs ^c	79.81	79.65
SF	As/UFAs	0.23	0.23
MU	UFAs ^d	32.38	32.45
PU	JFAs ^e	47.43	47.20
n6		45.48	45.22
n3		1.95	1.99
n6/	/n3	23.00	23.00

Table 1. Ingredients,	chemical and	d fatty acid	composition
	of the diets	1	

^a provided per kg of diet: retinol 3 mg; cholecalciferol, 45 mg; DL- α -tocopheryl acetate 30 mg; thiamine 1.5 mg; riboflavin 3 mg; pyridoxine 1.5 mg; cobalamin 0.015 mg; pantothenic acid 8.0 mg; niacin 25 mg; choline chloride 500 mg; Fe (FeSO₄ - TH O) 20 mg; Cr (Cr SO - SU O) 15 mg b(- α (Cr SO - SU O)

⁵ TH₂O), 30 mg; Cu (CuSO₄ 5H₂O) 1.5 mg; Mn (MnSO₄ H_2 O) 80 mg; Zn (ZnSO₄ 7H₂O) 30.0 mg; I (KI) 1.4 mg. ^b saturated fatty acids; ^c unsaturated fatty acids; ^d monounsaturated fatty acids;

^e polyunsaturated fatty acids.

	Females				Ма	ıles			
		С	MA	SEM	Р	С	MA	SEM	Р
Initial age	d	43	43			50	50		
Final age	d	64	64			71	71		
Initial LW ^a	g	1343	1369	21.05	ns	2314	2318	32.64	ns
Final LW Total body	g	1893	1909	22.72	ns	3314	3339	41.55	ns
weight gain	g	550	540	11.44	ns	1000	1021	24.34	ns
ADG ^b	g	26.20	25.71	0.54	ns	47.64	48.62	1.16	ns
FCR ^c		5.31	5.03	0.11	ns	4.36	4.00	0.11	ns

Table 2. Effects of microalga meal incorporation in diets for 3 weeks on growthperformance of Muscovy ducks (means, n = 24)

5 ^a Live body weight.

6 ^b Average daily weight gain.

⁷ [°] Feed conversion ratio (n = 3 for females; n = 4 for males).

2

3

1

1 2		
3		
4 5		
6		
7 8		
9		
10 11		
12		
13 14		
15		
16 17		
18		
19 20		
21		
22		
23 24 25		
25 26		
27		
28 29		
30		
31 32		
33		
34 35		
36		
37 38		
39		
40 41		
42		
43 44		
45		
46 47		
48		
49 50		
51		
52 53		
54		
55 56		
57		
58 59		
00		

60

Table 3. Effects of microalga meal incorporation in diets for 3 weeks on slaughter
 traits of Muscovy ducks (means, n = 7)

_	(64 4	ales <i>old)</i>			Ма (71 d			
	$\frac{(0+u)}{C}$	MA	SEM	Р	$\frac{(71)}{C}$	MA	SEM	Р
g	1895	1918	24.89	ns	3443	3454	23.12	n
g	1171	1193	16.07	ns	2163	2181	20.72	n
%LW	61.78	62.23	0.46	ns	62.82	63.14	0.53	n
g			4.98	ns	431.20	432.17		n
%RCC	20.88	20.90	0.42	ns	21.27	21.69	0.32	n
g	27.54	28.60	1.31	ns	67.76	70.53	3.93	n
%RCC	2.35	2.40	0.11	ns	3.18	3.24	0.19	n
	g %RCC g %RCC eight.	g 244.40 %RCC 20.88 g 27.54 %RCC 2.35 eight. k carcase.	g 244.40 249.26 %RCC 20.88 20.90 g 27.54 28.60 %RCC 2.35 2.40 bight. k carcase.	g 244.40 249.26 4.98 %RCC 20.88 20.90 0.42 g 27.54 28.60 1.31 %RCC 2.35 2.40 0.11 bight. k carcase.	g 244.40 249.26 4.98 ns %RCC 20.88 20.90 0.42 ns g 27.54 28.60 1.31 ns %RCC 2.35 2.40 0.11 ns eight. k carcase.	g 244.40 249.26 4.98 ns 431.20 %RCC 20.88 20.90 0.42 ns 21.27 g 27.54 28.60 1.31 ns 67.76 %RCC 2.35 2.40 0.11 ns 3.18 eight. k carcase. 60.11 0.11 0.11	g 244.40 249.26 4.98 ns 431.20 432.17 %RCC 20.88 20.90 0.42 ns 21.27 21.69 g 27.54 28.60 1.31 ns 67.76 70.53 %RCC 2.35 2.40 0.11 ns 3.18 3.24 eight. k carcase. 21.27 21.69 3.18 3.24	g 244.40 249.26 4.98 ns 431.20 432.17 14.67 %RCC 20.88 20.90 0.42 ns 21.27 21.69 0.32 g 27.54 28.60 1.31 ns 67.76 70.53 3.93 %RCC 2.35 2.40 0.11 ns 3.18 3.24 0.19 eight. k carcase.

4 ^a Live body weight.

^b Ready to cook carcase. 5

^c Breast muscles. 6

1	Table 4. Effects of microalga meal incorporation in diets for 3 weeks on physico-
2	chemical characteristics, oxidation susceptibility and sensory traits of the
3	Pectoralis major muscle from Muscovy ducks (means, $n = 7$ or 5 for chemical
4	composition)
5	

	Females							
	С	MA	SEM	Р	С	MA	SEM	Р
pH ^a	5.64	5.67	0.04	ns	5.75	5.69	0.03	ns
Chemical compo	osition ^a							
Moisture - %	74.61	75.20	0.22	ns	76.77	76.57	0.09	ns
Protein - %	21.15	20.90	0.11	ns	20.59	20.17	0.20	ns
Fat - %	1.06	1.00	0.09	ns	0.99	1.02	0.06	ns
Ash -%	1.35	1.36	0.02	ns	1.23	1.26	0.02	ns
Iron-induced TE	BARS (mg	g MDA k	g^{-1} meat)	a				
0 minutes	0.54	0.41	0.10	ns	0.88	1.20	0.22	ns
60 minutes	0.97	0.83	0.11	ns	1.89	2.46	0.37	ns
120 minutes	1.62	1.41	0.15	ns	1.63	2.18	0.27	ns
Colour ^a								
L*	44.95	45.14	0.55	ns	46.28	46.84	0.41	ns
a*	17.71	17.98	0.54	ns	17.07	16.68	0.30	ns
b^*	5.46	5.54	0.29	ns	4.53	4.70	0.36	ns
Sensory traits ^b								
Tenderness	3.48	3.35	0.09	ns	3.35	3.21	0.13	ns
Juiciness	3.39	3.08	0.14	ns	2.73	2.78	0.17	ns
Fibrousness	3.32	3.04	0.13	ns	2.62	2.55	0.10	ns
Acceptability	3.03	2.96	0.15	ns	2.48	2.83	0.103	ns

6 ^a results are means of two replicate analyses.

^b each value is the mean of the judgement of 4 panellists.

Table 5. Effects of microalga meal incorporation in diets for 3 weeks on fatty acid
 composition (% of total fatty acids) of the Pectoralis major muscle from Muscovy
 ducks (means, n = 3, results are means of three replicates analyses)

	Female				Male			
	С	MA	SEM	Р	С	MA	SEM	Р
C14:0	0.35	0.38	0.02	ns	0.36	0.33	0.04	ns
C16:0	24.57	24.57	0.71	ns	24.00	22.36	0.55	ns
C16:1n7	1.27	1.17	0.16	ns	2.09	1.40	0.45	ns
C18:0	12.82	12.48	0.78	ns	12.29	13.17	0.76	ns
C18:1n9ct	23.75	23.11	1.48	ns	23.73	23.31	1.73	ns
C18:1n7	2.81	2.52	0.08	ns	2.64	2.44	0.16	ns
C18:2n6c	16.85	17.03	0.45	ns	15.08	16.38	1.12	ns
C18:3n3	0.36	0.36	0.05	ns	0.33	0.34	0.03	ns
C20:4n6	8.87	9.10	0.96	ns	9.90	9.85	0.42	ns
C20:5n3	0.06	0.11	0.02	ns	0.08	0.12	0.01	ns
C22:4n6	1.99	1.80	0.21	ns	2.14	1.77	0.13	ns
C22:5n6	1.24	1.04	0.15	ns	1.20	0.96	0.11	ns
C22:5n3	0.40	0.39	0.07	ns	0.47	0.44	0.04	ns
C22:6n3	0.70	1.97	0.11	< 0.05	0.74	2.12	0.18	< 0.0
SFAs ^a	38.08	37.82	0.26	ns	37.01	36.25	0.37	ns
UFAs ^b	60.06	61.73	0.40	ns	60.28	61.54	0.75	ns
SFAs/UFAs	0.63	0.62	0.01	ns	0.61	0.59	0.01	ns
MUFAs ^c	28.55	27.80	1.52	ns	29.13	27.80	2.05	ns
PUFAs ^d	31.51	32.93	1.40	ns	31.16	33.74	1.80	ns
n6	29.98	30.10	1.25	ns	29.50	30.65	1.61	ns
n3	1.53	2.83	0.16	< 0.05	1.66	3.09	0.21	< 0.0
n6/n3	19.85	10.65	1.05	< 0.05	17.84	9.98	0.67	< 0.0

⁷ ^a saturated fatty acids; ^b unsaturated fatty acids; ^c monounsaturated fatty acids;

8 ^d polyunsaturated fatty acids.