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Abstract 1. The effects of acute heat stress (2 h at 32°C and 75% RH) on body temperature 20 

and indices of respiratory thermoregulation and skeletal muscle function were examined in two 21 

divergently selected male grandparent lines of broiler and layer-type chickens at two ages (35 and 22 

63 d), or at a similar body weight (~2.2 kg). 23 

2. The two chicken lines exhibited markedly different base-line blood acid-base and skeletal 24 

muscle characteristics. At the same age or liveweight, birds from the broiler line had significantly 25 

higher venous blood carbon dioxide tensions associated with lower blood pH. Plasma creatine 26 

kinase (CK) activities reflecting muscle membrane damage were also greatly elevated in the 27 

broiler line. 28 

3. Exposure to acute heat stress caused an increase in deep body temperature, panting-induced 29 

acid-base disturbances and elevated plasma CK activity in both lines of chicken, an effect that 30 

increased with age.  The extent of disturbances in acid/base regulation and heat stress-induced 31 

myopathy were more pronounced in the broiler than the layer line at the same age or similar 32 

liveweights. 33 

4. It is suggested that genetic selection for high muscle growth in broiler lines has 34 

compromised their capacity to respond to an acute thermal challenge, leading to detrimental 35 

consequences for muscle function.  This reduction in heat tolerance may have important 36 

implications for bird welfare and subsequent meat quality. 37 

INTRODUCTION 38 

Programmes of genetic selection in poultry for economically important production traits such as 39 

high growth rate, food conversion efficiency and muscle yield have been extremely successful.  40 

Intensive commercial selection in broiler chickens aimed at improving weight gain and meat 41 

yields have resulted in birds that grow up to 4 times faster than layer strains and exhibit 8-fold 42 
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increases in breast muscle growth rate (Griffin and Goddard, 1994). Whilst genetic selection in 43 

broiler chickens has made major advances in the development of production traits, it is 44 

increasingly recognised that these may also be associated with a number of undesirable patho-45 

physiological metabolic derangements (Scheele, 1997). These include respiratory and cardio-46 

pulmonary disorders (Julian, 1993, 1996) and skeletal disease (Thorp, 1994). Selection for high 47 

meat yields coupled with rapid growth rates in chickens have also led to an increase in the 48 

incidence of pathological features observed in skeletal muscle. Degenerative changes include 49 

focal fibre necrosis, hypercontraction, mononuclear cell infiltration, alterations in cel1 membrane 50 

integrity and the loss of myo-cellular constituents (Siller, 1985; Mitchell and Sandercock, 1996; 51 

Soike and Bergmann, 1998; Mahon 1999; Cooke et al., 2003). Sandercock and Mitchell (2003, 52 

2004) published evidence that such growth-associated or stress-induced myopathies may result 53 

from disruption of intracellular calcium homeostasis in muscles of rapidly growing broiler birds 54 

exhibiting high metabolic rates (Mitchell, 1999).  It has been proposed that the increased 55 

incidence of such metabolic disorders in broiler chickens is due to an imbalance between the 56 

production and supply of energy and metabolites for maintenance requirements (Savory, 1995; 57 

Scheele, 1997).  The resulting homeostatic dysregulation then leads to cellular, tissue and organ 58 

dysfunction. 59 

During the course of production, poultry may be exposed to stressful environmental 60 

challenges. Chronic thermal stress (high or low environmental temperatures) has been shown to 61 

have a detrimental effect upon production efficiency and mortality (Washburn, 1985). Episodes 62 

of acute heat or cold stress in broilers may be experienced under commercial production and 63 

transport conditions (Webster et al., 1993; Mitchell et al., 1992, 1997; Mitchell and Kettlewell 64 

1998). In the case of heat stress, elevated deep body temperature is accompanied by panting in 65 

order to increase respiratory evaporative heat loss (Hillman et al., 1985).  Panting induces a 66 
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hypocapnic alkalosis due the increased elimination of carbon dioxide resulting from elevated 67 

respiratory minute volume (Wideman et al., 2003; Borges et al., 2004).  Acute hyperthermia and 68 

respiratory alkalosis are in turn associated with a heat-stress-induced myopathy, a pathology that 69 

may underlie subsequent problems with meat quality (Sandercock et al., 2001). Such skeletal 70 

muscle damage "in transit" associated with hyperthermia, and reflected in measurement of 71 

plasma creatine kinase (CK) activities, has been described in broiler chickens exposed to acute 72 

heat stress under both actual and simulated commercial transport conditions (Mitchell et al., 73 

1992; Mitchell and Sandercock, 1995 a, b; Sandercock et al., 2001).  74 

Tolerance of short or long term elevated thermal loads is greater in more traditional and 75 

less selected chicken breeds than commercial intensively selected broiler lines (Arad and Marder, 76 

1982 a, b, c; Berrong and Washburn, 1998; Zulkifli et al., 1999). A reduced resistance to heat 77 

stress in broiler birds may be attributable to a decreased ability to lose heat (MacLeod and 78 

Hocking, 1993) or an inappropriately increased heat production during exposure to high thermal 79 

loads (Sandercock et al., 1995). Comparative studies that characterise the responses to thermal 80 

challenge in broiler chickens and in lines not selected for enhanced growth and feed conversion 81 

efficiency at the same age may be confounded by disparities in body size and geometry 82 

(Monteith, 1973). To overcome some of the difficulties this presents in interpretation, 83 

comparisons can be made at “matched” liveweights. While it is acknowledged that this approach 84 

can also present problems in interpretation due to age-dependent developmental differences, it 85 

does provide a more acceptable indication of the severity of a thermal challenge between 86 

different lines (Zulkifli et al., 1999). 87 

Elevated plasma CK activity is recognised as a reliable diagnostic marker of muscle 88 

damage (Hamburg et al., 1991; Mitchell and Sandercock 1995 a, b). It is indicative of disruptions 89 

in muscle cell membrane (sarcolemma) function and permeability (Mitchell 1999). Previous 90 
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studies have demonstrated a strong relationship between the extent of histologically demonstrable 91 

muscle fibre pathology and plasma CK activity (Soike and Bergmann 1998; Cooke et al. 2003). 92 

Thus, baseline absolute CK activity reflects the extent of any idiopathic myopathy present 93 

whereas changes following an environmental challenge indicate the degree of stress induced 94 

muscle damage. 95 

The objectives of the present study were to characterise the effects of acute heat stress (HS) 96 

on physiological indices of thermoregulatory capacity and muscle membrane integrity in 97 

divergently selected pure male lines of chickens (meat and layer type) at the same age and very 98 

different body weights or at two different ages but the same body weight. The birds were 99 

subjected to a thermal load whose duration and magnitude was representative of that known to 100 

induce symptoms of heat stress in chickens during commercial transportation (Mitchell and 101 

Kettlewell, 1998). Blood pCO2 and pH were measured to assess the extent of respiratory 102 

thermoregulatory effort and plasma CK activity was used as a tissue specific indicator of skeletal 103 

muscle damage.  104 

MATERIALS AND METHODS 105 

Animals and husbandry 106 

The birds used in the study were pedigreed male chicks from a male great grandparent broiler 107 

(B), and White Leghorn layer (L) line obtained from two commercial breeding companies. 108 

Ninety-six birds of both lines were reared together from 1-d-old in 12 pens (3.6 m
2
) on wood 109 

shaving litter (8 birds per line per pen). Room temperatures of 18-20°C were maintained by 110 

controlled ventilation and heating. Birds were provided with ad libitum access to a commercial 111 

broiler diet and water and were subjected to a 14h light: 10h dark photoperiod for the duration of 112 

the experiment. All birds were beak trimmed at 14 d of age and light intensities reduced to < 5 113 

Page 5 of 23

E-mail: br.poultsci@bbsrc.ac.uk  URL: http://mc.manuscriptcentral.com/cbps

British Poultry Science

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

 6 

lux to minimise possible outbreaks of bird-to-bird pecking (Kjaer and Vestergaard, 1999). A 114 

second batch of 1-d-old broiler chicks (n = 48) was obtained 10 weeks after the arrival of the 115 

initial consignment of White Leghorn birds to allow for the comparison of the two lines at the 116 

same liveweight. These birds were reared as previously described and comparisons of the birds’ 117 

responses to acute HS at approximately the same liveweight were carried out in the B- and L-line 118 

respectively at 35 and 105 d of age. All experiments were performed with authorisation of the 119 

UK Home Office and with the approval of the Roslin Institute Ethical Committee. 120 

Heat stress protocol  121 

At 35 and 63 d of age (same age) and at 35 (B) and 105 (L) d (same liveweight), 24 birds from 122 

both lines were transferred into 4 or 6 commercial transport containers (0.7 × 0.5 × 0.3 m). Half 123 

the containers were placed in a controlled climate chamber at 32°C/75% relative humidity (RH) 124 

for a period of 2 h. The remaining containers were placed in an adjacent identical climate 125 

chamber at 21°C/50% RH (thermoneutral) for the same duration. The experiment was repeated 126 

with 12 L at 105 d of age when they were of comparable body weight to the second batch of 12 B 127 

at 35d.  Feed was withdrawn from the birds 4 prior to the heat stress experiments  128 

Rectal temperatures and blood samples were taken from all birds immediately before (T0) 129 

and after (T1) the heat stress exposure period using a thermistor probe (Model 612-849; RS 130 

Components Ltd., Northants, UK) inserted 5 cm into the bird’s rectum. Blood samples were 131 

obtained at the same time as rectal temperature by superficial venepuncture (brachial vein) and 132 

transferred into 5-ml blood collection tubes containing Li-heparin anti-coagulant (50 IU ml
-1

) and 133 

immediately chilled on ice. Blood pCO2 and pH were measured within 2 minutes of sample 134 

collection using an automated blood gas analyser (Model 238 pH/Blood Gas Analyser, CIBA-135 

Corning, Halstead, UK) with body temperature compensation. Plasma samples for CK 136 
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determination were obtained by centrifugation of whole blood at 1500 g for 5 minutes and stored 137 

at –20°C pending enzyme analysis. The activity of CK was assessed using a commercial kit 138 

(Biotrol CK Monoreactif, Alpha Laboratories, Hants, UK) modified for use with a multi-well 139 

plate spectrophotometer (MR 5000, Dynatech Laboratories, West Sussex UK) as previously 140 

described (Mitchell et al., 1999).  141 

Statistical analyses 142 

The first experiment (comparing two lines at two ages) was a 2
4
 factorial design (Line × 143 

Treatment × Time × Age). Blocking factors were pen within crate and bird as a split-plot effect. 144 

The second experiment (comparing two lines at the same body weight) was a 2
3
 factorial design 145 

(Line × Treatment × Time) with the same blocking factors. Standard analysis of variance 146 

methods were used to assess the treatment effects using Genstat (http://www.vsn-147 

intl.com/genstat/). For analysis at the same age, pvCO2 and plasma CK were transformed by 148 

taking natural logarithms to obtain residual errors that were normally distributed. 149 

RESULTS 150 

The thermal conditions experienced by birds of the two lines were similar at the two ages for both 151 

control (C) and acute heat stress (HS) treatments. Mean ambient temperatures (°C) and RH 152 

respectively were 22.5 °C/29.1 % RH at 35 d; 21.3 °C/30.5 % RH at 63 d for C and 32.5 °C/67.1 153 

% RH at 35 d; 32.1 °C/75.5 % RH at 63 d for HS. For birds compared at the same liveweight, 154 

mean values for C and HS treatments respectively were 21.9°C/29% RH and 32.3°C/71.3% RH. 155 

Comparisons at the same age 156 

Differences in liveweight were observed between the two lines at the two ages (P<0.001). Mean 157 

body weights of B at 35 and 63 d, respectively, were 2.27 and 5.58 kg compared with 0.41 and 158 

0.98 kg in L (sed 0.027). Both lines exhibited significant (P<0.001) increases in liveweight with 159 
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age of 2.5 and a 2.4-fold respectively from 35 to 63 d of age in the B- and L-line. There were no 160 

differences in liveweight between the control and HS groups in any of the treatment comparisons. 161 

Mean trait values before and after HS in control and treated birds of both lines at the two 162 

ages are presented in Table 1. 163 

Rectal temperature 164 

The change in rectal temperature in response to HS was significantly greater in the B-line 165 

compared to the L-line leading to a Line × Treatment × Time interaction (P<0.001). In the B-line, 166 

mean HS-induced changes in body temperature were +1.7 °C greater than in controls at the same 167 

age, at both ages compared with 0.5 and 0.2 °C respectively at 35 and 63 d in the L-line (Table 168 

1). Average rectal temperature was greater at 63 than 35 d (P<0.001). 169 

Venous blood carbon dioxide (pvCO2) 170 

The 4-way interaction of Line × Age × Treatment × Time was highly significant (P<0.001) for 171 

pvCO2. Basal pvCO2 was greater (P<0.001) in the B-line compared to the L-line at 35and 63 d.  172 

Changes in pvCO2 in response to HS challenge in the B-line at both ages, and in L-line at 63 d 173 

were significantly (P<0.001) lower than in the controls (Table 1).  174 

Venous blood pH (pHv) 175 

The 4-way interaction of Line × Age × Treatment × Time was significant (P<0.01) for pHv. Base-176 

line pHv was similar in B- and L-lines at 63 and 35 d of age. The increase in pHv following 177 

exposure to HS was greater (P<0.001) in the B- compared with L-line birds at both ages and in 178 

the L-line birds at 63 (P<0.001) compared with 35 d (not significant).   179 

Plasma creatine kinase (CK) activity 180 

Table 1 near here 
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Plasma CK activities were significantly higher in B- compared with L-line before and after HS at 181 

both ages (Line × Age × Time interaction P<0.01). Exposure to HS at 35 and 63 d respectively 182 

was associated with increases of 28 and 25% in CK in B-line and 12% and 24%  in L-line birds.  183 

Comparisons at the same liveweight 184 

Body weights of B were slightly greater than L (2.17 vs. 1.93, sed 0.036 kg; P<0.001) at the time 185 

of the experiment when they were respectively 35 and 105 d old. Responses to HS in the two 186 

lines are presented in Table 2. 187 

Rectal temperature 188 

Acute heat stress increased rectal temperatures in both lines (P<0.001). The extent of the change 189 

was significantly greater in B-line than in the L-line birds, reflecting a mean increase in rectal 190 

temperature compared with controls of +1.55 ºC in the B-line and +1.16 ºC in the L-line 191 

(Treatment × Line × Time interaction P<0.05). 192 

Venous blood carbon dioxide (pvCO2) 193 

The Treatment × Line × Time interaction for pvCO2 was significant (P<0.001). Baseline pvCO2 194 

measurements were greater in B-line and increased in the control whereas  pvCO2 declined in L-195 

line control and in both lines subjected to HS. Exposure to acute heat stress reduced blood pvCO2 196 

in both lines and the extent of the reduction was much greater in the B-line compared to the L-197 

line. 198 

Venous blood pH (pHv) 199 

Heat stress induced a greater increase in pHv in the broilers than in the layers (Treatment × Line 200 

interaction P<0.05) and the change was greater under HS than control conditions (Treatment x 201 

Time P<0.001).  202 

 203 

Table 2 near here 
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Plasma creatine kinase (CK) activity 204 

Plasma CK activities were significantly (P<0.001) different between the two lines at the same 205 

live weight with the B-line birds exhibiting an average 1.8-fold greater plasma CK activity than 206 

the L-line. Hyperthermia-associated CK activity was 19 and 18 % higher respectively in the B-207 

line and L-line compared with the controls (Treatment × Time interaction P<0.001) 208 

DISCUSSION 209 

Exposure to acute heat stress of the magnitude and duration used in this study produced a 210 

significant hyperthermia in both lines at both ages. The extent of the hyperthermia was much 211 

greater in the more rapidly growing B-line than the L-line, irrespective of age or liveweight. The 212 

disparities in extent of the increase in deep body temperature at the same age are most likely to be 213 

attributable to differences in body size and geometry and their effects upon heat exchange 214 

(Monteith, 1973; Hillman et al., 1985). These findings are consistent with a previous report in 215 

which slower growing “dwarf line” broilers exhibited greater heat stress resistance than more 216 

rapidly growing lines, a characteristic that was attributed to differences in body size (Deeb and 217 

Cahaner 2001). In the present study in birds of the same liveweight, exposure to HS induced a 218 

greater degree of hyperthermia in the B-line compared to the L-line. The differences in the degree 219 

of induced hyperthermia may reflect variations in thermotolerance in the two lines, possibly 220 

attributable to differing efficiencies of heat loss mechanisms (Sandercock et al., 1995). Deep 221 

body temperature represents the balance between heat production and heat loss (Monteith, 1973; 222 

Hillman et al., 1985) and changes when one exceeds the other, such as during acute heat stress 223 

(Lin et al., 2004). Relative differences in hyperthermia or “heat storage” may result from a 224 

reduced capacity for heat loss, an increase in heat production, or a combination of both. 225 

Temperature regulation by panting carries a high metabolic cost, which has been shown to 226 
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increase heat production and may have an influence upon thermoregulatory efficiency in birds 227 

(Whittow, 1976). It has previously been demonstrated that modern broiler birds have a relatively 228 

high body-weight corrected heat production associated with hyperthermia and panting compared 229 

to their genetic predecessors (Sandercock et al., 1995). 230 

It has long been established that profound respiratory alkalosis is induced in broiler 231 

chickens by heat stress (Hillman et al., 1985; Teeter et al., 1985). Examination of the effects of 232 

HS on these indices revealed differences in the extent of panting-induced hypocapnic alkalosis 233 

that were negatively correlated with differential rectal temperatures in the two lines at the same 234 

age. These findings may be explained, at least in part, by the influence of body size and geometry 235 

upon heat transfer and therefore core body temperature disturbances and the resultant 236 

thermoregulatory demands. In the body-weight matched birds there was a marked difference in 237 

the extent of the HS-induced acid-base and blood gas disturbances. These results indicate that the 238 

thermoregulatory respiratory effort was much greater in the broiler line, resulting in elevations in 239 

total respiratory ventilation rates. From the measurements made in this study it is not possible to 240 

determine precisely the contributions of higher respiratory frequencies and greater relative tidal 241 

volumes in the B-line. The key finding is that the broiler line experiences a greater degree of 242 

hyperthermia despite an apparently increased thermoregulatory effort in terms of panting when 243 

compared to the layer line even at the same body weight. We hypothesise that the heat loss 244 

mechanism is less efficient in the broiler birds than in the layers, or, is associated with a higher 245 

heat production that leads to increased heat storage, acute hyperthermia and more marked heat 246 

stress. 247 

Interestingly, the two lines used in this study also exhibited markedly different baseline 248 

blood pvCO2. The different magnitude of the decline in pvCO2 between the lines may be 249 

attributable to differences in body weight specific metabolic rate. This would be consistent with 250 
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the findings of Korte et al., (1999), who reported that selection for rapid growth and a high 251 

metabolic rate in broilers results in a high basal pvCO2. Alternatively broilers may have an 252 

inadequate control of CO2 elimination and regulation of blood gas and acid-base status. Olkowski 253 

et al., (1999) reported that pvCO2 was higher in broiler birds than age matched (35 d) White 254 

Leghorn chickens, that pvCO2 increased with age in the broilers and was accompanied by a 255 

tendency towards increasing acidosis. Scheele et al., (2005) have recently described elevated 256 

pvCO2 and lower pHv in native breeds compared to modern selected lines and found a positive 257 

correlation between a predisposition to hypercapnic acidosis and the incidence of ascites 258 

syndrome precursors in young birds. Examination of baseline pHv values in the different lines in 259 

the current study revealed similar mean values for pHv (7.38±0.03) in the L-line at 35, 63 and 105 260 

d and 35 d in B-line, despite line disparities in baseline pvCO2. The generally higher blood pCO2 261 

and a trend towards lower pH in rapidly growing broilers may predispose the birds to a number of 262 

other pathologies including the ascites syndrome (Olkowski et al., 1999; Scheele et al., 2003; 263 

Wideman et al., 2003).  264 

Differences in plasma CK activities resulting from efflux of the enzyme from muscle in 265 

birds of different sizes or lines are unlikely to be attributable to different volumes of distribution 266 

as similar mean body-weight specific plasma volumes have been reported in both broiler and 267 

layer-type chickens (at ages used in this study), constituting approximately 5-6% liveweight 268 

(Sturkie, 1976; Yahav et al., 1997).  269 

At matched ages and body weights the B-line exhibited much more extensive idiopathic 270 

myopathy than the L-line, the baseline CK activities averaging 2.4 and 3.4 fold higher in the 271 

broilers respectively at 35 and 63 d of age and 1.8 fold greater at similar weights. It has been 272 

proposed that this pathology is a direct consequence of selection for high growth rate from 273 

comparisons of fast and slow growing lines of broilers and turkeys (Mitchell and Sandercock 274 
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1994, 1995b; Hocking et al., 1998; Sandercock et al., 2001). Soike and Bergmann (1998) have 275 

suggested also that selection for high growth rate and muscle yield have adverse effects upon 276 

structural, metabolic and functional parameters in poultry skeletal muscle. In the current age-277 

matched comparisons the proportional increase in plasma CK activity following HS was higher in 278 

the B-line than in the L-line at 35 d and was similar at 63 d of age. The post-stress absolute 279 

activities, however, at 35 and 63 d respectively were 3.6 and 2.7 fold greater compared with pre-280 

stress values in the B- than in the L-line. In the body weight matched groups the heat stress 281 

induced proportional increase in plasma CK activity was similar in the two lines whereas the 282 

absolute values were about 2-fold greater in the B- compared with the L-line. It is concluded that 283 

acute heat stress induces further muscle damage in rapidly growing broiler chickens, which 284 

already exhibit a substantial degree of spontaneous or idiopathic myopathy. An increased 285 

susceptibility to heat stress-induced myopathy in rapidly growing broiler lines has been proposed 286 

previously (Mitchell and Sandercock, 1995b). 287 

In summary, we have shown that there are major differences in thermoregulatory and 288 

respiratory responses to heat stress in lines of domestic fowl selected for either greater 289 

reproductive or meat traits. The two lines differ in their ability to cope with exposure to an acute 290 

thermal challenge. The present study showed that the fast-growing commercial broiler lines were 291 

less able to withstand an acute heat stress challenge than a slower growing line at the same 292 

liveweight. The broilers developed a more profound hypocapnic alkalosis during thermal stress 293 

despite exhibiting higher resting pvCO2 and a lower blood pHv than the L-lines at thermoneutral 294 

temperatures. Base-line variation in plasma CK activities suggests that disruption of muscle 295 

sarcolemmal integrity is much greater in the broiler line and that their skeletal muscle exhibits an 296 

enhanced sensitivity to acute thermal challenge associated with a greater degree of hyperthermia 297 

and disturbances in acid-base and blood gas status. It is proposed that genetic selection for 298 
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improved growth and muscle yields in broiler chickens has had a detrimental effect upon 299 

thermotolerance and deleterious consequences for muscle function. This may have implications 300 

both for meat quality and bird welfare by limiting the capacity of broiler chickens to respond to 301 

an acute thermal challenge. 302 
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Table 1.  Mean rectal temperature, venous blood pCO2 and pH ,and plasma creatine kinase 484 

activity (CK) in divergently selected male-line broiler (B) and White Leghorn layer (L) lines of 485 

chickens under control (C) and acute heat stress (HS) conditions at two different ages (35 and 63 486 

d). T0 is pre-treatment sample and T1 post-treatment sample. 487 

Trait Treatment 35 d 63 d Sed
1
 Sed

2
 

  Broiler Layer Broiler Layer   

  T0 T1 T0 T1 T0 T1 T0 T1   

Rectal temperature (°C) C 41.3 41.9 41.2 41.5 41.3 42.1 41.5 41.9 0.15 0.16 

 HS 41.3 43.6 41.3 42.0 41.3 43.8 41.4 42.1   

Plasma pvCO2 (ln mm Hg) C 3.79 3.83 3.58 3.49 3.89 3.50 3.52 3.43 0.050 0.052 

  44.2
3
 45.9 35.8 32.6 48.9 33.1 33.8 30.8   

 HS 3.77 3.23 3.51 3.43 3.77 3.01 3.51 3.00   

  43.5
3
 25.3 33.5 30.7 43.5 20.2 33.4 20.1   

Plasma pHv C 7.39 7.38 7.38 7.36 7.30 7.45 7.37 7.43 0.018 0.019 

 HS 7.32 7.51 7.38 7.39 7.35 7.56 7.39 7.51   

Plasma CK (ln IU l
-1

) C 6.34 6.76 5.47 5.61 6.84 6.98 5.63 5.99 0.056 0.057 

  567
3
 860 236 274 932 1073 278 399   

 HS 6.65 7.00 5.45 5.73 6.88 7.20 5.64 6.21   

  774
3
 1099 232 307 972 1339 280 496   

1
 Standard error of a difference between means across rows (Line, Time and Age). 488 

2
 Standard error of a difference between two means within a column (C vs. HS). 489 

3
 Back transformed values in italics. 490 
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Table 2. Mean rectal temperature, venous blood pCO2 and pH, and plasma creatine kinase 491 

activity (CK) in a divergently selected male broiler and layer lines under control (C) and acute 492 

heat stress (HS) conditions at the same approximate live weight (~2.2 kg). T0 is pre-treatment 493 

sample and T1 post-treatment sample 494 

 495 

Trait Treatment Broiler (35 d) Layer (105 d) Sed
1
 Sed

2
 

  T0 T1 T0 T1   

Rectal temperature (°C) C 41.5 41.7 41.5 41.8 

 HS 41.3 43.2 41.4 42.9 

0.11 0.10 

Plasma pvCO2 (mm Hg) C 40.4 44.8 37.6 33.1 

 HS 44.1 27.9 37.0 27.9 

1.47 1.49 

Plasma pHv C 7.37 7.41 7.39 7.41 

 HS 7.35 7.51 7.38 7.46 

0.016 0.017 

Plasma CK (IU l
-1

) C 782 878 428 503 

 HS 798 1046 437 597 

45.2 32.6 

 496 

1
 Standard error of a difference between means across rows (Line vs. Time). 497 

2
 Standard error of a difference between two means within a column (C vs. HS). 498 

 499 
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