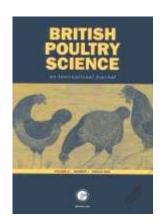


On the interactions between Fusarium toxin-contaminated wheat and non-starch-polysaccharide hydrolyzing enzymes in diets of turkeys on performance, health and carry over of deoxynivalenol and zearalenone

Sven Dänicke

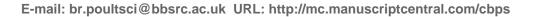
▶ To cite this version:


Sven Dänicke. On the interactions between Fusarium toxin-contaminated wheat and nonstarch-polysaccharide hydrolyzing enzymes in diets of turkeys on performance, health and carry over of deoxynivalenol and zearalenone. British Poultry Science, 2007, 48 (01), pp.39-48. 10.1080/00071660601148161. hal-00545308

HAL Id: hal-00545308 https://hal.science/hal-00545308

Submitted on 10 Dec 2010

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.


L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

On the interactions between Fusarium toxin-contaminated wheat and non-starch-polysaccharide hydrolyzing enzymes in diets of turkeys on performance, health and carry over of deoxynivalenol and zearalenone

Journal:	British Poultry Science	
Manuscript ID:	CBPS-2006-100.R1	
Manuscript Type:	Original Manuscript	
Date Submitted by the Author:	03-Aug-2006	
Complete List of Authors:	Dänicke, Sven; Inst. of Animal Nutrition	
Keywords:	Turkeys, Mycotoxins, Deoxynivalenol, Zearalenon, Carry over, Wheat	

Page 1 of 24

British Poultry Science

On the interactions between <u>effects of *Fusarium*</u> toxin-contaminated wheat and non-starch-polysaccharide hydroly<u>sing enzymes in turkey</u> diets, on performance, health and carry-over of deoxynivalenol and zearalenone

CBPS_2006_100

S. DÄNICKE¹, H. VALENTA, K.-H. UEBERSCHÄR<u>AND</u> S. MATTHES²

^{*} Institute of Animal Nutrition, Federal Agricultural Research Centre, Braunschweig (FAL), Bundesallee 50, D-38116 Braunschweig and ²Institute for Animal Welfare and Animal Husbandry, Federal Agricultural Research Centre, Braunschweig (FAL), Location Celle, Dörnbergstrasse 25-27, D-29223 Celle, Germany

Deleted. September
Deleted: ¶
Deleted: ¶
Deleted: <u>Short title:</u> <i>Fusarium</i> toxins and turkeys¶ [
Formatted: Left, Line spacing:

Deleted: 078

Dolotodi S

Deleted: z

Deleted:

Deleted: of turkeys

Deleted: *
Deleted: *
Deleted: *
Deleted: AND
Formatted: Small caps, Not All caps
Deleted: †
Formatted: Font: Italic
Formatted: Line spacing: Double
Deleted: , Germany
Deleted: †

RUNNING TITLE: FUSARIUM TOXINS AND TURKEYS,

Deleted: OXIDATION AND
 SENSORY EVALUATION
 Formatted: Font color: Red, All caps

¹ Corresponding author: <u>Dr</u> Sven Dänicke, Institute of Animal Nutrition, Federal Agricultural Research Centre, Braunschweig (FAL), Bundesallee 50, D - 38 116 Braunschweig, <u>Germany</u>

e-mail: sven.daenicke@fal.de

Accepted for publication <u>31st October</u> 2006

Formatted: Level 1, Line spacing: Double Formatted: Bullets and Numbering

Deleted: 28th August

1 2 3 4	
5 6 7 8	
9 10 11 12 13	
14 15 16 17	
$\begin{array}{c} 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10112 \\ 1121 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 201 \\ 22 \\ 24 \\ 25 \\ 26 \\ 27 \\ 28 \\ 29 \\ 301 \\ 32 \\ 33 \\ 34 \\ 35 \\ 6 \\ 37 \\ 38 \\ 36 \\ 7 \\ 38 \\ 36 \\ 7 \\ 38 \\ 36 \\ 7 \\ 38 \\ 38 \\ 38 \\ 38 \\ 38 \\ 38 \\ 38 $	
23 24 25 26 27	
28 29 30 31	
32 33 34 35 36	
37 38 39 40 41	
42 43 44 45	
46 47 48 49 50	
51 52 53 54	
55 56 57 58 59 60	

		Deleted: ¶
28	Abstract_1. Diets with increasing proportions of <i>Fusarium</i> toxin-contaminated wheat (0, 170,	
29	340 and 510 g CW/kg) were fed to male turkeys (BUT <u>Big 6</u>) from <u>d</u> 21 to <u>d</u> 56 of age. Each	Deleted: big
		Deleted: Day
30	diet was tested with or without a non-starch-polysaccharide (NSP) hydrolysing enzyme	Deleted: z
31	preparation. Dietary deoxynivalenol (DON) and zearalenone (ZON) concentrations were	
32	successively increased up to approximately 5.4 and 0.04 mg/kg, respectively.	
33	2. Weight gain decreased slightly with increasing proportions of CW, by 1.6, 0.7 and 3.6 $\%_{}$	Formatted: Line spacing: Double Deleted: (p _{linear} =0.044)
34	whereas other performance parameters remained unaffected. NSP enzyme supplements to the	
35	diets had no influence.	
36	3. The weight of the emptied jejunum plus ileum, relative to live weight, decreased in a dose-	
37	related fashion whereby the NSP enzyme exerted an additional weight-decreasing effect. A	
38	similar weight-decreasing NSP enzyme effect was noted for heart weights. Activity of	
39	glutamate-dehydrogenase in serum was significantly increased in groups fed the diets with the	
40	highest CW proportion, whereas γ -glutamyl-transferase remained unaltered.	
41	4. Viscosity in the small intestine was significantly reduced by supplementing the diets with	
42	the NSP enzyme. This effect successively decreased with increasing proportions of the CW.	(-
43	5. Concentrations of DON and of its de-epoxidised metabolite de-epoxy-DON in plasma, liver	Deleted: z
44	and breast meat were lower than the detection limits of 2 ng/ml (plasma) and 4 ng/g,	Deleted: mL
45	respectively, of the applied HPLC-method. DON concentration in bile reached up to 13-23	Delated
46	ng/ <u>ml</u> whereas de-epoxy-DON concentration was lower than 4 ng/ <u>ml</u> .	Deleted: mL Deleted: mL
47	6. ZON or its metabolites were not detectable in plasma, liver or breast meat (detection limits	
48	of the HPLC-method were 1 ng/g, 0.5 ng/g and 5 ng/g for ZON, α -zearalenol (ZOL) and β -	
49	ZOL, respectively). Concentrations of ZON and α -ZOL in bile increased with dietary ZON-	
50	concentration. The mean proportions of ZON, α -ZOL and β -ZOL of the sum of all three	Deleted: ¶
51	metabolites were 19, 77 and 4 %, respectively	Keywords: Turkey, <i>Fusarium</i> inoculated wheat, deoxynivalenol, zearalenone, non-starch-polysaccharide enzymes¶
52	INTRODUCTION	Deleted: Introduction
	لا کر مرج	Formatted: Font: Not Bold
		Formatted: Centered, Line spacing: Double

4		
1 2 3	53	The Fusarium toxin deoxynivalenol (DON) is of great practical importance as it occurs*
4 5	54	frequently on cereal grains (SCOOP TASK 3.2.10 of the European Member States_2003).
5 6 7	55	Concentrations could be so high that even after dilution by mixing such cereals into diets for
, 8 9	56	farm animals, the levels <u>may exceed critical dietary DON concentrations (EFSA, 2004a)</u> .
10 11	57	Turkeys were not, however, considered in the recent risk evaluation of this toxin by EFSA,
12	58	2004a) which might be due to a lack of information in the literature. Indeed, only a few
13 14 15	59	experiments have been reported. Interestingly, all these experiments revealed slightly negative
15 16	60	effects on performance, which, however, appeared independent of dietary DON dosage,
17 18	61	covering a range between 0.28 and 20 mg/kg (Trenholm et al., 1984; Hamilton et al., 1985;
19 20	62	Manley et al., 1988; Morris et al., 1999; Leitgeb et al., 1999). Besides the fact that different
21 22	63	DON sources were used, which were co-contaminated with other <i>Fusarium</i> toxins to a greater
23 24	64	or lesser extent, the question of a critical dietary DON concentration for turkeys could not be
25 26	65	answered up to now. Therefore, the present experiment was designed as a dose response
27 28	66	study using a wheat batch mainly contaminated with DON. Moreover, each dietary DON
29 30	67	level was tested with or without the addition of a non-starch-polysaccharide (NSP)
31 32	68	hydrolysing enzyme preparation as Dänicke et al. (2004a) suggested that cell wall alterations
33 34	69	caused by the invasion of the cereal by the Fusarium fungus might positively affect the
35 36	70	nutritive value of the infected cereal grain. Thus, it should be tested whether such putative
37 38	71	positive effects could balance the adverse DON effects. Several physiological samples were
39 40	72	collected at the end of the experiment and analysed for mycotoxin residues to contribute to
41 42	73	knowledge on their metabolism and carry-over in turkeys.
43 44	74	MATERIAL AND METHODS
45 46	75	Experimental design and diets
47 48	76	All diets contained 510 g wheat/kg of the "Ritmo" variety cultivated at the Mariensee
49 50	77	experimental station of the Federal Agricultural Research Centre (FAL), Braunschweig,
51 52	78	Germany, which was not inoculated or artificially inoculated with spores of Fusarium
52 53		
54 55		
55 56		
57		
58		

59 60 Formatted: Line spacing: Double

Deleted: could

Deleted: were Deleted: in the past

Deleted: z

Deleted: z

Deleted: ¶	
Formatted: All caps	
Formatted: Centered, Line spacing: Double	
Formatted: Font: Not Bold, All caps	
Formatted: Font: Not Italic	
Formatted: Line spacing: Double	
Deleted: Mariensee	

MATERIAL AND METHODS

1		
2 3	79	culmorum. Details of th
4 5	80	Dänicke et al. (2004b). T
6 7	81	successive substitution of
7 8 9	82	wheat (CW) (<u>Table 1).</u> F
10	83	this way. Each of these
11 12	84	hydrolysing enzyme pre
13 14	85	Germany; <u>declared</u> activ
15 16	86	only in the proportions
17 18	87	isonitrogenous. Nutrient
19 20	88	(2004). Diets were provid
21 22	89	Growth experiment
23 24	90	A total of 384 d-old mal
25 26	91	company "Moorgut Kartz
27 28	92	shaving litter floor pens
29 30	93	recommendations of the l
31 32	94	when the experiment star
33 34	95	replicated 8 times. There
35 36	96	initial live weight was si
37 38	97	<i>libitum</i> consumption. Tur
39 40	98	feeding, and at the end of
41 42	99	per treatment were slaugh
43 44	100	blood was collected for
45 46	101	Jejunum (from the entry
47 48	102	ileum (from the Meckel
49 50	103	fabricii and heart were q
51 52	104	<u>oral cavity</u> , pharynx, oeso
52 53 54		
54 55 56		
57		
58		

59 60

	culmorum. Details of this field experiment were reported by Matthäus et al. (2004) and
	Dänicke et al. (2004b). The increase in the DON-concentration in the diets was achieved by
	successive substitution of the uncontaminated wheat by the Fusarium toxin contaminated
	wheat (CW) (Table 1). Four diets containing 0, 170, 340 and 510 g CW/kg were prepared in
ļ	this way. Each of these diets was tested with and without supplementation of an NSP
ĺ	hydrolysing enzyme preparation (ZY68, Lohmann Animal Health GmbH, KG, Cuxhaven,
	Germany; <u>declared</u> activity: <u>endo-1,4-β-xylanase</u> (EC 3.2.1.8) 1000 FXU/g). Diets differed
I	only in the proportions of both wheat sources and were therefore nearly isoenergetic and
	isonitrogenous. Nutrient and energy concentrations were in the range recommended by GfE

(2004). Diets were	provided	in a	pe	lleted	form
	1		1		

le turkeys of the strain BUT Big 6 were obtained from the breeding zfehn", Bösel, Germany. Chicks were evenly distributed in 64 woods. Temperature and lighting regimens were in accordance with the breeder. Birds were fed on a commercial starter diet until d 21 of age rted. Turkeys were randomly assigned to the <u>8</u> treatments which were

efore, each treatment comprised a total of 48 turkeys. The average imilar for all groups (581±66g). Feed and water were offered for ad rkey weights and consumed feed were determined after two weeks of of the experiment at d 56 of age. After the final weighing, 12 turkeys htered by cutting the neck vessels after manual stunning. Mixed trunk r enzyme activity measurements and mycotoxin residue analysis. of the main bile and pancreatic ducts to the Meckel's diverticulum), I's diverticulum to the ileo-caecal junction), liver, spleen, bursa of quickly dissected after inspection of the upper digestive tract (beak, ophagus). Ingesta from the jejunum and ileum were collected in pre-

Formatted: Font: Italic	J	
	_	
Formatted: English U.K.		
Deleted: Table 1		
Formatted: English U.K.		
Deleted: z		
Deleted: & Co.		
Deleted: Declared		
Deleted: Endo		
Deleted: Xylanase		

Deleted: 1
Deleted: ¶
Formatted: Font: Not Italic
Deleted: ay
Deleted: big

Table 1 near here

Deleted: shave	
Deleted: bedded	
Deleted: Day	
Deleted: eight	

Deleted: and amounted to

Deleted: Day

Deleted: cavum oris

Page 5 of 24

British Poultry Science

1		Deleted: four	
2 3	105	cooled tubes, pooled for <u>4</u> turkeys and kept on ice before being frozen for later determination	
4 5	106	of viscosity. Bile was sampled by puncturing the <u>gall</u> bladder and pooled for two turkeys.)
6 7	107	Weights of the emptied segments of the small intestine and all other dissected inner organs	
, 8 9	108	were recorded. Representative samples of breast meat and complete livers (without gall	
10	109	bladder) were pooled for <u>4</u> birds and kept frozen before being further processed for mycotoxin	
11 12	110	residue analysis.	
13 14	111	Analyses Formatted: Font: Not Ita	lic
15 16	112	Diet samples were analyzed for Kjeldahl-N and dry matter according to the methods of the	
17 18	113	VDLUFA (Verband Deutscher Landwirtschaftlicher Untersuchungs- und	
19 20	114	Forschungsanstalten) as described by Naumann and Bassler (1993)DON in diet samples	
21 22	115	was analysed by using HPLC (high performance liquid chromatography) with DAD (diode	
23 24	116	array detection) after a clean-up with IAC (immuno-affinity column, VICAM) according to a	
25 26	117	modified VDLUFA-method as described by Valenta et al. (2002). The detection limit was	
27 28	118	0.03 mg/kg and the recovery was approximately 90 % for this matrix.	
29 30	119	Physiological samples were analysed for DON and de-epoxy-DON according to	
31 32	120	Valenta <i>et al.</i> (2003), with modifications. Briefly, plasma, bile and freeze-dried liver and]
33 34	121	breast meat samples were incubated with β-glucuronidase (Type H-2, β-glucuronidase, EC	
35 36	122	3.2.1.31, 114400 U/ml; <u>arylsulphatase</u> , EC 3.1.6.1, 3290 U/ml; Sigma, Deisenhofen,	
37 38	123	Germany) at pH 5.5 and 37°C overnight. Subsequently, plasma and bile were extracted with	
39 40	124	ethyl acetate (bile after adjusting the pH to 7) on disposable ChemElut columns (Varian	
41 42	125	Deutschland GmbH, Darmstadt) and cleaned up with IAC (DONtest TM of VICAM, Klaus	
43 44	126	Ruttmann GmbH, Hamburg, Germany, in case of plasma, and DONprep [™] , R-Biopharm	
45 46	127	Rhone Ltd., Darmstadt, Germany, in case of bile). Freeze-dried liver and breast meat samples	
47 48	128	were extracted with a mixture of acetonitrile and water, defatted with petroleum ether, pre-	
49 50	129	cleaned with a mixture of charcoal, alumina and celite and cleaned up with IAC (DONprep [™] ,	
51 52	130	R-Biopharm Rhone Ltd., Darmstadt, Germany). DON and de-epoxy-DON in plasma, bile,	
53 54			

Deleted: z

liver and breast meat were determined by HPLC with UV detection. The detection limit for
both substances was approximately 2 ng/ml for plasma, and 4 ng/g bile and freeze dried liver
and breast meat, respectively, with mean recoveries of 92-95 % and 88-104 % for DON and
de-epoxy-DON, respectively.

Zearalenone in feed samples was analysed after incubation with 2 U β -glucosidase (E.C. 3.2.1.21, Sigma, Taufkirchen, Germany, No. G-0395). Results of the analysis of ZON Deleted: ¶ and its metabolites were not corrected for recovery.__Tissue and body fluid samples were Deleted: z analysed for zearalenone (ZON), α -zearalenol (α -ZOL), β -zearalenol (β -ZOL), zearalanone (ZAN), α -zearalanol (α -ZAL), β -zearalanol (β -ZAL) by HPLC with fluorescence detection Deleted: f after treatment with 2/0.9 U ß-glucuronidase/arylsulphatase (EC 3.2.1.31/EC 3.1.6.1 Roche Diagnostics GmbH, Mannheim, Germany, No. 127698) and cleaning of the extracts by immuno-affinity columns (Easi-ExtractTM Zearalenone, Rhône-Diagnostics, Glasgow, UK) according to Ueberschär1999) and as described by Dänicke et al. (2001b). Detection limits for all specimens were 1 ng/g, 0.5 ng/g, 5 ng/g, 100 ng/g, 50 ng/g and 200 ng/g for ZON, α -ZOL, β -ZOL, ZAN, α -ZAL and β -ZAL, respectively, at a sample weight of 5 g. The mean recovery for ZON, α -ZOL and β -ZOL was 95, 69 and 55 % for feedstuffs, 79, 59 and 59 % for plasma, 95, 80 and 121 % for bile, and 93, 72 and 63 % for liver and breast meat, respectively. Deleted: z Plasma chemical parameters were analysed using test-kits supplied by Merck, Darmstadt, Germany: glutamate dehydrogenase (GLDH, EC 1.4.1.3, Merck-1-Test[®], 1.03373), γ - glutamyltransferase (γ -GT, EC 2.3.2.2, Granutest[®] 3, 1.12189.0001). Viscosity of jejunal and ileal ingesta was determined by using a Brookfield viscometer as described by Dusel et al. (1998). Deleted: 9 Statistics Formatted: Font: Not Italic Formatted: Line spacing: Double Data were evaluated by a two-factorial design of analysis of variance (ANOVA): $y_{ijk} = \mu + a_i + b_j + (axb)_{ij} + e_{ijk}$

1				
2 3	156	where $y_{ijk} = k^{th}$ observation; μ = overall mean; a_i = effect of the proportion of contaminated wheat of total	Deleted: z	
4	157	dietary wheat (0, 33, 66 and 100 %); b _j = effect of the NSP hydrolyging enzyme preparation (without, with);		
5	158	$(axb)_{ij} = interactions; e_{ijk} = error term.$		
6 7	. 1	ТМ	Deleted: the	
8	159	All statistics were carried out using the Statistica for Windows TM system (StatSoft, 1984).	Deleted: operating	
9	1.60	• /	Deleted: ¶	
10	160	RESULTS	Formatted: All caps	
11 12	161	Growth experiment	Formatted: Centered, Line spacing:	
13			Formatted: Font: Not Bold, All caps	
14	162	The experiment took a normal course and no turkey died or had to be removed from the	Formatted: Font: Not Italic	
15 16	163	experiment due to health problems during the 5 weeks of the study. Increasing proportions of	Formatted: Line spacing: Double	
17	1		Deleted:	
18	164	CW in turkey diets decreased live weight gain in a linear-related manner, if the first two weeks	Deleted.	
19	165	are considered (<u>Plinear</u> =0.040, <u>Table 2</u>). NSP enzyme supplements to the diets had no effect on	Deleted: plinear	
20 21			Formatted: Font: Not Bold, English U.K.	
22	166	live weight gain. As feed intake remained unaffected in all treatments, the feed-to-gain ratio	Deleted: Table 2	
23	167	was slightly increased due to increasing properties of CW. This was most propounced	Formatted: Font: Italic	
24 25		was slightly increased due to increasing proportions of CW. This was most pronounced	Formatted: Font: Not Bold, English U.K.	
23 26	168	during the first two weeks of the experiment $(\underline{P}_{\text{linear}}=0.020)$. In this period there was a trend to	Deleted: <i>p</i> linear	
27	169	an improved feed to goin ratio due to the addition of NSD ensume $(D=0.025)$ although this	Formatted: Font: Italic	
28	109	an improved feed-to-gain ratio due to the addition of NSP enzyme ($P=0.085$), although this	Deleted: (p	
29	170	effect was only obvious at lower CW inclusion rates (P _{CWxZY68} =0.098). Table <u>2 near here</u>	Deleted: (p	
30			Deleted: 1	
31	171	Gross macroscopical findings, organ weights and serum clinical-chemical parameters		
32			Formatted: Font: Not Italic	
33 34	172	Gross macroscopical inspection of the upper digestive tract (beak, <u>oral cavity</u> , <u>pharynx</u> , <u>pharynx, pharynx</u> , <u>pharynx</u> , <u>pharynx</u>	Deleted: cavum oris	
35 36	173	oesophagus) did not reveal any signs of irritation, inflammation or other pathological changes.		
37 38	174	The weight of the emptied jejunum plus ileum, relative to live weight, decreased in a dose-	Deleted: (p	
39	175	related fashion ($\underline{P}_{\text{linear}}$ =0.002, $p_{\text{guadratic}}$ =0.003), whereby the NSP enzyme exerted an additional		
40 41	176	weight-decreasing effect $(P=0.017, \text{ Table 3})$. A similar weight decreasing NSP enzyme effect	Deleted: (p	
41	170	weight-decreasing effect $T = 0.017$, <u>radie 5</u> . A similar weight decreasing NSF enzyme effect	Deleted: Table 3	
43	177	was noticed for heart weights (P<0.001). Other organ weights (liver, spleen, Bursa Fabricii)	Deleted: (p	
44 45	178	were not affected. Activity of glutamate-dehydrogenase in serum was significantly increased		
46	170	in survey find the distantiate the bishest CWV surgestion (D. 0.014) subserves a slatened	Deleted: (p	
47	179	in groups fed the diets with the highest CW proportion ($P=0.014$) whereas γ -glutamyl-		
48 49	180	transferase remained unalter Tables 3 and 4 near here	Deleted: 1	
49 50	100			
51	I			
52				
53				
54				
55				

1				Deleted: Table 4
2	181	<u>Table 4</u>).		
3 4	182	Viscosity of intestinal ingesta		
5	162	viscosity of intestinar ingesta		Formatted: Font: Not Italic Deleted: in
6	183	Viscosity of both jejunal and ileal ingesta was significantly reduce	ed by supplementing the	
7 8	104	distancial the NCD ensures (D. 0.004) with a sense lles bisher with	energian level of the iterl	Deleted: (p
9	184	diets with the NSP enzyme ($\underline{P}=0.004$) with a generally higher vis	scosity level of the flear /	Deleted: Figure 1
10	185	ingesta (Figure 1). However, this effect successively decreased with i	increasing proportions of	
11	106	the CW as indicated by the size from CW efforts (D. 0.005 and 0.	001 for ising land ited	Deleted: (p
12 13	186	the CW as indicated by the significant CW effects $(\underline{P}=0.005 \text{ and } 0.100 \text{ m})$		Deleted: (p
14	187	ingesta) and the significant interactions between CW and the NSP e	enzyme <u>(<i>P</i>_{CWxZY68}<0.001</u>	
15	100		<u>Figure 1 near here</u>	Deleted: Figure 1
16 17	188	for jejunal and ileal ingesta, Figure 1).		Deleted: Table 1
18	189	Mycotoxin residues and carry over		
19				Formatted: Font: Not Italic Deleted: z
20	190	Concentrations of DON and of its de-epoxidised metabolite de-epox	xy-DON in plasma, liver	
21	101			Deleted: mL
22 23	191	and breast meat were lower than the detection limits of 2 ng/m	<u>ii (p</u> iasma) and 4 ng/g, $\frac{1}{2}$	Deleted: (p
23 24	192	respectively, of the applied HPLC-method. DON concentration in b	bile reached up to 13-23	Formatted: Font: Not Italic
25			-	Deleted: mL
26	193	ng/ <u>ml</u> whereas de-epoxy-DON concentration was lower than 4 ng/ <u>ml</u> .	·	Deleted: mL
27 28	194	ZON or its metabolites were not detectable in plasma, liver an	nd breast meat (detection	Formatted: Indent: First line: 35.45 pt, Line spacing: Double
20 29				
30	195	limits of the HPLC-method were 1 ng/g, 0.5 ng/g and 5 ng/g for Z	ON, α -ZOL and β -ZOL,	
31	196	respectively). Concentrations of ZON and α -ZOL in bile increased	d in a quadratic fashion	
32 33	170	respectively). Concentrations of Zorv and u-ZoE in one increased		Deleted: (p
34	197	(<u><i>P</i>quadratic</u> <0.001) with dietary ZON-concentration, whereas that of β -	ZOL generally remained	
35	100	at a lower and distant ZON independent lovel (Table 5). The	attend of a 701 and 0	Formatted: English U.K.
36	198	at a lower and dietary ZON-independent level (<u>Table 5</u>). The property	ortions of α -ZOL and β -	Formatted: English U.K.
37 38	199	ZOL of the sum of all metabolites (ZON+ α -ZOL+ β -ZOL) varied independent of the sum of all metabolites (ZON+ α -ZOL+ β -ZOL) varied independent of the sum of all metabolites (ZON+ α -ZOL+ β -ZOL) varied independent of the sum of all metabolites (ZON+ α -ZOL+ β -ZOL) varied independent of the sum of all metabolites (ZON+ α -ZOL+ β -ZOL) varied independent of the sum of all metabolites (ZON+ α -ZOL+ β -ZOL) varied independent of the sum of all metabolites (ZON+ α -ZOL+ β -ZOL) varied independent of the sum of all metabolites (ZON+ α -ZOL+ β -ZOL) varied independent of the sum of all metabolites (ZON+ α -ZOL+ β -ZOL) varied independent of the sum of all metabolites (ZON+ α -ZOL+ β -ZOL) varied independent of the sum of all metabolites (ZON+ α -ZOL+ β -ZOL) varied independent of the sum of all metabolites (ZON+ α -ZOL+ β -ZOL) varied independent of the sum of all metabolites (ZON+ α -ZOL+ β -ZOL) varied independent of the sum of all metabolites (ZON+ α -ZOL+ β -ZOL) varied independent of the sum of all metabolites (ZON+ α -ZOL+ β -ZOL) varied independent of the sum of all metabolites (ZON+ α -ZOL+ β -ZOL) varied independent of the sum of all metabolites (ZON+ α -ZOL+ β -ZOL) varied independent of the sum of all metabolites (ZON+ α -ZOL+ β -ZOL) varied independent of the sum of all metabolites (ZON+ α -ZOL+ β -ZOL) varied independent of the sum of all metabolites (ZON+ α -ZOL+ β -ZOL) varied independent of the sum of all metabolites (ZON+ α -ZOL+ β -ZOL) varied independent of the sum of all metabolites (ZON+ α -ZOL+ β	ependent of dietary ZON	Deleted: Table 5
39	200			
40	200	concentrations of between one and six percent, and 74 to 83%, respec	ctively. The proportion of	Deleted: (p
41	201	ZON increased significantly with dietary ZON concentration from 1	3 to 24% ($P_{\text{linear}}=0.001$).	
42 43				
44	202	The addition of the NSP enzyme did not alter the concentration or	r profile of ZON and its	
45	203	metabolites in bile although a significant interaction occurred bet	ween the CW and NSP	
46	200	neusones in one annough a significant interaction occurred oc		Deleted: (p
47 48	204	enzyme for the α -ZOL concentration (<u><i>P</i></u> _{CWxZY68} =0.036).	·····	
49	205	DISCUSSION		Deleted: ¶
50	205	DISCUSSION		Formatted: All caps Formatted: Centered, Line spacing:
51	I			Double
52 53				Formatted: Font: Not Bold, All caps
53 54				
55				
56				
57				

Page 9 of 24

1

2

British Poultry Science

Formatted: Line spacing: Double

Deleted: Nivalenol

23	20
4 5	20
6 7	20
, 8 9	20
10	21
11 12	21
13 14	21
15 16 17	21
17 18 19	21
20	21
21 22	21
23 24	21
25 26	21
20 27 28	21
29	22
30 31	22
32 33 34 35	22
34 35	22
36 37	
38 39	22
40 41	22
42 43	22
44 45	22
45 46 47	22
48	22
49 50	23
51 52	23
53 54	
55 56	
57 58	
59 60	

	- 1
206	The CW fed in the present experiment was of the same origin as that tested earlier on Pekin
207	ducks. This experiment, as well as the chemical and mycotoxin composition of the CW, were
208	reported by Dänicke et al. (2004b). Briefly, the control wheat and the CW contained (µg/kg
209	dry matter): DON, 190, 7790; <u>nivalenol</u> , 24, 45; <u>scirpentriol</u> , <9, 67; T-2-tetraol, <8, <8;
210	fusarenon-X, <21, <21; monoacetoxyscirpenol, <3, <3; 15-acetyl-DON, <8, 12; 3-acetyl-
211	DON, <10, 1573; T-2- <u>triol</u> , <6, <6; <u>neosolaniol</u> , <7, <7; <u>diacetoxyscirpenol</u> , <16, <16; HT-2
212	toxin, <3, <3; T-2 toxin, <4, <4 and zearalenone, 2, 100. The DON concentrations and
213	increments of the diets fed in the present experiment were based on the DON analysis of the
214	CW, It becomes obvious that the analysed dietary DON concentrations exceeded that of the
215	calculated values by approximately 40 % on average, whereby the increments between DON
216	concentrations were not equidistant. This problem is not new and might to a large extent be
217	attributable to sampling and sample preparation errors (Friend et al., 1983; Young et al.,
218	1983; Hamilton et al., 1985; Dänicke et al., 2004c). It remains to be examined to what extent
219	a feed mix- and pellet- (heat and moisture treatment) related conversion of the substantial
220	amounts of 3-acetyl-DON (approximately 17% of the sum of DON plus 3-acetyl-DON) could
221	have contributed to the observed discrepancies. That diets were mixed properly can be
222	deduced from the slight and approximately equidistant increase in the analysed crude protein
223	concentration of the diets, which was due to the higher crude protein concentration of the CW
224	compared to the control wheat (142 vs. 131 g/kg dry matter). Moreover, turkeys responded to
225	increasing dietary CW inclusion rates with a linear decrease in live weight gain. This was
226	most pronounced during the first two weeks of the experiment, where the decrease compared
227	to the control group amounted to 0.8, 1.6 and 4.4% for the groups fed diets containing 33, 66
228	and 100% CW of total dietary wheat, respectively. This decrease corresponded to a
229	concomitant increase in feed-to-gain ratio of 1.1, 1.8 and 2.6%. A comparison of the present
230	results with literature reports can only be undertaken with caution in view of the fact that
231	different genetic turkey origins and different age periods were tested. This is further

Deleted: Scirpentriol
Deleted: Tetraol
Deleted: Fusarenon
Deleted: Monoacetoxyscirpenol
Deleted: Acetyl
Deleted: Acetyl
Deleted: Triol
Deleted: Neosolaniol
Deleted: Diacetoxyscirpenol
Deleted: Toxin
Deleted: Toxin
Deleted: Zearalenone
Deleted: designed
Deleted: .,
Deleted: yz

Formatted: Font: Italic

Deleted: yz

Deleted:

Deleted: iz

complicated by the use of contaminated feedstuffs with more or less-characterised Fusarium toxin patterns. Keeping these drawbacks in mind, it seems that turkeys might respond to the presence of DON in feed somewhat differently than broilers, which were often found to react with an increase in live weight gain when DON-contaminated diets were fed (for review see Dänicke et al., 2001a). In contrast, turkeys seem to respond with a decrease in live weight gain independent of dietary DON concentration. The decrease in live weight gain relative to the control amounted to 5 and 3%, corresponding to 0.28 and 0.55 mg DON/kg diet (Hamilton et al., 1985), 8.3 and 0.4%, corresponding to 2.2 and 4.4 mg DON/kg diet (Manley et al., 1988), 1.3%, corresponding to 4.4 mg DON/kg diet (Manley et al., 1988) and just 3.1% at a dietary DON concentration of 20 mg/kg (Morris et al., 1999). Thus, the impact of DON-contaminated diets on turkey growth can not conclusively be evaluated, mainly due to the different study conditions.

An interesting observation of the present study was a decrease in the effect of the NSP enzyme supplementation in lowering intestinal viscosity with increasing inclusion rates of the CW. This effect is probably due to the physico-chemical alterations of the CW, caused by the fungal invasion, compared to the non-infected control wheat. These changes include an increase in the activities of protease, amylase and cell wall degrading enzymes (Matthäus et al., 2004). Moreover, the water extract viscosity of the infected wheat was lower than that of the control wheat, despite an increase in soluble NSP. The latter relationship was surprising as former experiments on the variability of wheat NSP revealed a positive correlation between soluble NSP and water extract viscosity on the one hand and between water extract viscosity and intestinal viscosity on the other hand (e.g., Bedford and Classen, 1992; Dusel et al., 1997).

To test the hypothesis that NSP enzymes generated by the fungus invasion could act in a similar manner to supplemented NSP enzymes, Dänicke *et al.* (2004a) tested the effects of

feeding either an uninfected control wheat or CW in absence and presence of an added NSP

Formatted: Indent: First line: 35.45 pt, Line spacing: Double

Formatted: Font: Italic

Deleted: as

British Poultry Science

enzyme on performance and intestinal viscosity of Pekin ducks. They found that supplementation of the diet with the NSP enzyme was not necessary when CW was in the diet and intestinal viscosity was considered as response criterion. Thus, the results of the present experiment support this hypothesis as an increase in the dietary proportion of CW can be directly related to an increase in cell wall degrading activities in the diet, and leaves less room, or even no room, for the action of an added NSP enzyme preparation. A high intestinal viscosity in growing birds is generally considered as anti-nutritive and is inversely related to performance (for reviews see Bedford and Schulze1998; Dänicke et al., 1999).

Whether the net effect of the viscosity-lowering effects of *Fusarium* infected wheat is positive with regard to performance depends on the potential negative effects of the concomitantly present DON. The treatment-related effects on the observed intestinal viscosity were only partly reflected by performance. This might be due to a less pronounced relationship between intestinal viscosity and performance in turkeys, or to a more pronounced susceptibility to DON when compared <u>with broilers</u>.

Another typical effect of the presence of NSP-degrading enzyme activities in the diets - either provided by the fungus or as feed additive - was the decrease in the relative weight of the small intestine (Simon1998; Dänicke et al., 2000b). It was shown that an increased intestinal viscosity increases the mass of small intestinal tissue through stimulated protein synthesis (Dänicke et al., 2000a). A close relationship between intestinal viscosity and the relative weight of the small intestine also becomes obvious from the present experiment. Also notable is the decrease in heart weight after NSP enzyme supplementation which, however, appeared to be independent of the CW proportion of the diets. Whether this decrease is a reflection of a lower blood requirement of the reduced weight of the small intestine can not be answered conclusively.

Feeding of the diet containing the highest CW proportion resulted in a significant increase in the serum activity of the glutamate dehydrogenase by approximately 1 U/L when

Deleted: to

Deleted: L

compared with the control groups. This increase would suggest a DON-related enhancement of hepatocyte necrosis, whereby larger amounts of the enzyme are released into circulation. Literature findings on DON hepatotoxicity in poultry do not provide an integrative picture. For example, Dänicke et al. (2003) failed to detect any clinical-chemical signs of hepatocellular damage in broilers fed diets containing up to 14 mg DON/kg diet for 5 weeks, whereas Kubena et al. (1987) found γ -glutamyltransferase to be increased in rearing female chickens fed on a diet containing 18 mg DON/kg over a period of 168 d. In ducks, this enzyme was significantly decreased when the diet contained 30% CW, but increased to the level of the control group when the diet contained 60% CW (Dänicke et al., 2004b). Besides the fact that different poultry species might respond differently and more dependent on exposure it needs to be stressed that a general evaluation of such enzyme activities is difficult because of the lack of respective reference values. Thus, significant treatment differences do not necessarily mean a general liver health problem. As edible tissues, liver and breast meat were virtually free of DON, ZON and their metabolites considering the indicated limits of detection of the applied HPLC methods. Thus, the general conclusions drawn by EFSA (2004a,b) concerning the negligible carry over of DON and ZON also apply for turkeys, which were not considered. The only physiological specimen with detectable mycotoxin residues was the bile. The observation that especially ZON and its metabolites accumulate in bile agrees with our earlier findings in laying hens, broilers and ducks (Dänicke et al., 2004b; 2002; 2001b). Comparatively, the turkey seems to differ from laying hens and ducks in its ZON-metabolising pattern as the mean proportions of ZON, α -ZOL and β -ZOL amounted to 19, 77 and 4%, respectively, whereas the respective figures in laying hens were 75, 15 and 10 %, and in ducks 80, 16 and 4%. Therefore, the turkey seems to have a higher capacity to metabolise dietary ZON than other poultry species. This conclusion is supported by the results of Olsen et al. (1986) who found the proportion of α -ZOL of the sum of α -ZOL + ZON in liver to be approximately 91% in male turkeys

Deleted: the

Deleted: to

Deleted:

Deleted: iz

British Poultry Science

exposed to a diet containing 800 mg ZON/kg for two weeks. Only trace amounts of β -ZOL were detected in this study. From the data presented by Olsen et al. (1986) a carry-over factor of approximately 0.004 can be estimated as the ratio between the concentration of ZON plus α -ZOL in liver and ZON concentration in the diet. Applying this factor to the highest ZON concentration of the present experiment of 0.044 mg ZON/kg diet would mean an expected liver concentration of approximately 0.16 ng ZON plus α -ZOL/g, which is below the detection limit of our HPLC-method. Therefore, when practical ZON concentrations are fed to turkeys, the expected trace concentrations of ZON residues are negligible from a consumer protection point of view.

Entereo-hepatic cycling of ZON and its metabolites is another interesting feature of ZON metabolism. In this regard it differs markedly from DON. The ratio between metabolite concentrations in bile and diet can be used as an indicator of the extent of the importance of the entero-hepatic cycling. The mean ratio for ZON amounted to 3.2, whereas that of DON was just 0.003 in the present experiment. The respective ratios for gilts were reported to be 4.0 and 0.03 (Dänicke et al., 2005). Whether the obviously more intensive toxin cycling in pigs contributes to their higher susceptibility to DON and ZON as compared to poultry can not be finally evaluated.

Conclusions

A stepwise increase in dietary DON concentration up to 5 mg/kg resulted in a dose_related but transitory decrease in live weight gain. More dose-response studies covering longer fattening periods are necessary to establish critical dietary DON concentrations for turkeys. The carryover of DON and ZON into edible tissues can be considered as negligible from a consumer protection point of view.

ACKNOWLEDGEMENTS

The assistance of <u>colleagues at</u> the Institute for Animal Welfare and Animal Husbandry, located in Celle, and <u>at the Institute of Animal Nutrition of the Federal German Agricultural</u> Deleted:
 Formatted: Line spacing: Double
 Deleted:

Deleted: ¶
Formatted: All caps
Formatted: Centered, Line spacing: Double
Deleted: the co-workers of
Formatted: Line spacing: Double
Deleted: of

336 Research Centre in Braunschweig in performing the experiments and analyses is gratefully

5	220		
6 7	338		Formatted: All caps
8 9	339	REFERENCES	Formatted: Centered, Line spacing: Double
10	340	Bedford, M.R. & Classen, H.L. (1992) Reduction of intestinal viscosity through manipulation	Formatted: Line spacing: Double
11 12	341	of dietary rye and pentosanase concentration is effected through changes in the	
13 14	342	carbohydrate composition of the intestinal aqueous phase and results in improved	
15 16	343	growth rate and food conversion. Journal of Nutrition, 122: 560-569.	
17 18	344	Bedford, M.R. & Schulze, H. (1998) Exogenous enzymes for pigs and poultry. Nutrition	
19 20	345	Research Reviews, 11: 91-114.	
21 22	346	Dänicke, S., Böttcher, W., Simon, O., Jeroch, H. & Thielebein, J. (2000a) Replacement of	
23 24	347	soybean oil with tallow in rye-based diets without xylanase increases protein synthesis	
25 26	348	in small intestine of broilers. Journal of Nutrition, 130: 827-834.	
27 28	349	Dänicke, S., Brüssow, KP., Valenta, H., Ueberschär, KH., Tiemann, U. & Schollenberger,	
29 30	350	M. (2005) On the effects of graded levels of Fusarium toxin contaminated wheat in	
31 32	351	diets for gilts on feed intake, growth performance and metabolism of deoxynivalenol	
33 34	352	and zearalenone. Molecular Nutrition & Food Research, 49: 932-943.	
35 36	353	Dänicke, S., Dusel, G., Jeroch, H. & Kluge, H. (1999) Factors affecting efficiency of NSP-	
37 38	354	degrading enzymes in rations for pigs and poultry. Agribiological Research, 52: 1-24.	
39 40	355	Dänicke, S., Gareis, M. & Bauer, J. (2001a) Orientation values for critical concentrations of	
41 42	356	deoxynivalenol and zearalenone in diets for pigs, ruminants and gallinaceous poultry.	
43 44	357	Proceedings of the Society of Nutrition Physiology, 10: 171-174.	
45 46	358	Dänicke, S., Jeroch, H., Böttcher, W. & Simon, O. (2000b) Interactions between dietary fat	
47 48	359	type and enzyme supplementation in broiler diets with high pentosan contents: Effects	
49 50	360	on precaecal and total tract digestibility of fatty acids, metabolizability of gross	
51			
52 53			
54			
55			

Page 15 of 24

1

2 3	361	energy, digesta viscosity and weights of small intestine. Animal Feed Science and
4 5	362	<i>Technology</i> , 84: 279-294.
6 7	363	Dänicke, S., Matthäus, K., Valenta, H. & Halle, I. (2004a) Effects of <i>Fusarium</i> -toxin
, 8 9	364	contaminated wheat grains and non-starch-polysaccharide (NSP) hydrolysing enzyme
10 11	365	preparation on Pekin duck performance. Archiv für Geflügelkunde, 68: 199-205.
12 13	366	Dänicke, S., Matthes, S., Halle, I., Ueberschar, K.H., Döll, S. & Valenta, H. (2003) Effects of
14	367	graded levels of <i>Fusarium</i> toxin-contaminated wheat and of a detoxifying agent in
15 16	368	broiler diets on performance, nutrient digestibility and blood chemical parameters.
17 18	369	British Poultry Science, 44: 113-126.
19 20	370	Dänicke, S., Matthes, S., Valenta, H., Ueberschär, K.H., Matthäus, K., Halle, I. &
21 22	371	Flachowsky, G. (2004b) Effects of graded levels of Fusarium toxin-contaminated
23 24	372	wheat on performance, blood chemical parameters and tissue mycotoxin-residues of
25 26	373	ducks. British Poultry Science, 45: 264-272.
27 28	374	Dänicke, S., Ueberschär, K.H., Halle, I., Matthes, S., Valenta, H. & Flachowsky, G. (2002)
29 30	375	Effect of addition of a detoxifying agent to laying hen diets containing uncontaminated
31 32	376	or Fusarium toxin-contaminated maize on performance of hens and on carryover of
33 34	377	zearalenone. Poultry Science, 81: 1671-1680.
35 36	378	Dänicke, S., Ueberschär, K.H., Halle, I., Valenta, H. & Flachowsky, G. (2001b) Excretion
37 38	379	kinetics and metabolism of zearalenone in broilers in dependence on a detoxifying
39 40	380	agent. Archives of Animal Nutrition, 55: 299-313.
41 42	381	Dänicke, S., Valenta, H. & Spilke, J. (2004c) Effects of long-term storage on Fusarium toxin
43 44	382	concentrations in wheat - sources of error of the analytical results. Archives of Animal
45 46	383	Nutrition, 58 : 507-515.
47 48	384	Dusel, G., Kluge, H., Gläser, K., Simon, O., Hartmann, G., Von Lengerken, J. & Jeroch, H.
49 50	385	(1997) An investigation into the variabilty of extract viscosity of wheat - relationship
51 52		
53 54		
55		

1 2 3	386	with the content of non-starch-polysaccharide fractions and metabolisable energy for
3 4 5	387	broiler chickens. Archives of Animal Nutrition, 50: 121-135.
5 6 7	388	Dusel, G., Kluge, H., Jeroch, H. & Simon, O. (1998) Xylanase supplementation of wheat-
7 8 9	389	based rations for broilers: Influence of wheat characteristics. Journal of Applied
9 10 11	390	Poultry Research,7: 119-131.
12 13	391	EFSA (2004a) Opinion of the Scientific Panel on Contaminants in the Food Chain on a
13 14 15	392	request from the Commission related to Deoxynivalenol (DON) as undesirable
16 17	393	substance in animal feed. The EFSA Journal, 73: 1-41 (available at:
17 18 19	394	http://www.efsa.eu.int/).
20	395	EFSA (2004b) Opinion of the Scientific Panel on Contaminants in the Food Chain on a
21 22	396	request from the Commission related to Zearalenone as undesirable substance in
23 24	397	animal feed. The EFSA Journal, 89: 1-35 (available at: http://www.efsa.eu.int/).
25 26	398	Friend, D.W., Trenholm, H.L., Fiser, P.S., Thompson, B.K. & Hartin, K.E. (1983) Effect of
27 28	399	dam performance and fetal development of deoxynivalenol (vomitoxin) contaminated
29 30	400	wheat in the diet of pregnant gilts. Canadian Journal of Animal Science, 63: 689-698.
31 32	401	GfE (2004) Ausschuss für Bedarfsnormen der Gesellschaft für Ernährungsphysiologie:
33 34	402	Empfehlungen zur Energie- und Nährstoffversorgung der Mastputen. Proceedings of
35 36	403	the Society of Nutrition Physiology, 13: 199-233.
37 38	404	Hamilton, R.M.G., Trenholm, H.L., Thompson, B.K. & Greenhalgh, R. (1985) The tolerance
39 40	405	of white leghorn and broiler chicks, and turkey poults to diets that contained
41 42	406	deoxynivalenol (vomitoxin)-contaminated wheat. Poultry Science, 64: 273-286.
43 44	407	Kubena, L.F., Harvey, R.B., Corrier, D.E., Huff, W.E. & Phillips, T.D. (1987) Effects of
45 46	408	feeding deoxynivalenol(DON, vomitoxin)-contaminated wheat to female white
47 48	409	leghorn chickens from day old through egg production. <i>Poultry Science</i> ,66: 1612-
49 50	410	1618.
51 52		
53 54		
55 56		
57 58		
59		

1

1		
2 3	411	Leitgeb, R., Lew, H., Khidr, R., Böhm, J. & Zollitsch, W. (1999) Einflu von
4 5	412	Fusarientoxinen auf die Mast- und Schlachtleistung von Mastputen. Proceedings of
6 7	413	the Society of Nutrition Physiology,8: 152-
, 8 9	414	Manley, R.W., Hulet, R.M., Meldrum, J.B. & Larsen, C.T. (1988) Turkey poult tolerance to
10 11	415	diets containing deoxynivalenol (Vomitoxin) and salinomycin. Poultry Science, 67:
12	416	149-152.
13 14 15	417	Matthäus, K., Dänicke, S., Strumpf, A., Valenta, H., Zieseniß, H. & Flachowsky, G. (2004)
16	418	Progression of the mycotoxin and nutrient concentration in wheat after inoculation
17 18	419	with Fusarium culmorum. Archives of Animal Nutrition, 58 : 19-35.
19 20	420	Morris, C.M., Ledoux, D.R., Li, Y.C., Bermudez, A.J. & Rottinghaus, G.E. (1999) The
21 22	421	individual and combined effects of feeding moniliformin, supplied by fusarium
23 24	422	fujikuroi culture material, and deoxynivalenol in young turkey poults. Poultry
25 26	423	Science, 78: 1110-1115.
27 28	424	Naumann, C. & Bassler, R. (1993) Die chemische Untersuchung von Futtermitteln.
29 30	425	Darmstadt, VDLUFA-Verlag,
31 32	426	Olsen, M., Mirocha, C.J., Abbas, H.K. & Johansson, B. (1986) Metabolism of high
33 34	427	concentrations of dietary zearalenone by young male turkey poults. Poultry
35 36	428	Science, 65: 1905-1910.
37 38	429	SCOOP TASK 3.2.10 of the European Member States (2003) Collection of occurrence data of
39 40	430	Fusarium toxins in food and assessment of dietary intake by the population of EU
41 42	431	member states. Co-ordinated by M.Gareis,
43 44	432	Simon, O. (1998) The mode of action of NSP hydrolysing enzymes in the gastrointestinal
45 46	433	tract. Journal of Animal and Feed Sciences,7: 115-123.
47 48	434	StatSoft (1984) Inc., Tulsa, OK, 1984-1995: Statistica for the Windows TM operating system.
49 50 51 52 53 54 55 56 57 58	435	Version 7.1,
59		

1		
2 3	436	Trenholm, H.L., Hamilton, R.M.G., Friend, D.W., Thompson, B.K. & Hartin, K.E. (1984)
4 5	437	Feeding trials with vomitoxin (deoxynivalenol)-contaminated wheat: effects on swine,
6 7	438	poultry, and dairy cattle. JAVMA, 185: 527-531.
8 9	439	Ueberschär, KH. (1999) Einfluß von Zearalenon auf Wachstum und Rückstände in den
10 11	440	Geweben von Mastkaninchen. VDLUFA-Kongreßband 1999, Halle/Saale, VDLUFA-
12 13	441	Schriftenreihe, 52/1999 : 425-428.
14 15	442	Valenta, H., Dänicke, S. & Döll, S. (2003) Analysis of deoxynivalenol and de-epoxy-
16	443	deoxynivalenol in animal tissues by liquid chromatography after clean-up with an
17 18	444	immunoaffinity column. Mycotoxin Research, 19: 51-55.
19 20	445	Valenta, H., Dänicke, S. & Wolff, J. (2002) Vergleich einer HPLC- und einer ELISA-
21 22	446	Methode zur Bestimmung von Deoxynivalenol in Mühlenstäuben, Kleien und
23 24	447	Getreide. VDLUFA-Kongreßband 2002, Leipzig, VDLUFA-Schriftenreihe, 58/2003 :
25 26	448	675-679.
27 28	449	Young, L.G., McGirr, L., Valli, V.E., Lumsden, J.H. & Lun, A. (1983) Vomitoxin in corn fed
29 30	450	to young pigs. Journal of Animal Science, 57: 655-664.
31 32	451	
33		
34 35		
36 37		
38		
39 40		
41		
42 43		
44		
45 46		
47		
48 49		
50		
51		
5Z		
52 53		
53 54		
53 54 55 56		
53 54 55 56 57		
53 54 55 56		

Page 19 of 24

British Poultry Science

. 452			Tabla 1 C		a diata (alla)					Formatted: Font: Italic
1 452				omposition of th	e alets (g/kg)					
2					Group					
3		1[-]	1[+]	2[-]	2[+]	3[-]	3[+]	4[-]	4[+]	
4	Components:									
5	Wheat	510	511.8	340	341.8	170	170	-	-	
6	Contaminated wheat	-	-	170	170	340	341.8	510	511.8	
7	Soybean oil	14	14	14	14	14	14	14	14	
8	Soybean meal	313.6	311.6	313.6	311.6	313.6	311.6	313.6	311.6	
9	Soybean protein	100	100	100	100	100	100	100	100	
10	Dicalcium phosphate	26.6	26.6	26.6	26.6	26.6	26.6	26.6	26.6	
11	Calcium carbonate	11.9	11.9	11.9	11.9	11.9	11.9	11.9	11.9	
12	Sodium chloride	4.9	4.9	4.9	4.9	4.9	4.9	4.9	4.9	
13	L-lysine-HCL	5.6	5.6	5.6	5.6	5.6	5.6	5.6	5.6	
14	DL-methionine	2.4	2.4	2.4	2.4	2.4	2.4	2.4	2.4	
15	L-threonine	1	1	1	1	1	1	1	1	
16	Enzyme preparation ZY68 ¹	-	0.2	-	0.2	-	0.2	-	0.2	
17	Premix ²	10	10	10	10	10	10	10	10	
18	Calculated composition:									
19	Crude protein	250	250	252	252	253	253	255	255	
20	AME _N (MJ/kg)	11.49	11.49	11.49	11.49	11.49	11.49	11.49	11.49	
21	Lysine	19.2	19.2	19.2	19.2	19.2	19.2	19.2	19.2	
22	Methionine + cystine	10.6	10.6	10.6	10.6	10.6	10.6	10.6	10.6	
22	Methionine	6.9	6.9	6.9	6.9	6.9	6.9	6.9	6.9	
23 24	Threonine	10.6	10.6	10.6	10.6	10.6	10.6	10.6	10.6	
	Calcium	11.8	11.8	11.8	11.8	11.8	11.8	11.8	11.8	
25	Total phosphorus	8.2	8.2	8.2	8.2	8.2	8.2	8.2	8.2	
26	Sodium	2	2	2	2	2	2	2	2	
27	DON (mg/kg)	0.10	0.10	1.39	1.39	2.68	2.68	3.97	3.97	
28	ZON (µg/kg)	1	1	18	18	34	34	51	51	
29	Analysed composition:									Deleted: <u>yz</u>
30	Dry matter	905	908	909	901	898	901	9 05	903	
31	Crude protein	247	250	254	258	257	264	263	266	
32	DON (mg/kg)	0.10±0.03	0.11±0.03	2.09±0.47	1.96±0.61	4.66±0.29	4.59±0.33	5.42±0.09	5.17±0	.30
33	ZON (µg/kg)	16	23	39	30	42	36	44	41	
34	Endo-1,4-β-Xylanase (FXU/kg)		240		230		270		280	Deleted: & Co.
35453	¹ ZY68, Lohmann Animal Health GmbH	, KG, Cuxhaven, Ge	ermany; declared a	ctivity: <u>endo</u> -1,4-β	xylanase (EC 3.2.	1.8) 1000 FXU/ <u>g.</u>				
36454	² Premix provided per kg of diet: 4.8 mg	retinol, 100 µg cho	lecalciferol, 40 mg	dl-a-tocopheryl ad	cetate, 2.3 mg thiar	nin, 9.5 mg ribofla	vin, 20 mg calciun	n-D-pantothenate,	50 mg	Deleted: Declared

² Premix provided per kg of diet: 4.8 mg retinol, 100 μg cholecalciferol, 40 mg dl-α-tocopheryl acetate, 2.3 mg thiamin, 9.5 mg riboflavin, 20 mg calcium-D-pantothenate, 50 mg nicotinic acid, 7.5 mg pyridoxin-hydrochloride, 1.7 mg folic acid, 35 µg cyanocobalamin, 4 mg menadione, 200 µg biotin, 650 mg choline chloride, 80 mg Zn, 50 mg Fe, 120 mg 38⁴⁵⁶ Mn, 25 mg Cu, 0.55 mg Co, 1.2 mg J, 0.25 mg Se, 100 mg butylhydroxytoluol.

Deleted: Endo

Deleted: Xylanase

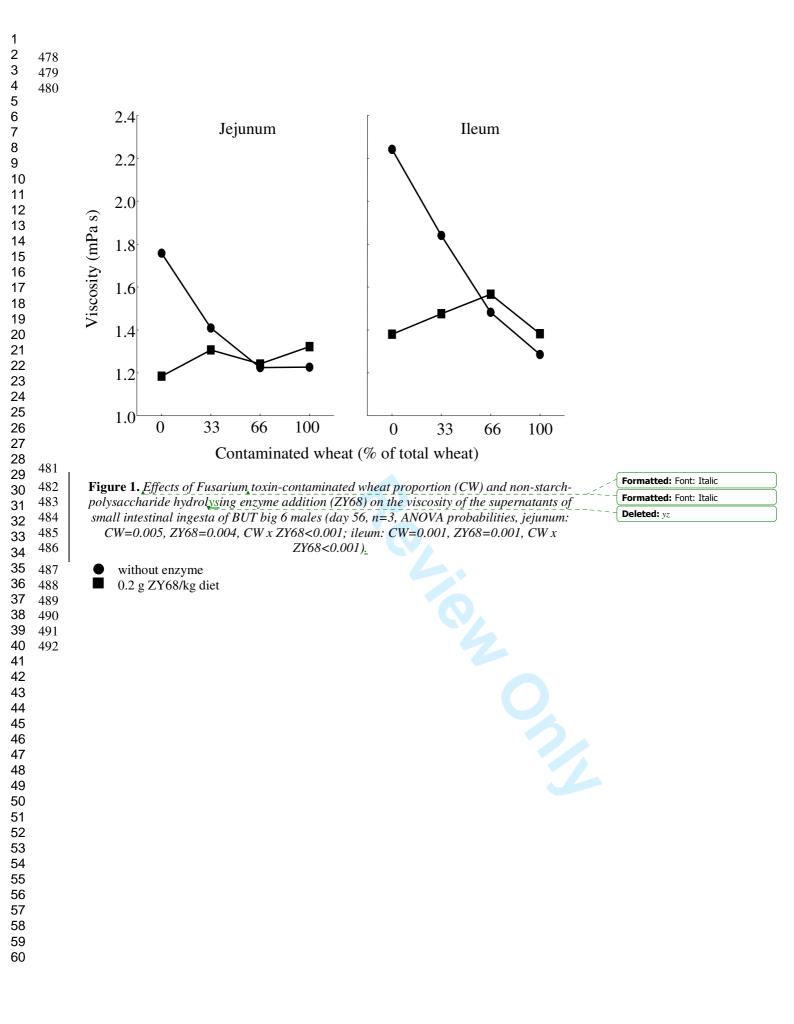
					BUT <u>Big</u>	6 males						Deleted: yz
Group	Contaminat	Enzyme	Live v	weight gain (n	=8, g/d)	Feed	l intake (n=8	s, g/d)	Feed-to	o-gain ratio (1	n=8, g/g)	Formatted: Font: Italic
	ed wheat	(ZY68,	<u>d</u> 21-35	<u>d</u> 36-56	d 21-56	d 21-35	d 36-56	d 21-56	d 21-35	d 36-56	d 21-56	Deleted: b
	(CW, % of	g/kg)	₩	_ ¥			#1177111	-		<u> </u>		Formatted: Font: Italic
	total wheat)											Deleted: Day
1[]			69.1	126.1	102.9	107.3	224.1	177.4	1.582	1.774	1.723	Deleted: Day
1[-]	0	-	68.1								hur i	Deleted: Day
1[+]	0	0.2	67.7	124.7	101.9	104.2	219.2	173.2	1.539	1.760	1.701	Deleted: Day
2[-]	33	-	65.4	122.6	99.7	104.5	218.7	173.0	1.597	1.783	1.734	Deleted: Day
2[+]	33	0.2	69.3	123.5	101.9	108.3	223.3	177.3	1.558	1.808	1.740	Deleted: Day Deleted: Day
3[-]	66	-	66.4	124.5	101.2	106.5	224.8	177.5	1.609	1.811	1.758	Deleted: Day
3[+]	66	0.2	67.2	125.6	102.2	105.0	225.0	177.0	1.569	1.796	1.736	Deleted: Day
4[-]	100	-	65.0	121.4	98.8	102.8	216.3	170.9	1.584	1.784	1.731	
4[+]	100	0.2	64.8	120.9	98.5	104.6	215.4	171.1	1.618	1.782	1.738	
ANOVA	(probabilities)	<u>)</u>										
CW			0.185	0.275	0.190	0.668	0.184	0.262	0.136	0.172	0.106	
Linea	r		0.040	0.136	0.064	0.355	0.305	0.290	0.020	0.313	0.089	
Quad	ratic		0.452	0.684	0.569	0.407	0.152	0.179	0.842	0.047	0.071	
ZY68			0.452			0.407	0.943	0.994	0.042	0.907	0.454	
CW x Z	Y68			0.997	0.735	0.421	0.714	0.620	0.098	0.601	0.554	
			0.422	0.927	0.823							
PSEM			1.5	2.4	1.8	2.3	4.1	3.2	0.018	0.017	0.014	

E-mail: br.poultsci@bbsrc.ac.uk URL: http://mc.manuscriptcentral.com/cbps

British Poultry Science

Table 3. Organ weights of male BUT big 6 males as influenced by Fusarium toxin

 contaminated wheat proportion and non-starch-polysaccharide hydrolysing enzyme addition (g/kg body weight, n=12)


[9	Deleted: ¶
F	Formatted: Font: Italic
F	Formatted: Font: Italic
ſ	Deleted: yz
F	Formatted: English U.S.
F	Formatted: Normal

5	105			(8)	ng body weigh	<i>n</i> , <i>n</i> -12)			> >	Forma
6 7	464	Crown	Contaminate	dEnguma	Jejunum	Splaan	Dunga	Liver		Delete
8		Group		(ZY68, g/kg)	plus ileum	Spleen	Bursa fabricii	Liver	× >	Forma
9			% of total	(2100, 2/Kg)	plus neum		juonen		l	Forma
10			wheat)							
11		1[-]	0	-	18.4	1.2	1.2	16.5	4.2	
12		1[+]	0	0.2	17.5	1.0	1.2	15.5	3.9	
13		2[-]	33	-	16.2	1.0	1.2	15.8	4.2	
14		2[+]	33	0.2	15.4	1.0	1.1	14.9	3.7	
15		3[-]	66	-	16.3	1.1	1.2	14.5	4.1	
16		3[+]	66	0.2	15.3	1.0	1.1	16.3	3.9	
17		4[-]	100	-	16.7	1.0	1.2	15.2	4.2	
18		4[+]	100	0.2	15.5	1.1	1.2	14.6	4.0	
19			A (probabilitie	<u>es)</u>	<0.001	0 6 4 7	0.008	0.006	0.622	
20		CW Line			<0.001	$0.647 \\ 0.804$	0.998 0.882	0.086 0.020	0.622 0.566	
21			dratic		0.002	0.804	0.882 0.945	0.020	0.300	
22		ZY68	uratic		0.003	0.392	0.943	0.773	<0.234	
23		CW x Z	7768		0.575	0.209	0.659	0.005	0.455	
24 25		PSEM	2100		0.6	0.209	0.055	0.005	0.1	
25 26	465	1020			0.0	0.1	0.1	0.1	0.1	
20 27	105									
28		l								
29										
30										
31										
32										
33										
34										
35										
36										
37										
38										
39										
40										
41										
42										
43										
44										
45										
46										
47										
48										
49										
50										
51 52										
~ ~ /										

66				l wheat proportion ar			I: Font: Italic
				serum activities of the $activities$ of $activities$ of the $acti$	e_γ-glutamyltransfer	rase Deleted: yz	
68		ue aenyarogenase	of BUT big 6 mal			Deleted: D	
I	Group	Contaminated wheat (CW, % o total wheat)	Enzyme γ-g f (ZY68, g/kg)(U/		Glutamate dehydrog (U/L)	jenase	uy
	1[-]	0	-	2.3	5.8		
	1[+]	0	0.2	2.8	5.9		
	4[-] 4[+]	100 100	0.2	2.2 2.2	6.9 6.8		
	ANOVA (pi		0.2	2.2	0.8		
	CW	<u></u>		0.092	0.014		
	ZY68			0.229	0.988		
	CW x ZY68	3		0.331	0.883		
	PSEM			0.2	0.4		
69 70							
71 72							

Page 23 of 24

Table :	5. Effects of Fusa	rium toxin-	contaminated	wheat proporti	on and non-sta	arch-polysacchari	ide hydrol <u>ys</u> ing en:	vme addition	on the	Formatted: Fo	
							ile of BUT big 6 m	*		Formatted: Fo	
Group	Contaminated wheat (CW,	Enzyme (ZY68,		Concentr	ation (ng/g)			Metabolite profile (% of the sum of β- ZOL+ α -ZOL+ZON)			
	% of total wheat)	(2100, g/kg)	β-ZOL	α-ZOL	ZON	β-ZOL+α- ZOL+ZON	β-ZOL	α-ZOL	ZON		
1[-]	0	-	3.0	20.4	6.3	29.7	4.1	83.1	12.8		
1[+] 2[-]	0 33	0.2	4.7 7.0	37.7 104.6	10.5 26.7	53.0 138.3	3.9 4.5	78.8 76.4	17.2 19.1		
2[+]	33	0.2	9.9	122.4	28.1	160.3	5.9	76.1	18.0		
3[-] 3[+]	66 66	- 0.2	3.5 2.1	128.5 82.4	31.1 24.1	163.1 108.5	2.0 1.6	79.1 76.0	18.9 22.3		
4[-]	100	-	4.9	97.1	29.0	131.0	3.6	74.4	22.0		
4[+] ANOVA (pro	100 (bablities)	0.2	3.0	91.4	29.2	123.6	1.4	75.1	23.5		
CW			0.097	< 0.001	< 0.001	<0.001	0.276	0.376	0.007		
Linear Quadratic			0.535 0.347	<0.001 <0.001	<0.001 0.003	<0.001 <0.001	0.239 0.848	0.136 0.693	0.001 0.630		
ZY68 CW x ZY68			$0.867 \\ 0.720$	0.643 0.036	0.919 0.507	0.744 0.091	0.815 0.826	0.482 0.881	0.161 0.505		
PSEM			2.4	11.6	3.6	16.5	1.8	3.2	1.9		

