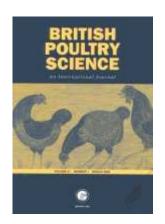


The effect of herbs and their associated essential oils on performance, dietary digestibility and gut microflora in young chickens from 7-28 days of age

Tom Acamovic, Deborah Cross

▶ To cite this version:


Tom Acamovic, Deborah Cross. The effect of herbs and their associated essential oils on performance, dietary digestibility and gut microflora in young chickens from 7-28 days of age. British Poultry Science, 2007, 48 (04), pp.496-506. 10.1080/00071660701463221 . hal-00545318

HAL Id: hal-00545318 https://hal.science/hal-00545318

Submitted on 10 Dec 2010

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

The effect of herbs and their associated essential oils on performance, dietary digestibility and gut microflora in young chickens from 7-28 days of age

Journal:	British Poultry Science
Manuscript ID:	CBPS-2006-228.R1
Manuscript Type:	Original Manuscript
Date Submitted by the Author:	01-Mar-2007
Complete List of Authors:	Acamovic, Tom; SAC, ASRC Cross, Deborah; SAC, ASRC
Keywords:	Broilers, Nutrition, Feedstuffs, Anti-nutrients, Microbiology

		CBPS-2006-228
1		ed. MacLeod, May 2007
2		
3	The effect of	herbs and their associated essential oils on performance, dietary
4	digestibility	and gut microflora in chickens from 7 days to 28 days of age
5		
6	D.E. CROSS	^{1,2} , R.M. MCDEVITT ¹ , K. HILLMAN ³ AND T. ACAMOVIC ^{1,4}
7		
8	¹ Avian Scient	ces Research Centre, SAC, West Mains Road, Edinburgh, EH9 3JG and
9	³ Hillman Cor	nsultancy, Fairway Avenue, Inverurie AB51 3WY
10		
11		
12	RUNN	ING TITLE: PLANT EXTRACTS IN BROILER NUTRITION
13		7
14		
15		
16	² Current add	ress: Nutrition and Food Science Group, Department of Biological and
17	Molecular Sc	iences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP
18		
19	⁴ Corresponde	ence address: Avian Sciences Research Centre, SAC, Auchincruive
20	Estate, Ayr, I	JK, KA6 5HW
21	Telephone:	+44 1292 525100
22	Fax:	+44 1292 525100 +44 1292 525098
23	Email:	Thomas.acamovic@sac.ac.uk
24		
25		
26		
27		Accepted for publication 25 th April 2007

Abstract 1. The effect of the dietary inclusion of 5 culinary herbs or their essential oils on the growth, digestibility and intestinal microflora status in female broiler chicks was assessed. From 7-28 d of age, either a basal control diet without supplement was given or one of 10 others, consisting of the basal diet with either 10g/kg herb (thyme, oregano, marjoram, rosemary or yarrow) or 1 g/kg of essential oil.

2. Body mass (BM) and feed consumption (AFC) were measured on a weekly basis
and used to calculate chick performance. Total viable counts of lactic acid bacteria,
coliforms, anaerobes and *Clostridium perfringens* were determined at 25 d.
Apparent nutrient digestibilities were calculated from the measured values for gross
energy, nitrogen (N), dry matter (DM) and organic matter, and sialic acid
concentration was also measured.

3. Generally, dietary thyme oil or yarrow herb inclusion had the most positive effects
on chick performance, while oregano herb and yarrow oil were the poorest
supplements. Only thyme and yarrow in these diets had a different effect when used
as an herb or oil on weight gain and BM.

44 4. Dietary treatment had no effect on the intestinal microflora populations, apparent 45 metabolisable energy (AME) or the calculated coefficients of digestibility. Sialic 46 acid concentration was greatest in the birds given dietary thyme oil, compared with 47 all other treatments except those birds receiving marjoram oil, rosemary herb and the 48 controls. However, less sialic acid was excreted in those birds given diets with 49 oregano or rosemary oils, or oregano herb, than in the controls.

50 5. Plant extracts in diets may therefore affect chick performance, gut health and
51 endogenous secretions, although the chemical composition of the extract appears to
52 be important in obtaining the optimal effects.

53	INTRODUCTION
54	Plants contain an extensive variety of phytochemical compounds with antimicrobial
55	activity (Cowan, 1999), which may have either beneficial or detrimental effects in
56	animals (Panter et al., 2004; Wink, 2004; Acamovic and Brooker, 2004), depending
57	on both the compound used and its concentration. The removal of antimicrobial
58	growth promoters (AGP) from poultry diets has triggered a search for suitable
59	natural alternatives, to combat the increased potential for bacterial disease
60	development in growing flocks, especially under conditions of average management
61	quality. The use of various plant materials as dietary supplements, including
62	culinary herbs, may positively affect poultry health and productivity. Essential oils
63	and herbs are used in human aromatherapy for their holistic mode of action. The
64	large number of active components in these supplements may therefore present a
65	more acceptable defence against bacterial attack than synthetic antimicrobials. The
66	main constituents of the herbs and essential oils are terpenes, which are responsible
67	for the bulk of the antimicrobial activity (Charai et al., 1996). The oils of Thymus
68	vulgaris L. (thyme), Rosmarinus officinalis L. (rosemary), Origanum majorana L.
69	(marjoram) (Hammer et al., 1999), O. vulgare subsp. hirtum (oregano) (Hammer et
70	al., 1999; Dorman and Deans, 2000) and Achillea millefolium L. (yarrow) (Candan et
71	al., 2003) have in vitro antimicrobial properties. Yarrow has also been reported to
72	reduce the effects of viruses and helminths (Cowan, 1999). However, there is only
73	limited evidence for a bioactive effect of herbal compounds in live poultry. It is
74	unknown whether the inclusion of terpenes in different forms, <i>i.e.</i> as solid herb
75	material or as the extracted oil, would have the same antimicrobial or growth
76	promoting effects in vivo.

E-mail: br.poultsci@bbsrc.ac.uk URL: http://mc.manuscriptcentral.com/cbps

The present experiment aimed to assess the suitability of a number of culinary herbs; thyme, marjoram, rosemary, oregano and yarrow, and their extracted oils as dietary supplements for poultry. The effects of these herbs and oils on the growth, nutrient utilisation and intestinal microflora in growing broiler chickens were determined.

MATERIALS AND METHODS

Provision of plant supplements and extraction of essential oils

The oregano (O. vulgare subsp. hirtum), marjoram (O. majorana L.), rosemary (R. officinalis L.) and thyme (T. vulgaris L.) were purchased commercially as dried herb supplements (Green City, Glasgow, UK) in early 2001. Yarrow (A. millefolium L. var. Alba) seeds were selected in Slovakia and imported to the UK, where the yarrow plants were grown in experimental plots at SAC Ayr (Dr K. Svoboda). The flowering heads of the yarrow plants were collected in the summer of 2000 and dried on the day of harvest in an oven at 40°C. Essential oil was distilled from the ground plant material using Clevenger distillation apparatus in accordance with BS 4585 (1985), following British Pharmacopoeia methods. The oil samples were stored in sealed glass vials below 4°C until required.

Birds and housing environment

The experiment was subjected to an assessment for its ethical acceptability and approved by the Animal Experimental Committee (AEC) within SAC. The birds were housed in cages in an environmentally controlled room. Heating was provided by a single gas brooder, where the initial temperature (study d 0) was set at 32°C and decreased linearly by 0.5°C per d to a final temperature of 21°C at 21 d (d 21). Supplementary heating was provided as required by mobile butane gas heaters. The birds were provided with 1 h of darkness following a period of 23 h light, from the

Page 5 of 31

British Poultry Science

start to the finish of the study. Each cage was provided with a single feed trough and
nipple line, with 3 nipples per cage, to provide *ad libitum* access to feed and water.

104 Experimental design

The chickens (165 Ross 308 female birds) were placed at d-old in a single colony in a floor pen containing fresh wood shavings to a depth of 10 cm, and all were fed on a starter ration. At 7 d old, 5 replicate cages containing 3 chicks selected at random were assigned to each of 11 dietary treatments using a randomised block design, giving a total of 55 experimental cages. The study was completed at 28 d of age. Body mass (BM) was measured on an individual basis when the birds were 7, 14, 21 and 28 d of age. The average feed consumption (AFC) was determined on a weekly basis from 7-28 d. The feed conversion efficiency (FCE) per cage was derived from the average weight gain (AWG) and AFC per bird on a weekly basis. The treatment diets contained titanium dioxide (TiO_2) as an indigestible marker and excreta samples from each cage were collected on d 25. These samples, along with samples of each diet, were stored at -20°C until required for laboratory analysis. Excreta samples were then freeze-dried prior to analysis. At the end of the study, a bird from each cage was randomly selected and killed using 1 ml/kg BM of sodium pentobarbitone (euthatal), to allow caecal contents collection.

Diet formulation

The basal starter ration was formulated to be marginal in energy and nutrients and also low in tocopherol (<50 mg/kg), in order to provide the birds with slightly suboptimal conditions for growth. This diet contained mainly wheat and soybean meal, and was manufactured at SAC as a mash (Table 1). The dietary treatments therefore comprised the basal diet only (control), or, alternatively, the basal diet supplemented with one of the 5 herbs (10 g/kg) or one of the distilled essential oils from these herbs

(1 g/kg), resulting in 11 dietary treatments in total. Since the herbs were assumed to contain up to about 100 g oil/kg it was decided to include the oils in the diets at 1 g/kg and the herbs at 10g/kg thus ensuring the presence of adequate amounts of the terpenes in the diets. All the birds were given the control diet from d 0-6 of the experiment, and then either the control diet on its own or one of the 10 supplemented diets from d 7-29. During mixing, each plant herb was incorporated directly on a weight for weight basis into the dry mix of the diet. The essential oils were first mixed into the vegetable oil component of the ration, and then the oil mixture was added to the basal ration. No in-feed antimicrobials, anti-coccidial drugs or feed Table 1 near here enzymes were included.

137 Analytical methodology

Enumeration of microbial populations in the caecal and faecal contents of the chickens was performed using various dehydrated media (Oxoid Ltd., UK), which were prepared and sterilised according to the manufacturer's instructions before being poured into sterile Petri dishes. The media used included MRS (DeMan, Rogosa, Sharpe), Wilkins Chalgren anaerobe agar (with 10% defibrinated horse blood), MacConkey agar No. 3 and Perfringens OPSP (Oleandomycin-polymixinsulphadiazine-perfringens). Caecal and faecal samples were serially diluted in Maximum Recovery Diluent, and all plates were inoculated according to the method of Miles and Misra, (1938) except those containing Perfringens OPSP agar. The Perfringens OPSP agar plates were inoculated using 1ml bacterial suspensions by means of the pour plate method. The MRS and WCA plates (48 h) and perfringens OPSP plates (24 h) were incubated anaerobically at 37°C, while MacConkey plates were incubated for 24 h aerobically at 37°C.

British Poultry Science

The dry matter (DM) and organic matter (OM) contents of each diet and of the excreta samples collected from each cage were determined according to BS 5766, Parts 1 and 8 (1983). Gross energy was determined by adiabatic bomb calorimetry (Autobomb A. Gallenkamp and Co Ltd., England) in accordance with BS 1016, Part 105 (1992), using a benzoic acid standard (VWR Ltd., UK), with a known heat capacity. Nitrogen contents were determined using the Dumas combustion method (Leco FP-428/328, St. Louis, USA). The concentration of titanium dioxide in diet and excreta samples were determined according to the method of Short et al., (1996), and sialic acid concentrations in excreta samples according to Jourdian et al., (1971). The condensed tannin (CT) contents in the herb samples were measured by the butanol/HCl method, following Makkar, (2003).

162 Statistical analysis

This experiment was designed as a 5 X 2 factorial experiment, incorporating a nonsupplemented control, to give a total of 11 treatments. The statistical analysis was carried out using a balanced randomised block ANOVA in General Linear Model (GLM), using Fishers Least Significant difference (LSD) test to separate means (Genstat, Release 7). A factorial analysis of the experiment was enabled when the term Cont/(herb_oil*type) was entered into Genstat, allowing the separation of effects due to plant species and due to the supplementation of herbs or essential oils.

RESULTS

Diet compositional analysis

The proximate analysis carried out on treatment diets showed that there was no difference in the nutritional composition of the dietary treatments. The dietary DM concentration ranged from 882-890 g/kg over all treatments and N content was between 198-214 g/kg. Ash content ranged from 64-75 g/kg DM in all treatment

diets, and the GE of the treatment diets was within the range 18.06-18.63 MJ/kg DM. The OM content in each treatment diet varied from 925-936 g/kg DM. The content of extractable CT in the oregano herb supplement was 16 g/kg, while each of the other herb supplements contained <1 g/kg CT. The terpene compositions in the essential oils were determined by gas chromatography: marjoram oil contained (g/kg of oil) carvacrol (560), terpinene-4-ol (70) and *trans*-cinnamaldehyde (60), oregano oil contained γ -terpinene (170), 1,8-cineole (60) and an unidentified terpene, thyme oil contained α -terpineol (297), thymol (100) and carvacrol (70), rosemary oil contained primarily 1,8-cineole (470), camphor (180) and α -pinene (110), and the varrow oil contained β -pinene (180), linalol (170), sabinene (100) and α -terpineol (60).

187 Effect of herbs and essential oils on broiler growth performance

In this experiment, 2 chicks died in the first week from different dietary treatments. Generally, those birds given diets including thyme oil and varrow herb had the greatest overall body mass (BM), average gain, average feed consumption and FCE in the study, compared to the other dietary treatments (Table 2). The average weight of chicks at 7 d of age was 79.2 g (standard deviation, SD=0.982), which was low, but a large proportion of these birds weighed less than 30g on arrival at d of hatch and the diets were in mash form, which may have subsequently reduced overall weights achieved in the trial. No oil-herb interactions were observed between supplements at any stage of this experiment. In each case, the differences described are for individual plant supplements in comparison with each other or the control. Only the birds given diets with thyme oil had a greater BM than those fed on the control diet (d 21, P<0.01; d 28, P=0.001). There was also a differential effect in feeding essential oil and herb supplements from some plant species on BM. The

British Poultry Science

201	birds given yarrow herb in their diet had a greater BM than those receiving yarrow
202	oil (d 21, P <0.01; d 28, P =0.001), whereas those birds given thyme oil in their diet
203	had a greater BM than those with thyme herb supplements (d 21, P <0.01; d 28,
204	P=0.001). The birds fed on diets with thyme oil and yarrow herb also had the largest
205	overall weight gain (AWG) over the study period, although only thyme oil was
206	significantly greater than the control treatment (15-21 d, $P < 0.01$; 7-28 d, $P \le 0.001$).
207	Differences were again observed between oil and herb supplements from the same
208	plant, with a higher AWG in birds receiving dietary thyme oil rather than thyme herb
209	supplements (15-21 d, P <0.01; 22-28 d and 7-28 d, both P ≤0.001) and in those birds
210	receiving yarrow herb rather than yarrow oil supplements (15-21 d, P<0.01; 22-28 d
211	and 7-28 d, both $P \leq 0.001$). Average feed consumption (AFC) was reduced for the
212	birds given dietary oregano herb, when compared with those receiving the control
213	treatment diet over the trial period ($P < 0.05$). The birds fed on diets with thyme oil
214	consumed more feed than the control birds, but this was not significant. Inclusion of
215	rosemary oil in the diets reduced the AFC, when compared wit those birds given the
216	control treatment (22-28 d, P<0.01; 7-28 d, P<0.05). The AFC was lower in the
217	birds given diets containing thyme herb when compared with those containing thyme
218	oil (15-21 d, $P \leq 0.05$; 22-28 d, $P = 0.006$, not shown). However, the birds given
219	supplementary rosemary herb in the diet had higher AFC than those fed on diets with
220	rosemary oil (22-28 d, P<0.01; 7-28 d, P<0.05), and those fed on diets with yarrow
221	herb had a higher AFC than those given diets containing yarrow oil (22-28 d,
222	P < 0.01) in the study. During the study period overall (7-28 d), rosemary oil had a
223	positive effect on chick FCE compared with rosemary herb, whilst yarrow herb also
224	had a positive effect compared with yarrow oil (7-28 d, $P \le 0.05$). Table 2 near here
225	

226 Effect of dietary inclusion of herbs on intestinal microbial status

The bacteriological data required transformation before statistical analysis. There were no effects of treatment on the log_{10} population counts of the main intestinal microflora species, when the birds were sampled at 28 d of age (Table 3). The calculated lactic acid: coliform ratios of the original bacterial counts were transformed prior to statistical analyses and were not affected by dietary herbal supplementation; nor were the proportions of total lactic acid bacteria, total coliforms

233 or *Clostridium perfringens* in relation to total anaerobes (Table 4). Tables 3,4 near here

234 Effect of herbs and essential oil supplementation on nutrient digestibility

The apparent digestibility coefficients of DM (ADMD), OM (DOMD) and the apparent metabolisability of nitrogen (AMN) and the apparent metabolisable energy (AME) and also AME corrected to zero nitrogen retention (AME_N), contents were determined. The digestible OM content and also metabolisable nitrogen content in the treatment diets were calculated. The metabolisability of the dietary energy (AME:GE) was also determined. Concentrations of sialic acid in broiler excreta were used to calculate sialic acid excreted/kg food intake for the birds as a measure of endogenous losses.

No treatment effects were observed with any plant supplement within the diets in relation to the nutrient digestibility (Table 5). As a whole, the calculated nutrient digestibility content and coefficients were rather low in these diets when compared with commercial values. However, the low values for dry matter and organic matter digestibility are in accordance with the low values for AME and AME_{N} . One treatment replicate of the birds fed the diet with varrow essential oil was removed as a statistical outlier (>3.5 standard deviations from mean) in the analysis of the coefficient of AMN and also the metabolisable N content in the diet.

British Poultry Science

This bird was measured with an abnormally low concentration of TiO_2 in the excreta and an error was assumed. In the adjusted dataset, there was a tendency (P=0.07) for the chicks to utilise nitrogen less effectively from the diet with rosemary herb when compared to the others, which resulted in a lower dietary metabolisable N content. Sialic acid was measured to assess the effects of treatment on endogenous losses. Dietary treatment did not influence the excretion of sialic acid, whether this was expressed as concentration in the excreta, per kg of diet intake or related to metabolic liveweight. Table 5 near here DISCUSSION These plant supplements are common dietary additives for humans, and were chosen for their non-toxic chemical composition, relatively low cost and easy availability. Phytochemical supplements are known to have considerable variability in their chemical composition. With the exception of oregano, the composition of each essential oil used in this experiment was consistent with those described in the literature. Oregano and thyme oils are usually composed of the monoterpenes thymol and carvacrol in varying proportions (Daferera et al., 2000). Neither thymol nor carvacrol were present in the oregano oil used in this study, which they may have originated from senescent plant tissue since it had a similar composition (Russo et al., 1998). Terpene compositions in peppermint plants are known to change over time (Burbott and Loomis, 1969), which may be important when selecting the best plant supplements for use in poultry feeding trials. Although the mechanisms behind terpene interactions are unknown, synergistic (Cox et al., 2001) or antagonistic interactions in a plant extract may affect its antimicrobial potential. The diet with oregano herb also contained 0.16g of extractable CT/kg, which is very low, but the reduction in AWG by 10-13% in birds fed this diet over the experimental period

compared with the control birds, suggests that there may have been bound tannin which may have had some influence as well as other components of the herb (Oduguwa et al., 2007). This reduction in AWG is similar to that reported when tannic acid and sorghum were fed in chick diets (Dale et al., 1980). The affinities of CT compounds for proteins and carbohydrates have been well characterised, and those in this oregano herb may have bound to other dietary substrates, thereby reducing nutrient availability (Bento et al., 2005; Oduguwa et al., 2007). The measurement of chemical composition in a plant supplement prior to its use may prevent reduced performance in broiler chicks.

Effects on bird performance

The different herbs and essential oils had variable effects on chick performance. Both the oregano herb and oil treatments were among the poorest dietary treatments, and were associated with reduced values for AFC and AWG in these chicks. Orego-stim is a commercial supplement based on oregano, and has been shown to improve AWG and FCR in pigs (Gill, 1999). However, no effect of Orego-Stim or oregano has been reported on performance in growing broilers (Botsoglou et al., 2002; Lewis et al., 2003), or turkeys between 12 and 16 weeks of age (Papageorgiou et al., 2003). Orego-Stim has reduced the incidence of coccidiosis in chickens (Gill, 1999), which may indicate a protective effect of this supplement. In this study, the inclusion level of essential oil was higher than in previous experiments (Botsoglou et al., 2002; Papageorgiou et al., 2003), and was around 10 times that used in the diets fed to the pigs. Although oregano oil is a potent antimicrobial, these studies indicate that oregano in the diets of broiler chicks may not improve growth, and may even restrict it if the oil quality is less than optimal. Broiler AFC and BM has been increased in birds fed diets with Orego-stim without an effect on FCR, when fed in combination

British Poultry Science

13

2 3 4	
5 6 7	
8	
10 11 12	
13 14 15	
16 17	
19 20	
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	
24 25 26 27	
27 28	
28 29 30 31 32 33 34	
32 33 34	
35 36 37	
38 39	
40 41 42	
43 44 45	
46 47 48	
49 50	
51 52 53	
54 55 56	
57 58	
59 60	

301 with a vaccination programme against coccidiosis (Waldenstedt, 2004), but the 302 vaccination programme may have produced the bulk of the effect. The increased 303 rates of intestinal transit in chickens may not allow for the same performance 304 response as that observed in pigs, especially if microbial challenge is low.

305 In this experiment, the birds given diets with thyme oil performed best, 306 although thyme oil in the diet did not affect performance in male Wistar rats 307 (Youdim and Deans, 1999). Blends of essential oils have improved broiler 308 performance when given as dietary supplements (Suk et al., 2003; Hernandez et al., 309 2004). In other studies, only very limited information is available concerning the 310 composition of the blend. Blended supplements containing carvacrol, capsaicin and 311 cinnamaldehyde have improved both BM and FCR in broilers at 21 d of age, to a greater extent than avilamycin (Jamroz et al., 2003). Yarrow appears to be more 312 313 effective when fed in these study diets as a herb, which may be due to the precursors 314 of the sesquiterpene chamazulene, which is present in the herb but not the oil, or 315 another phytochemical component. Lewis et al. (2003) observed an improved growth rate and AFC in broilers with yarrow herb inclusion in diets between 18 and 316 317 36 d of age. The dietary inclusion of yarrow at 30 g/kg improved AWG in broiler 318 chicks (Fritz *et al.*, 1993). In diets diluted by 10% in energy provision, yarrow herb 319 inclusion increased AFC and tended to increase AWG in broilers (Lewis et al., 320 2004). Lewis et al. (2004) observed no positive effects of yarrow inclusion when the 321 diets were not diluted, and concluded that the benefits of yarrow inclusion may be 322 dependent on dietary quality. These experimental diets had a reduced compositional 323 quality, which may have optimised the effects of yarrow herb, but these results 324 suggest that both thyme oil and yarrow herb have potential as dietary supplements in 325 growing poultry.

326	The form of herbal supplementation may also be influential in determining
327	bioactivity. The present paper indicates that the terpene composition within essential
328	oil and herb extracts from the same plant, or the presence of additional secondary
329	plant compounds, may result in differential effects for some supplements on broiler
330	performance. Only marjoram supplements produced an equivalent effect on AWG
331	over the study, irrespective of whether the herb or the oil was included in the diet,
332	which suggests that the chemical composition of both in this marjoram may be
333	similar. The marjoram used in this study contained a high proportion of carvacrol.
334	Carvacrol has reduced both AFC and AWG when included in broiler diets at 200
335	mg/kg (Lee et al., 2003a). Thymol and carvacrol have been reported to differ in their
336	effects on bird performance and lipid metabolism (Lee et al., 2003a), which is
337	surprising, as the two terpenes are isomers with identical chemical formulae.
338	Complex interactions appear to exist between the terpenes in essential oils and herbs,
339	and may also occur between terpenes and the remainder of the dietary ration. As the
340	herbs used in this experiment were not composed of pure terpenes, the yarrow herb
341	should contain compounds that are either absent in the oil or are damaged during
342	extraction. It is possible that the reduced quality of this oil may have resulted in an
343	overly negative perception of yarrow oil as a supplement. These compounds were
344	purchased commercially, so any effects relating to the drying process are unknown.
345	Active terpenes in plants may be trapped within secretory gland structures, as
346	suggested by Dorman and Deans (2000), which may favour the antimicrobial activity
347	of essential oils rather than herbs. However, sage herb has shown a greater
348	inhibitory effect against bacteria than sage oil in a meat broth medium (Shelef et al.,
349	1984). In future, milling the herb fraction may release the active terpenes more
350	effectively into the gut where digestion and absorption are taking place. In this

British Poultry Science

351 study, all herbs were fed as chopped leaf material, apart from yarrow, which came as 352 complete flower heads and was then milled. The herbs were not milled as it was 353 considered that any volatile components would be lost through vaporisation. In an *in* 354 *vitro* study, extracted terpinene-4-ol has been reported to have a higher bioactivity 355 separately than as part of an essential oil (Cox *et al.*, 2001), suggesting that separate 356 terpenes may be the most bioactive when suitable compounds are identified.

Effect of essential oils on digestibility

In order to allow the effects of the herbs and oils to be more clearly observed, these experimental diets were formulated to be marginal in their energy and protein provision, which should at least partly explain the slow growth and poor digestibility values in these birds. The wheat used in this experiment was of a lower quality than expected, as the determined AME value in the excreta was about 3 MJ lower than the formulated dietary ME content. A reduced protein digestibility when diets with low AME were fed (Choct *et al.*, 1995), and an increased starch digestibility when AME is increased has been reported in poultry (Svihus and Hetland, 2001). Arabinoxylan and lectins can also be associated with poor quality wheat samples. The birds were also fed on mash instead of pelleted diets; mash is less dense in energy and have a greater bulk. This was done to allow easy incorporation of the plant supplements. No dietary enzymes were included, as some may have an independent antimicrobial effect (Fuglsang et al., 1995), and the reduced vitamin E concentration will further have reduced dietary feeding value. Thymol and carvacrol have a known antioxidant activity in vitro (Deighton et al., 1993). Previously, antioxidant effects have been demonstrated in poultry given dietary oregano, but this has not been associated with any effect on bird performance (Botsoglou et al., 2002; Papageorgiou et al., 2003).

Exogenous xylanases in wheat diets have improved broiler performance by reducing arabinoxylan contents, improving AME and nutrient digestibility, reducing variation between birds and increasing the rate of dietary passage by an associated reduction in the digesta viscosity (Almirall and Esteve-Garcia, 1994; Choct et al., 1995). A reduced intestinal viscosity is associated with a reduction in the amount and water holding capacity of NSP (Choct et al., 1995), and enzymes are most efficacious in younger chicks (Almirall and Esteve-Garcia, 1994). A carbohydrase in future experimental diets may be beneficial to ameliorate any anti-nutrient effects.

Herbs and spices have traditionally been used to stimulate the production of endogenous secretions in the small intestinal mucosa, pancreas and liver, and thus aid digestion. Plant spices, when fed together with organic acids, have stimulated proteolysis, by lowering the pH to the optimal level for pepsin activity (Kamel, 2001). In rats, the dietary inclusion of spices has increased the endogenous secretion of enzymes, bile acids and pancreatic juice (Platel and Srinivasan, 2000, 2001 and 2003), and reduced the transit time for digesta passage (Platel and Srinivasan, 2001). Some spices were observed to reduce endogenous secretions, without an effect on food consumption (Platel and Srinivasan, 2000). An increased amylase activity in intestinal chyme was observed with dietary inclusion of Crina® Poultry, an essential oil blend, at 21 d of age in broilers, but the effect decreased with increasing age (Lee et al., 2003b). In the present experiment, the herb and oil supplement had no effect on sialic acid excretion suggesting that endogenous losses were not a major factor associated with the dietary supplements. It is possible that terpene and phenolic compounds are excreted as a conjugate with other components, which may increase the endogenous losses from the bird and reduce the utilisation of nutrients (Cowieson et al., 2006; Mansoori and Acamovic, 2007; Oduguwa et al., 2007).

British Poultry Science

400 Effects of herbal supplementation on the intestinal microflor

The results in the present study were disappointing, with no clear effects observed on the intestinal microflora populations, which may have been due to an insufficient degree of replication since only 3 of the 5 treatments could be sampled within the time frame of 24 h. Thyme, marjoram and rosemary inclusion in these diets reduced the numbers of caecal *Cl. perfringens* by $>1 \log$, a trend which may potentially be significant under a different experimental methodology. It is possible that the birds should be fed on the test diets from the day of hatch, to influence the intestinal bacterial composition more completely. A decreased exposure time to the air may have influenced the bacterial population but unfortunately, the samples had to be transported before analysis.

Several studies have reported effects on intestinal microflora when herbs and essential oils have been included in broiler diets. The dietary supplementation of XTRACT, an encapsulated product containing capsaicin, carvacrol and cinnamaldehyde, reduced the numbers of *E. coli* and *Cl. perfringens* in broiler rectal contents to the same extent as avilamycin (Jamroz et al., 2003). Cl. perfringens has been reduced in number when the blended essential oil supplement CRINA®poultry, was fed in poultry diets (Losa and Kohler, 2001; Mitsch et al., 2002). Selective inhibitions in the growth of the hyper-ammonia-producers Cl. sticklandii and Peptostreptococcus anaerobius were observed when a blend of dietary terpenes containing thymol, eugenol, vanillin and limonene were fed to ruminants (McIntosh et al., 2003). The growth of E. coli and C. perfringens was reduced in broilers, when blends of essential oils were fed in industry trials (Losa and Kohler, 2001; Tucker, 2002), while numbers of Lactobacillus spp. increased (Tucker, 2002). Thus,

424 essential oils may act differently compared with synthetic antimicrobials, which tend425 to depress bacterial numbers across species.

In this study, the caecal coliform populations in the birds given any of the herbal treatments compared to those fed the control diet were higher, which may suggest that these dietary herbs may select more against Gram-positive rather than Gram-negative bacteria. Conventional antimicrobials used in broiler production have preferentially targeted Gram-positive bacteria, especially C. perfringens (Engberg and Petersen, 2001). If this is true, conditions suitable for the presence of *Campylobacter* spp. or *Salmonella* spp. may exist in birds fed on diets supplemented with herbs. If terpenes bind to dietary components rather than disable bacteria, and are then released as dietary components are absorbed, the pH in the distal tract may be decreased, thus preventing the growth of pathogenic bacteria. Each herb contains an extensive variety of phytochemicals, all with variable bioactivity, so the use of herbal combinations in poultry diets may be most effective when suitable terpenes have been identified. In broiler chicken production, the cage environment has been shown to be best in reducing populations of both helminth (Permin et al., 1999) and red mite (Höglund et al., 1995), whereas floor litter provides a substrate for pathogenic bacterial growth (Pope and Cherry, 2000). It is concluded that responses to phytochemicals may be greater in a more challenging environment, in agreement with Lee *et al.*, (2003b).

This study has demonstrated that various herbs and oils have different effects on broiler performance, which may be primarily related to differences in their terpene composition. The inclusion of a single herb or its extracted essential oil in diets may not always have a similar effect on broiler performance, therefore it is necessary to measure the chemical quality in a plant extract to identify optimal

British Poultry Science

449	compositions of secondary plant compounds for future reference. Dietary quality
450	and environmental conditions are likely to be important in the assessment of
451	responses to terpene inclusion. In conclusion, herbs and essential oils may influence
452	both the performance and the production of endogenous secretions in broilers.
453	ACKNOWLEDGEMENTS
454	This study was funded by the Scottish Executive for Environment, Rural Affairs and
455	Development Department (SEERAD; NCR 643701). Special thanks are due to Ian
456	Nevison from Biostatistics and Information Services Scotland (BioSS), for his
457	assistance in statistical analysis.
458	REFERENCES
459	ACAMOVIC, T and BROOKER, J.D. (2005) Biochemistry of plant secondary
460	metabolites and their effects in animals. Proceedings of the Nutrition Society,
461	64; 403-412.
462	ALMIRALL, M. and ESTEVE-GARCIA, E. (1994) Rate of passage of barley diets
463	with chromium oxide: Influence of age and poultry strain and effect of β -
464	glucanase supplementation. Poultry Science, 73:1433-1440.
465	BALOG, J.M. and MILLAR, R.I. (1989) Influence of the sense of taste on broiler
466	chick feed consumption. Poultry Science, 68:1519-1526.
467	BENTO, M.H.L, ACAMOVIC, T and MAKKAR, H.P.S. (2005) The influence of
468	tannin, pectin and polyethylene glycol on attachment of N-labelled
469	microorganisms to cellulose. Animal Feed Science and Technology, 122: 29-
470	40.
471	BOTSOGLOU, N.A., FLOROU-PANERI, P., CHRISTAKI, E., FLETOURIS, D.J.
472	and SPAIS, A.B. (2002) Effect of dietary oregano essential oil on performance
473	of chickens and on iron-induced lipid oxidation of breast, thigh and abdominal
474	fat tissues. British Poultry Science, 43:223-230.
475	BURBOTT, A.J. and, LOOMIS, W.D. (1969) Evidence of metabolic turnover of
476	monoterpenes in peppermint. Plant Physiology, 44:173-179.
477	CANDAN, F., UNLU, M., TEPE, B., DAFERERA, D., POLISSIOU, M.,
478	SÖKMEN, A. and AKPULAT, A. (2003) Antioxidant and antimicrobial

479	activity of the essential oil and methanol extracts of Achillea milllefolium
480	subsp. millefolium Afan. (Asteraceae). Journal of Ethnopharmacology, 87:215-
481	220.
482	CHARAI, M., MOSADDAK, M. and FAID, M. (1996) Chemical composition and
483	antimicrobial activities of two aromatic plants: Origanum majorana L. and O.
484	compactum Benth. Journal of Essential Oil Research, 8:657-664.
485	CHOCT, M., HUGHES, R.J., TRIMBLE, R.P., ANGKANAPORN, K. and
486	ANNISON, G. (1995) Non-starch polysaccharide-degrading enzymes increase
487	the performance of broiler chickens fed wheat of low apparent metabolizable
488	energy. Journal of Nutrition, 125:485-492.
489	COWAN, M.M. (1999) Plant products as antimicrobial agents. Clinical
490	Microbiology Reviews, 12:564-582.
491	COWIESON, A.J., ACAMOVIC, T and BEDFORD, M.R. (2006) Phytic acid and
492	phytase: implications for protein utilisation by poultry. Poultry Science 85:
493	878-885.
494	COX, S.D., MANN, C.M. and MARKHAM, J.L. (2001) Interactions between
495	components of the essential oil of Melaleuca alternifolia. Journal of Applied
496	Microbiology, 91: 492-497.
497	DAFERERA, D.J., ZIOGAS, B.N. and POLISSIOU, M.G. (2000) GC-MS analysis
498	of essential oils from some Greek aromatic plants and their fungitoxicity on
499	Penicillium digitatum. Journal of Agriculture and Food Chemistry, 48:2576-
500	2581.
501	DALE, N.M., WYATT, R.D. and FULLER, H.L. (1980) Additive toxicity of
502	aflatoxin and dietary tannins in broiler chicks. <i>Poultry Science</i> , 59: 2417-2420.
503	DEIGHTON, N., GLIDEWELL, S.M., DEANS, S.G. and GOODMAN, B.A. (1993)
504	Identification by EPR spectroscopy of carvacrol and thymol as the major
505	sources of free radicals in the oxidation of plant essential oils. Journal of the
506	Science of Food and Agriculture, 63:221-225.
507	DORMAN, H.J.D. and DEANS, S.G. (2000) Antimicrobial agents from plants:
508	antibacterial activity of plant volatile oils. Journal of Applied Microbiology,
509	88: 308-316.
510	ENGBERG, R.M. and PETERSEN, J.S. (2001) Poultry production with and without
511	questionable feed additives and ingredients. Proceedings of the 13th
512	Symposium on Poultry Nutrition, Blankenberge, Belgium, pp. 118-124.

513	
514	FRITZ, Z., SCHLEICHER, A. and KINAL, S. (1993) Effect of substituting milfoil,
515	St. John's wort and lovage for antibiotics on chicken performance and meat
516	quality. Journal of Animal and Feed Sciences, 2:189-195.
517	FUGLSANG, C.C., JOHANSEN, C., CHRISTGAU, S. and ADLER-NISSEN, J.
518	(1995) Antimicrobial enzymes: Applications and future potential in the food
519	industry. Trends Food Science and Technology, 6:390-395.
520	GILL, C. (1999) Herbs and plant extracts as growth enhancers. Feed International,
521	(April), pp. 20-23.
522	
523	GUO, F.C., KWAKKEL, R.P., SOEDE, J., WILLIAMS, B.A. and VERSTEGEN,
524	M.W.A. (2004) Effect of a Chinese herb medicine formulation, as an
525	alternative for antibiotics on growth performance in broilers. British Poultry
526	Science, 45: 793-797.
527	
528	HAMMER, K.A., CARSON, C.F. and RILEY, T.V. (1999) Antimicrobial activity of
529	essential oils and other plant extracts. Journal of Applied Microbiology,
530	86: 985-990.
531	HÖGLUND, J., NORDENFORS, H. and UGGLA, A. (1995) Prevalence of the
532	poultry red mite, Dermanyssus gallinae, in different types of production
533	systems for egg layers in Sweden. Poultry Science, 74:1793-1798.
534	HERNANDEZ, F., MADRID, J., GARCIA, V., ORENGO, J. and MEGIAS, M.D.
535	(2004) Influence of two plant extracts on broiler performance, digestibility and
536	digestive organ size. <i>Poultry Science</i> , 83:169-174.
537	
538	JAMROZ, D., ORDA, J., KAMEL, C., WILICZKIEWICZ, A., WERTELECKI, T.
539	and SKORUPINSKA, J. (2003) The influence of phytogenic extracts on
540	performance, nutrient digestibility, carcass characteristics, and gut microbial
541	status in broiler chickens. Journal of Animal and Feed Sciences, 12:583-596.
542	JOURDIAN, G.W., DEAN, L. and ROSEMAN, S. (1971) The Sialic Acids XI. A
543	periodate-resorcinol method for the quantitative estimation of free sialic acids
544	and their glycosides. Journal of Biological Chemistry, 246:430-435.

545	KAMEL, C. (2001) Tracing modes of action and the roles of plant extracts in non-
546	ruminants, in: Garnsworthy, P.C. and Wiseman, J. (Eds.) Recent advances in
547	animal nutrition, pp. 135-150. (Nottingham University Press, Nottingham).
548	LEE, K.W., EVERTS, H., KAPPERT, H.J., KEOM, KH. and BEYNEN, A.C.
549	(2003a) Dietary carvacrol lowers body weight gain but improves feed
550	conversion in female broiler chickens. Journal of Applied Poultry Research,
551	12: 394-399.
552	LEE, K.W., EVERTS, H., KAPPERT, H.J., FREHNER, M., LOSA, R. and
553	BEYNEN, A.C. (2003b). Effects of dietary essential oil components on growth
554	performance, digestive enzymes and lipid metabolism in female broiler
555	chickens. British Poultry Science, 44:450-457.
556	LEWIS, M.R., ROSE, S.P., MACKENZIE, A.M., SMITH, J. and ESKANAZI, S.
557	(2004) Dietary yarrow (Achillea millefolium) and the growth performance and
558	nutrient digestibility in broiler chickens. Proceedings of the 22nd World
559	Poultry Congress, Istanbul, pp487 (CD ROM).
560	
561	LEWIS, M.R., ROSE, S.P., MACKENZIE, A.M. and TUCKER, L.A. (2003) Effects
562	of dietary inclusion of plant extracts on the growth performance of male broiler
563	chickens. British Poultry Science, 44:S43-S44.
564	LOSA, R. and KÖHLER, B. (2001) Prevention of colonisation of Clostridium
565	perfringens in broiler intestine by essential oils. Proceedings of the 13th
566	European Symposium of Poultry Nutrition, Blankenberge, Belgium, pp. 133-
567	134.
568	
569	MAKKAR, H.P.S. (2003). Quantification of tannins in tree and shrub foliage.
570	Kluwer Academic Publishers, Dordrecht, The Netherlands.
571	
572	MANSOORI, B. and ACAMOVIC, T. (2007) Tannic acid increases the excretion of
573	endogenous methionine, histidine and lysine from broilers. Animal Feed
574	Science and Technology (in press)
575	
576	MANSOORI, B. and ACAMOVIC, T. (1998) The influence of tannic acid on amino
577	acid digestibility in broilers. In: Garland, T. and Barr, A.C. (Eds.) Toxic Plants

578	and other Natural Toxicants, CAB International, Wallingford, UK., pp106-
579	110.
580	
581	MCINTOSH, F.M., WILLIAMS, P., LOSA, R., WALLACE, R.J., BEEVER, D.A.
582	and NEWBOLD, C.J. (2003) Effects of essential oils on ruminal micro-
583	organisms and their protein metabolism. Applied Environmental Microbiology,
584	69: 5011-5014.
585	MILES, A.A. and MISRA, S.S. (1938) Estimation of the bactericidal power of blood.
586	Journal of Hygiene, Cambridge, 38: 732-749.
587	MITSCH, P., KÖHLER, B., GABLER, C., LOSA, R. and ZITTERL-EGLSEER, K.
588	(2002) CRINA Poultry reduces the colonisation and proliferation of
589	Clostridium perfringens in the intestine and faeces of broiler chickens.
590	Proceedings of the 11th European Poultry Conference, Bremen., pp. 113.
591	ODUGUWA, O.O., PIRGOZLIEV, V. and ACAMOVIC, T. (2007) Energy
592	metabolisability and digestibility of amino acids by broilers fed malted
593	sorghum sprouts supplemented with polyethylene glycol, charcoal, phytase and
594	xylanase. British Poultry Science 48:55-63
595	PANTER, K.E., JAMES, L.F., WANG, S., GARDNER, D.R., GAFFIELD, W.,
596	MOLYNEUX, R.J., STEGELMEIER, B.L. and BUNCH, T.D. (2004)
597	Screening poisonous plant toxins for cytotoxicity using bovine embryos
598	produced by in vitro fertilization techniques, in: ACAMOVIC, T., STEWART,
599	C.S. and PENNYCOTT, T.W. (Eds). Poisonous Plants and Related Toxins, pp.
600	347-353 (CABI International, Wallingford, Oxon, UK).
601	PAPAGEORGIOU, G., BOTSOGLOU, N., GOVARIS, A., GIANNENAS, I.,
602	ILIADIS, S. and BOTSOGLOU, E. (2003) Effect of dietary oregano oil and
603	α -tocopherol acetate supplementation on iron-induced lipid oxidation of
604	turkey breast, thigh, liver and heart tissues. Journal of Animal Physiology and
605	Animal Nutrition, 87:324-335.
606	PERMIN, A., BISGAARD, M., FRANDSEN, F., PEARMAN, M., KOLD, J. and
607	NANSEN, P. (1999) Prevalence of gastrointestinal helminths in different
608	poultry production systems. British Poultry Science, 40:439-443.
609	PLATEL, K. and SRINIVASAN, K. (2000) Influence of dietary spices and their
610	active principles on pancreatic digestive enzymes in albino rats. Nahrung,
611	44: 42-46.

612	PLATEL, K. and SRINIVASAN, K. (2001) Studies on the influence of dietary
613	spices on food transit time in experimental rats. Nutrition Research, 21:1309-
614	1314.
615	PLATEL, K. and SRINIVASAN, K. (2003) Stimulatory influence of select spices on
616	bile secretion in rats. Nutrition Research, 20:1493-1503.
617	POPE, M.J. and CHERRY, T.E. (2000) Evaluation of the presence of pathogens on
618	broilers raised on poultry litter treatment®-treated litter. Poultry Science,
619	79: 1351-1355.
620	RUSSO, M., GALLETTI, G.C., BOCCHINI, P. and CARNACINI, A. (1998)
621	Essential oil chemical composition of wild populations of Italian oregano spice
622	(Origanum vulgare ssp. hirtum (Link) Ietswaart): A preliminary evaluation of
623	their use in chemotaxonomy by cluster analysis. 1. Inflorescences. Journal of
624	Agriculture and Food Chemistry, 46:3741-3746.
625	SHELEF, L.A., JYOTHI, E.K. and BULGARELLI, M.A. (1984) Growth of
626	enteropathogenic and spoilage bacteria in sage-containing broths and foods.
627	Journal of Food Science, 49: 737-740.
628	SHORT, F.J., GORTON, P., WISEMAN, J. and BOORMAN, K.N. (1996)
629	Determination of titanium dioxide added as an inert marker in chicken
630	digestibility studies. Animal Feed Science and Technology, 59:215-221.
631	SUK, J.C., LIM, H.S. and PAIK, I.K. (2003) Effects of blended essential oil
632	(CRINA®) supplementation on the performance, nutrient digestibility, small
633	intestinal microflora and fatty acid composition of meat in broiler chickens.
634	Journal of Animal Science and Technology (Korea), 45(5): 777-786.
635	SVIHUS, B. and HETLAND, H. (2001) Ileal starch digestibility in growing broiler
636	chickens fed on a wheat-based diet is improved by mash feeding, dilution with
637	cellulose or whole wheat inclusion. British Poultry Science, 42:633-637.
638	TUCKER, L.A. (2002) Maintaining poultry performance in antibiotic-free diets by
639	supplementation with commercial botanical feed ingredients. Proceedings of
640	the 7th WPSA Asian Pacific Federation Conference, Gold Coast, Australia, pp.
641	227-230
642	
643	WALDENSTEDT, L. (2004) Effect of vaccination against coccidiosis in
644	combination with an antibacterial oregano (Origanum vulgare) compound in

6	645	organic broiler production. Acta Agriculturae Scandinavica Section A – Animal
6	646	Science, 53: 101-109.
6	647 W	INK, M. (2004) Evolution of toxins and anti-nutritional factors in plants with
6	648	special emphasis on Leguminosae, in: ACAMOVIC, T., STEWART, C.S. and
6	649 PI	ENNYCOTT, T.W. (Eds). Poisonous Plants and Related Toxins, pp. 1-25. (CABI
6	50	International, Wallingford, Oxon, UK).
6	551 Y	OUDIM, K.A. and DEANS, S.G. (1999) Dietary supplementation of thyme
6	52	(Thymus vulgaris L.) essential oil during the lifetime of the rat: its effects on
6	53	the antioxidant status in liver, kidney and heart tissues. Mechanisms of Ageing
6	54	and Development, 109: 163-175.

Table 1. Diet formulation and calculated chemical composition of the basal ration

(as fed)

Feed Ingredient	Amount in diet (g/kg)	Calculated chemical composition	(g/kg)
Wheat	671.0	ME (MJ/kg)	13.4
Soya bean meal	251.0	Crude Protein	201.6
Soya oil	35.0	Ether Extract/Fat	52.8
Monodicalcium phosphate	15.0	Crude Fibre	27.8
Limestone	15.0	Calcium	9.6
Sodium chloride	3.0	Phosphorus	7.5
Lysine	2.0	Lysine	12.7
Methionine	3.0	Methionine + Cysteine	8.9
Vit/ Min premix ¹	5.0		
Diets were also mixed with T	iO_2 (5 g/kg) as a dietary m	narker and with the plant supplements.	
¹ Supplied per kg diet: vitami	n A 4128 μg (retinyl aceta	tte), vitamin D3 125 μg cholecalciferol	,
vitamin E (as α -tocopherol) 5	50 mg, vitamin K 3 mg, fo	lic acid 1mg, nicotinicacid 50 mg, vita	min B1
(Thiamine) 2 mg, vitamin B2	(Riboflavin) 7 mg, vitami	in B6 (Pyridoxine) 5 mg, vitamin B12	15 μg,
biotin 200 µg, calcium pantot	thenate 15 mg, iodine 1mg	, molybdenum 0.5 mg, selenium 200 μ	ıg,
cobalt 0.5 mg, copper 10 mg,		00 mg, zinc 80 mg, limestone 4.18 g.	

Table 2. Effect of herbs or their essential oils on growth performance, when

included in broiler chick diets from 7-28 d of age

	Chick growt	h performance dat	a from 7-28 d	
Treatment	BM at 28d	Average gain	Average feed	FCE
		(g/bird/d	cons (g/bird/d)	(gain/cons)
Control	727 ^{bcde}	30.9 ^{bcdef}	53.1 ^{ab}	0.588 ^{abc}
Marjoram herb	754^{abcd}	32.1^{abcd}	53.5 ^{ab}	0.602^{ab}
Oregano herb	645 ^e	26.9^{ef}	45.1 ^c	0.604^{ab}
Rosemary herb	734 ^{abcde}	31.2^{abcdef}	53.9 ^{ab}	0.580^{bc}
Yarrow herb	789 ^{ab}	33.8 ^{ab}	55.5 ^{ab}	0.610 ^{ab}
Thyme herb	691 ^{cde}	29.2^{cdef}	52.0 ^{abc}	$0.564^{\rm bc}$
Marjoram oil	764 ^{abc}	32.6^{abc}	55.2 ^{ab}	0.594^{ab}
Oregano oil	680 ^{cde}	28.6 ^{cdef}	47.9 ^{bc}	0.594^{abc}
Rosemary oil	664 ^{de}	27.9 ^{def}	44.6 ^c	0.634 ^a
	641 ^e	27.9 26.8 ^f	44.0 49.0 ^{bc}	
Yarrow oil				0.544°
Thyme oil	821 ^a	35.3 ^a	58.7 ^a	0.600 ^{ab}
sed	45.14	2.2	3.9	0.0277
Plant species	P=0.021	P=0.021	P=0.015	NS
(herb+oil)				
Herb v Oil	P=0.001	P=0.001	P<0.05	P<0.05
		of each treatment.	ipt differ at <i>P</i> <0.05	
	101 0 1000000			

Table 3. Bacterial population counts in samples of faecal and caecal material taken from broilers aged 28 d, when birds were fed diets with herbs from 7-28 d

Treatment	Faecal	Caecal	Faecal	Caecal	Faecal	Caecal	Faecal	Caec
Control	8.91	6.94	8.91	8.33	9.42	11.24	3.54	3.94
Marjoram	8.79	7.25	8.67	8.68	9.06	10.98	4.19	3.61
Oregano	8.83	7.50	8.21	8.27	9.13	11.36	3.77	3.57
Rosemary	8.62	7.24	8.51	8.15	9.21	11.12	2.41	2.80
Yarrow	8.60	8.40	8.76	8.63	8.62	10.99	2.57	2.00
Thyme	8.32	7.82	8.74	8.05	9.21	11.15	3.68	2.27
sed	0.70	0.78	0.49	0.69	0.35	0.33	0.76	0.75
Data compar	NS	NS	NS	NS	NS	NS	NS	NS
NS (<i>P</i> >0.05) Values are m		lony formi	ing units per	g sample of	the logarith	nms of 3 trea	atment repl	icates.

696	from	broilers	aged 28	<i>d</i> ,
697				
	Micro		lations in forms	samp Lao
	Tuesteres			
	Treatment	Faecal	Caecal	F
	Control	8.91	6.94	5
	Marjoram	8.79	7.25	5
	Oregano	8.83	7.50	5
	Rosemary	8.62	7.24	5
	Yarrow	8.60	8.40	5
	Thyme	8.32	7.82	5
	sed	0.70	0.78	(
		NS	NS	
698	Data compar	risons are c	lone withir	n eac
699	NS (P>0.05)).		
700	Values are n	neans in co	lony formi	ng u
701				
702				
703				
704				
705				
706				
707				
708				
709				
710				
711				
712				
713				
714				

British Poultry Science

Table 4. Proportions of bacterial species in relation to each other in broiler chicks

aged 28 d, when the birds were fed diets with plant herbs from 7-28 d of age

	<i>Faecal</i> 1.000	Caecal	Anae. Faecal	robes Caecal	Faecal	Caraal	Anaer	robes
$C \rightarrow 1$			Faecal	Caecal	Facal	Caral		
$C \rightarrow 1$	1.000	1 017		0000000	ruecui	Caecal	Faecal	Caecal
Control		1.217	0.947	0.618	0.947	0.742	0.373	0.350
Marjoram	0.987	1.206	0.970	0.661	0.957	0.794	0.462	0.332
Oregano	0.933	1.117	0.967	0.661	0.901	0.727	0.412	0.314
Rosemary	0.992	1.124	0.936	0.651	0.925	0.734	0.263	0.252
Thyme	1.077	1.061	0.901	0.700	0.949	0.722	0.403	0.203
Yarrow	1.020	1.028	1.001	0.765	1.020	0.785	0.296	0.185
s.e.d.	0.095	0.150	0.059	0.068	0.044	0.069	0.081	0.068
	NS	NS	NS	NS	NS	NS	NS	NS

Significance comparisons are done within each column and statistically analysed after transformation.

NS (P>0.05).

LAB = Lactic acid bacteria.

Values are proportions of 3 replicate sample means for each count measured in log₁₀ c.f.u./g.

Table 5. Effect of dietary herb or essential oil supplementation from 7-28 d of age on nutrient digestibility in broiler chicks aged 25 d, measured as

726 apparent metabolisable energy (AME) and the coefficient of energy metabolisability (AME:GE), with correction to zero nitrogen retention (AMEn

and AMEn:GE), and also the coefficients of the digestibility of dry and organic matter (ADMD and DOMD) and nitrogen metabolisability (AMN) in

the ration, presented with the digestible OM and metabolisable N content in each treatment diet

Energy and its metabolisability, dry and organic matter digestibility and the metabolisability of nitrogen in the treatment rations									
	AME	AMEn	AME:GE	AMEn:GE	ADMD	DOMD	Digestible OM content	AMN	Metabolisable N
									content
Treatment	(MJ/k)	g DM)	(MJ/MJ)	(MJ/MJ)	(g/g)	(g/g)	(g/kg DM)	(g/g)	(g/kg DM)
Control	10.46	9.96	0.567	0.579	0.534	0.574	531	0.405	13.61
Marjoram herb	10.39	9.89	0.568	0.583	0.539	0.578	536	0.399	13.64
Oregano herb	10.59	10.14	0.572	0.592	0.538	0.580	540	0.371	12.45
Rosemary herb	10.11	9.76	0.550	0.574	0.515	0.562	526	0.307	9.72
Yarrow herb	10.78	10.26	0.582	0.608	0.544	0.589	547	0.421	14.29
Thyme herb	10.34	9.94	0.558	0.588	0.516	0.558	520	0.331	10.89
Marjoram oil	10.05	9.56	0.556	0.570	0.526	0.568	527	0.382	13.25
Oregano oil	10.65	10.21	0.576	0.607	0.536	• 0.573	534	0.359	11.96
Rosemary oil	10.59	10.12	0.576	0.607	0.539	0.576	533	0.377	12.89
Yarrow oil	10.31	9.96	0.553	0.569	0.523	0.561	525	0.365	11.49
Thyme oil	10.63	10.15	0.572	0.593	0.539	0.579	540	0.386	13.12
sed 1	0.553	0.498	0.030	0.036	0.029	0.029	27.09	0.045	1.556
sed 2								0.048	1.651
Plant spp. (herb+oil)	NS	NS	NS	NS	NS	NS	NS	NS	NS
Herb v Oil	NS	NS	NS	NS	NS	NS	NS	NS	P=0.07

729 Values are the means of 5 replicates for each dietary treatment.

730 Data comparisons are done within each column. NS (P>0.05)

For most treatment comparisons, sed 1 is used, but sed 2 should be used for nitrogen metabolisability, when comparing yarrow oil with all other treatments.