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1 Introduction

Let us consider the motion of an electron in the single bagtd-binding approximation.
It is well known that in the absence of a dc electric field, tleeon moves ballistically
whereas, when a dc electric field is present, Bloch os@latprevent a current from be-
ing set up in the system. It is furthermore expected tha&felectron is in contact with
a thermal environment, the resulting scattering mechansithsuppress the Bloch os-
cillations and lead to a steady current. This phenomenoriaagxample be described
within a semi-classical picture of the motion combined wiitl relaxation-time approx-
imation (see[[AM] for example). Alternatively, in open sgsis theory, one describes
the thermal environment and its coupling to the electrormwitglobal Hamiltonian,
and traces out the environment variables to obtain, undeide additional conditions
such as weak coupling and appropriate scalings, effecymamical equations for the
electron alone. In treatments of this type, the environnenften described by a set
of oscillators (see for example [FZ]) or more generally byeefBose field. For a re-
view of various approaches to transport theory we refer foTBere has recently been
intensified interest in obtaining rigorous results alormsthlines([DFF, DF, CDM].

We present here a simple, explicitly solvable, fully guamtaechanical and fully Hamil-
tonian model of such a particle-environment system withi@ tepeated interaction
scheme, in which the environment is described by a chain ofléwel atoms. We
show that a dc current is created due to the interaction opa#ngcle with its environ-
ment. In addition to drifting in the direction of the appliédid, the electron diffuses
around its mean position. We give a full analysis of the pbalig distribution for the
position of the particle in the large time regime (Theofed).3We then use a repeated
measurement scheme to describe the increments of thegmoaitd energy observables
between timé) and timet (Theorem$ 313 arld 3.2).

The rest of the paper is organized as follows. In Secfion 2iveaydetailed description
of the model under consideration. Our main results aredstaterisely in Sectionl 3. We
describe the effect on the particle of the interaction wistirgle atom in Section 4, and
the main properties of the repeated interaction dynami&eatiori . The proofs of the
main theorems are provided in Sectiéhs 6@nd 7.

2 Description of the model

We consider a spinless particle on the one-dimensionatéaft and submitted to a
constant external forcé’ > 0. The quantum Hilbert space and Hamiltonian of the
particle are

H,=(*(Z), H,=-A-FX, (2.1)



where A is the usual discrete nearest neighbor Laplacian &ntihe lattice position
operator

A=) @la)(a] =l (] o)z +1]), X =) wla)(a].

TEZL TEZL

Identifying H,, with L*(T*, d¢) via the discrete Fourier transform, we have
—A =2(1 —cos&), X =i0;.

HereT! ~ [0, 2x] is the first Brillouin zone and the crystal momentum. Defining the
translation operator

T =Y |o+1){z| = e,

TEL
we can writeH, = 2 —T'— T — F'X. We note for later reference that

X, T|=T, [X,T"=-T" |[H,T]=—FT, [H,T=FT". (2.2

WhenF = 0, H, has a single band of absolutely continuous spectspiif/,,) = [0, 4],
and the motion of the particle is described by

T(t) — eithTefith — T’
X(t) = etfeXe ™ = X +i(T — T,
showing its ballistic nature.

WhenF # 0, we setG = 2F 'sin¢ = iF (T — T*). The commutation relations
(2.2) yield _ _
H,=¢e%(2—~ FX)e ¢ (2.3)

from which it follows thatH,, has discrete spectrursp(H,) = 2 — FZ. This is the
well-known Wannier-Stark ladder. In the momentum represeon, the normalized
eigenvector), to the eigenvalué’, = 2 — F'k is given by

1 . op1

- e1(2F sm(f)—kf). (24)

V21

In the position representation, we therefore have

2w
ot e (hayey O 2
i) = / er @m0 96 _ 5 (_)
0

Di(€) =

2

where theJ, are Bessel functions. From their asymptotic behavior fyda (see e.g.
Formula (10.19.1) in [OLBC]) we infer that

kel
1 e
x) ~ for |k — x| — oo,
o) 2ﬂk—ﬂ<F%—ﬂ) o
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which shows that), (x) is sharply localized around = k. The motion of the particle,
described by

T(t) — eithTe—ith :e_itFT,

. | 4 Ft Ft (2.5)
X(t) _ elthXe—lth =X+ f sin (7) sin (5 + 7) ,

is now confined by Bloch oscillations.

In what follows, we let the particle interact with one or mayevel atoms, each of
which has a quantum Hilbert spa@¢, = C? which we identify withT"_(C), the
fermionic Fock space ové:. The atomic Hamiltonian is given by

H, = dI'(E) = Eb*b,

whereE’ > 0 is the Bohr frequency of the atom aht b are the usual Fermi creation
and annihilation operators. The later satisfy the candaict-commutation relations

oL bbt =1, B=b2=0. (2.6)

The initial state of the two-level atoms will be their egbrium state at inverse temper-
atureg described by the density matrix

pp = Zﬁ_le*BHa, Zg=Tr(e™#H) = 1 + e PE. (2.7)

The interaction between the particle and the two-level atochosen so that its effect is
to give a right or left kick to the particle, depending on wieetthe atom is in its ground
state or in its excited state. More precisely, we set

V=> (lz+1)(z| @b + |z)(z+1| @ b) = Tb" + T"b. (2.8)

TEZL

To understand this interaction, note that when- 0, the translation operatdr can be
thought of as a lowering operator for the particle. Indessinf(2.4) one finds

T = Yrp (2.9

Similarly, T* acts as a raising operator. As a restitdescribes an exchange of en-
ergy between the two-level system and the particle. We pmimtthat this interac-
tion is very similar to the one which appears in the Jaynesu@ings Hamiltonian
where a two level atom interacts with one mode of the elecagmatic field of a cav-
ity (through its electric dipole moment and in the rotatingwe approximation), see
e.g. [CDG/Du]. Thermalization of the field through repeatedraction with two-level
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atoms was proven for the Jaynes-Cummings Hamiltoniah irf}.[BRe model treated
here is very similar to the one studied in [BP], except thatgpectrum of{,,, contrary

to the spectrum of the mode of the electromagnetic field, idonanded from below.
As a result, the system we treat here has no invariant statee ahall see below.

The full Hamiltonian of the particle interacting with a slagwo-level system acts on
the Hilbert spacé{, ® H, and is given by
H=H,+ H, + \V, (2.10)
where) € R is a coupling constant. As the more explicit formula
H=2-T1—-X")—T"(1—-Xb) — FX + Eb*D,

shows, one can also interpret the coupling to the two-lexstesn as altering the hopping
matrix elements of the original Hamiltonian. The operatbis easily diagonalized by
noticing that it commutes with the “number operator”

H,—2 H,

F T

N = —e%Xe Y 4 b*p = (2.11)
which has a two-dimensional eigenspace to each of its eidegw € Z. In particular,

if £ = F then the energy{, + H, is preserved by the full dynamics (which will be
computed in Section 4).

We now turn to the description of the repeated interactioragyics (see e.g. [AP, BIM,
BP]). We let the particle interact successively, each timend) a fixed period- > 0,
with the elements of a sequence of atomes, during the time interval(n — 1)1, n7|,
the particle interacts with the-th atom and with none of the others. The Hilbert space
of the atomic reservoir is .
?{mw ::cgb7imna
n=1

whereM is the number of atoms and ea#f ,, is a copy of#{,. The Hilbert space of
the joint particle+reservoir systemis = H, ® Heny. The full unitary evolution/ (¢, s)
of the system is thus described by the Schrodinger equation

i U(t,s) = Ht)U(t, s), U(s,s) =1, t,s € [0, Mr], (2.12)

with time-dependent Hamiltonian

M M
H(t)=Hy+ Y Han+ XY xalt)(TH, +T7b,), (2.13)
n=1 n=1



wherey,, is the characteristic function of the interyah — 1)7, n7[ andH, ,,, b,,, b}, are
the Hamiltonian, annihilation and creation operators efrtkth atom. We will use the
following notation

H, = Hy+ Hyp + NTO, + T"b,),  Hy=H,+ Y Hy. (2.14)

1<k<M
k#n

Note thatH (t) = H, whent € [(n — 1)7, nt].

We denote by3'(#,) the Banach space of trace class operators on the Hilberé spac
H,. Given any density matrix for the particlg € B'(H,), p, > 0, Trp, = 1, we set
the initial state of the joint system to

M
po=ppo@p5™, P =) ps.
n=1

After n < M interactions, this state evolves imip. = U(nt,0)poU(n7,0)*. To obtain
the density matriy, ,,- of the particle after theseinteractions we take the partial trace
over the environment,

Ppmr = Ty, pnr = Tray,, U (n7,0)(pp ® p?M)U(nT, 0). (2.15)

In fact, for reasons that will become clear later, we shaikitter the more general linear
operator defined oB(#,,) by

Dy n(A) =Try,,. (I ® [pg]@w) U(nT,0) (A ® [,og_“}@w) U(nt,0)",

where« is an arbitrary real parameter. Using the cyclicity of thetiphtrace w.r.t.
atomic operators and the fact thatis invariant under the free atomic dynamics we can
replacel (nr,0) by e ™= U((n — 1)7,0) in the last formula. It then follows that

Dan(A) = Try, (I ® pg)e” ™ (Dayn-1(A) ® p5~*) €™ = La(Dan-1(A)),

where . .
Lo(A) = Try, (I @ pgle™ ™ (A® pg ) ™. (2.16)

We conclude thab,, ,(A) = L (A) and hence
Try, BLY(A) = Te(B® [p5] ") Unr,0)(A @ [p5 2] ") U(nr,0).  (2.17)

The operatolZ,, will play a central role in our analysis. For later referenee describe
its main properties in the following proposition.



Proposition 2.1 For anya € R, £, is a completely positive operator d#t (#,,) with
spectral radius

cosh ((3 — a)BE)
0(a) = (1 — 2

(@) = (=p)+p—

wherep is defined in[(3.2). Its adjoint w.r.t. the dualit\| B) = TrAB is the completely
positive operator orB(,,) given by

(2.18)

L3(B) = Tey, (I @ p )™ (B ® p3)e .
Going back to the special case= 0, we have

Ppnr = ‘Cg(pp)v

so that the discrete semi-grouf; )<y acting on the density matrices #f, describes
the reduced Schrodinger dynamics of the particle. Theaedltieisenberg dynamics is
obtained by duality: foB € B(H,) andp, € B (#,),

Try, BLy(pp) = Try, L§"(B) pp-

At this point, the choice of\/ becomes immaterial and we can consider an arbitrary
large number of interactions. Given an observdblen7{,, we write

(B)n = TrBLg(py),

for its expectation value at time= nr.

3 Resultsand discussion

We are now in a position to state our main results on the dycgofithe particle. As
will be shown in Sectiohl4, coupling with a single 2-levelratturns the periodic Bloch
oscillations [(2.b) of frequencyg,a, = F into quasi-periodic motion with the two
frequenciesug),., and

wo =/ (E — F)24+4)2, (3.1)

(see Equ. [(4]3) below). Repeated interactions with 2-lat@ins have a much more
drastic effect. The bounded motion of the particle now bespdiffusive. In terms of
the parameter

7) e [0,1], (3.2)



the motion is characterized by a drift velocity

va=v(E,F)= P tanh (BTE) : (3.3)

T

and a diffusion constant

D=D(E,F) = 2% (1 — ptanh® (%E)) . (3.4)

More precisely, the following holds.

Theorem 3.1 Assume that’ > 0, A # 0 andwy7 ¢ 27Z so thatp €]0,1]. Let the
density matrixp, € B'(H,) describe the initial state of the particle and denote by
the spectral measures of the position observable the statep,, ,,-,

~ [ f@ () = (7O 35)
1. The Central Limit Theorem (CLT) holds: For any bounded comiusf onR,
. T — UgnT 2y dx
1 @ /2 :
"ggo / ( V2Dnr ) /f

2. If Tr (X?p,) < +o0, then

. 2
lim (X =1vq, lim (X = van7)%)n

n—oo NT n—oo nTt

=2D.

3. If Tr (e?Xlp,) < 400 forall ¥ > 0 then a Large Deviation Principle (LDP) holds
in the sense that, for any intervdl C R,

lim 1 log pi,(nJ) = —inf I(x), (3.6)

n—oo N zeJ

wherel(z) is the Legendre-Fenchel transformegt)) = log 0(—n/BE), i.e

)= up o=t (55 )|

Here the functior is defined in2.18)



Note that whern® = F', the mobility

va _ Bsin’(A7)
Fo0 F 2T

)

and the diffusion constant
D =pup™t (1 — sin?(\7) tanh? (57}7)) :

satisfy the Einstein relation

lim D = pB~ ' = ukgT.

F—0

The rate function in Part 3 is explicitly given by
BE R(r) —x (1 —p)(R(x) +1)
—x | — +1 — ) -1 f -1,1
:c<2 +og<a(1_x) 0g T orz e [—1,1],
+00 otherwise

I(x) =

where

= P x) = /22 + a?(1 — x?).
S A peaEE @ TV rel=)

It is strictly convex on—1, 1] and satisfieg(vq7) = 0 and/(z) > 0 for x # vq7.

Note that the drift velocity and diffusion constant do nopeed on the initial state of
the particle. The CLT gives us the probability to find the éetat timenr in a region
of size O(y/n) around the mean valuenr, whereas the LDP gives information on
this probability for a region of siz&(n). To put it differently, it yields information on
the probability that the particle’s mean speed falls asytigally in an interval of size
O(1). Loosely speaking, it says that

Mn({n(vd + 51))7’}) ~ e_nI((Ud-i—év)T)'

The peculiar symmetry(—3E — n) = e(n) immediately leads to the relatidifz) =
—BEx + I(—x) which tells us that

lim lim = log fin(n[—v — dv, —v 4 dv]7)

= -0k
5010 n—00 NT pn(nv — dv, v + dv]T) BEv,

i.e., that negative mean velocities are exponentially lessylikehn positive ones. The
reader familiar with recent developments in non-equilibristatistical mechanics will

recognize here a kind of fluctuation theorem. Indeed, wd skalthat the symmetry of
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the functione(n) is a direct consequence of time-reversal invariance ana sense, a
remnant of the Evans-Searles (or transient) fluctuatioordm (see(317)).

We have further studied the statistics of the energy chaofése particle, the envi-
ronment and the whole system. Note that the latter is not@ggddo vanish, since the
Hamiltonian is time-dependent, so that total energy is naserved.

To study the change in the energy of the atomic reservoir veetlus following op-
erational procedure. The reservoir being initially in thet equilibrium at inverse
temperatures and the particle in the state,, we measure the total energy of the
reservoir and the particle just before the first interacaon just after the:-th inter-
action. These successive measurements yield the foursvalug E,,, € sp H,, and
Eeny 0, Eenv.n € sp Heny. It will be convenient to express the resulting change imgne
in terms of the “entropy like” quantities

ASp,n = 6*(Ep,n - Ep,O)a ASenv,n = _B(Eenv,n - EenV,O)a

where 3* = BE/F. We denote byP" the joint probability distribution ofAS, ,,,
ASay.n and byE™ the corresponding expectation. Note that the quantifigs, and
E..», are well defined provided the reservoir contains only a fimiteber)/ of atoms
andn < M. However, under those circumstancess.,., , does not depend on/
and we can therefore consider the reservoir contains antehfiomber of atoms. This
simple thermodynamical limit will always be understood ihat/follows.

Remark. When applied to electric charge, or more generally to partiamber, the two
measurement processes described above go under thefulbomeinting statistic§see
e.g. [ABGK] and references therein). The present appbeas closer to the approach
to current fluctuations found in [dR].

Theorem 3.2 1. P"[AS,,, = ASewvn] = 1. Hence, in the following we set

AS, = AS, = ASenyn.

2. The cumulant generating function &fS,, is given by
log E" [e***"] = nlogf(a),
where the functiod is defined in(Z.18)

3. Its mean value and variance are

(AS,, + BEvgnt)?
n

= (BE)*2Dr.

AS,
S AT
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4. The CLT holds: For any bounded continuous function

, " AS, + BEvant \ | _p2pp da
W H 3EvaDnr )}‘/ﬂx)e Nors

5. The sequencé”), .y satisfies a LDP: For any intervalg C R,

1 A
lim — log P" {i € J} = —inf ¢(s),
n

n—oo N, seJ
with the rate functioy(s) = sup,cp(as — log8(a)).

6. It satisfies the transient fluctuation theorem

P" [% = —5]

n

P [% = s}

n

= e, (3.7)

Part 1 clearly reflects the fact that the number operatofdjZzammutes withH so that

H, H
“H 4 BHeay = BE [ 22 4 20 )
B Hy + 0Han = 08 (3 + 75

is preserved by the repeated interaction dynamics.

The particle’s drift velocity i34, and one sees therefore that, as expected, its energy loss
per unit time equals the work done Byper unit time. Simultaneously, the environment
gains energy at a ratv4: indeed, the particle moves on averagesteps to the right

per unit time, which corresponds tg elements of the chain gaining an eneigyThis

leads to an average energy gain or lossiof- F')v, for the full system. In the special
caseF = F, these rates are equal, and the total system neither loosgsims energy.

This is a consequence of the fact (mentioned after Equ.](Pthat the interaction term

in the Hamiltonian commutes with the free Hamiltonian irstbase. In general, the
total energy is not preserved, which is a reflection of thetfaat the Hamiltonian of the
total system is time-dependent, as is clear from (2.13).

Note also that the symmetff1 — a) = 0(«) which leads to the transient fluctuation
theorem [(3.I7) is evident from Propositibni2.1. We shall se8ectior( 5.2 that it is
actually a consequence of time-reversal invariance.
Since "

P~ X

F Y

we expect a very similar result for the position incremant,, = X,, — X, obtained
from a double measurement &f at timet = 0 andt = nr. Indeed, the distributioQ”

of AX,, satisfies the following.

11



Theorem 3.3 1. The cumulant generating function &fX,, satisfies

n—oo N

1
g(n) = lim —log Q" [e"AX"} = log 6 (—l) )

2. Its mean value and variance are

lim Q" {AXn} . 0" {(AX,Z - vdm')z] _opn
n—o0 nTt nTt
3. The CLT holds: For any bounded continuous function
: n AX, —vgnt 22
in@ |7 (S5 )| = [ e
4. The sequencgQ"),cy satisfies a LDP: For any intervalg C R,
lim llog@” [AX € J} — inf I(z).
n—oo n n zeJ
5. It satisfies the asymptotic fluctuation theorem
BE(v— 6v) < lim llog Q" [822 € [—v — dv, —v + 6v]] < BE(v +60),

n—ro0 M Q" [222 € [v — dv,v + dv]]
forv €] — 1, 1] anddv > 0, small enough.

Remark. This fluctuation theorem is not of transient (or Evans-S=sartype since it
only holds in the large time limit. It is not of the stationgyr Gallavotti-Cohen) type
either since there is no stationary state for the dynamgsjeashall see in Section b.3.
For more details on these fluctuation theorems, we refereider to e.g! [JER, RM].

Note also the similarity with Theorem 3.1. Theorem] 3.3 déssrthe position incre-
ment of the particle without requiring sharp localizatidritee particle position at time
0, contrary to Theorefn 3.1.

4 Interaction with a singletwo level atom

In this section we investigate the dynamics of the partitleracting with a single atom
described by the Hamiltoniah (2]10). As already remarkédian easily be diagonal-
ized by exploiting the fact that it commutes with the numbperator [2.11). To get

12



a tractable formula for the propagatéi”, it will be more convenient to consider the
unitary operator

U= (Tbt"b+ bb*) cosd — (Th* — b) sin b,
whered is chosen such that

E—F 2)\
cos(20) = — sin(20) = -
0 0

Using the commutation relatioris (2.2) ahd {2.6), one easitywvs that

1\ E-F
(FHU:EQ+wOG%—§)+ ;- (4.1)

It follows immediately that, foir” # 0, the spectrum of{ is purely discrete,
—F @
2 2

If wo/F is not an integer, all the eigenvalues are simple. The nezedkigenvectors
are given by

|0k,—) = Ultr) @10) = cos 0[py) © |0) — sinO]¢yq) © [1),
|Or+) = Ulth) @ [1) = cos Olihs1) @ [1) + siniy) @ [0),

where|0) and|1) denote the ground state and the excited state of the atomoud$e
the situation is completely different wheén= 0. The spectrum

so(#f) = (58~ F =)+ 0.40) U (58~ F +0) 4 0,4]).

is then purely absolutely continuous.

E
sp(H)=2—-FZ+

From Equ. [(4.11) we get the explicit formula for the propagato
eitH _ Ueit(EfF)/2eitwo(b*b*1/2)eith U*, (42)

which reduces the proof of the following result to a straigiward calculation.

Lemma4.1 For any operatorA on#,, and anyt € R one has
e AR pg e = A (Ar) @b+ By y(Ar) @ b+ Bay(Af)* @ b + Cae(Ar) @ b,

whereA; = e *Hr 4 ¢itfe gand
—BE 4)? t 14N t
Ag(A) = eZ (1 — — sin® (wo )) —- sin® (MTO) TAT",
;

12X\ —F t
Bsi(A) = 7o (5 sin(wot) — sin’ (%)) (AT* — e PPT*A) |

1 AN? wot e PE 4)\2 wot
Csi(A) = —([1—Ssin?[=))A — sin? [ == | T*AT.
#ul4) ZB( WSM(?)) 7 WSM(?)
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By noting thatX = 2X ® ps—o the preceding lemma can be used to compute the
evolution of the position observable

eitHX efitH — eithXefith
4)\2 2N FE — F t
+ (—Q(bb* — D) + %(Tb* + T*b)) sin’ (“’—0) (4.3)
wp wp 2

A
—i—(Tb" — T7"b) sin(wot).
Wo

We conclude that the coupling to a single atom does not soiisiis alter the long term
behavior of the particle. In particular, whén £ 0, the motion remains bounded. We
will see in the next section that the situation is very dgfarfor repeated interactions
with a sequence of atoms.

5 Repeated interaction dynamics

In this section we study the properties of the operatgrdefined in[(2.16).

It is clear thatn — L, is entire analytic as a map frofd to the bounded operators on
B(H,). Moreover, since

Try, BLo(A) = Te(B® p§le ™ (A® py )™,

L, is also bounded as an operator on the Schatten-von NeumassBe(H,,), for any
p € [1,00].

Using the cyclicity of the partial trace w.r.t. operatorsinwe can write, forx € R,
Lo(A) = Try, (e’iTH(a)A ® pg eiTH(a)*> ,

where H@ is a bounded perturbation &f,
H(a) — e—aﬂHa/QHeaﬂHa/Q

= Hy, + H, + e ®PHa/2y/ 0B Ha/2
= H, + H, + \e “PFRTh 4 PERT),

This shows in particular that,, is completely positive for real values of
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5.1 Gaugeinvariance

Lemmab5.1 The operatorC, commutes with the evolution of the non-interacting par-
ticle, i.e.,
Ea (efithAeith) — efith‘ca(A)eith’

holds for allt,« € Rand A € B(H,).

Proof. From the fact thaf/ commutes with the number operator (2.11) we infer

__ itN gy —itN __ _itH,/F |itH./E 7 —itHa/E —itHp/F
H=¢""He = it/ FgitHa/E [y —itHa/Eg p/,

so that

—itHa/E o—irH itHa/E itH,/F ,—itH —itHp/F

€ =€ € €

SinceH, andH, commute, we also have

i _irH(®) | i —irH() _j
1tHa/Ee itH eltHa/E 1th/Fe itH e 1th/F’

e =€
and hence
oltHp L. (e—ith A eith) o itHp

— Tty (eithe—iTH(a)e—ithA ® ps eitheiTH(a)*e—ith>

= Try,

i _irH(®) j —i irH(@)*
e 1tHaF/Ee itH eltHaF/EA(X)pﬁe ltHaF/EelTH eltHaF/E)

— Try, (e,itHaF/Ee,iTH(Ot)A ® ps eiTH(a)*eitHaF/E)

La(A

where we used the fact thal, commutes withd ® pg and the cyclicity of the tracel

)

Introducing the non-interacting evolution operator
Z/l(A) — e*iTHpAeiTHp’

we define the “interaction picture” reduced evolutiorfas: L, oU~!. Note that, by
Lemmd5.1, we have N N
Lr=LoU"=U"0o L],

for anyn € N.
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5.2 Timereversal invariance

Let us denote by, the complex conjugation oft(Z), i.e., (Cy1)(x) = ¥(x) and set
C(A) = CLACT,

for A € B(#H,). This anti-linear involution implements time reversal betparti-
cle’s dynamics. Indeed, since the Hamiltonidp s real in the position representation,
C,H, = H,C,, one hag’, e = ¢~ for all t € R and in particular

Cod=U"oC.
Lemma5.2 Foralla« e Ronehasl!, =Co L, ,0oC.
Remark. As will be clear from its proof, this property ai,, is a consequence of the

time-reversal invariance of the dynamics of the particlepted to a two-level atom. It
implies that the spectral radius 6f, and£,_,, coincide.

Proof. SettingC,(a|0) + a1|1)) = a@|0) + @;|1) defines a anti-unitary operator 6,
such thatC,H, = H,C, and hence

C,eltths = o7ty | Capp = ppCa.

SinceT and7T™ are real w.r.t.C;, andb andb* are real w.r.t.C,, the HamiltonianH is
real w.r.t.C = C, ® C, and one hag'e"” = e (',

From the fact that the partial trace &f), satisfies
TI"HaCAC* = C(TI"HaA),
forall A € B(H, ® H.), one deduces that, fot, B € B(H,),
C(AL4(B)) = C(Trp, (A® p)e (B ® p)e™)

— TI"HaC(A ® p%u)efiTH(B ® pé_a)eiTHC*
= Try, (C(A) @ p)e™ (C(B) @ pl)e ™"
= Try, (C(B) @ py *)e ™ (C(A) ® p§)e™
=C(B)L1_40C(A).

It follows that

Try, ALo(B) = Try C(AL.(B))
= Tr’HpC(B)Cl—a o) C(A)
— Try,C oLy o0C(A)B,

and hencel(A) =Co Ly, 0C(A). O
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5.3 Krausrepresentation

SinceL,, is completely positive forr € R, the same is true of,. The following result.
describes the Kraus representation of the latter operator.

Lemma5.3 Foranya € RandA € B(#,), one has

Lo(A) =e*PPp_T*AT 4 poA + e *PFp TAT*, (5.1)

where
e PE 1

= =1- =
p 1_'_675Ep7 Do b, D+ 1+€75Ep
with p defined in Equ(3.2).

We note that**Fp_ + py + e **Ep, = (a), whered(a) is defined in Proposition 2.1,
o)
Lo(I) = L£5(I) = O(a)]. (5.2)

Considerk,, = 6(«)~'L, as an operator o' (#,). Sincek,, is completely positive
and trace preserving, it has unit spectral radius (se€ [SElghced(«) is the spectral
radius ofZ,. This proves Propositidn 2.1. The remark after Lenima 5.2 explains
the origin of the symmetrg(1 — a) = 6(a).

Letus now setr = 0in Equ. [5.1) and explore the implications of this express$ar the
dynamics of the particle. I describes the state of the particle, tHénT (respectively
TpT™) represent the same state translated by one lattice spading left (respectively
right). Note moreover that

p—+po+pr =1,

so that the reduced evolutialy = EO o U consists of a free evolution with the Hamil-
tonian H,, followed by a random translation b1 or 0, and with probabilitieg.. or
po. Note that the dynamics is trivial f = 0, i.e., if wgr = 27m with m € Z. In
that case there is no translation and the particle evolvesrding to,,. This can be
seen directly on Equ[(4.2) by noticing thHat{ ,U* = H, + Fb*b. It follows that the
propagator factorizes

olTH _ (_l)meiT(E—F)/Q oTHr & eiTFb*b’
and, up to an inessential phase factor and a renormalizafitime atomic Bohr fre-
guency, the particle and the two-level system evolve asey thiere not coupled. This
resembles the “Rabi oscillation” phenomenon which appeatise Jaynes-Cummings
model for matter-radiation interaction. In the followingwvill avoid this resonance
and assume # 0.
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Introducing a family of i.i.d. random variabléél, taking the valuest1 and 0 with
probabilityp.. andpy, and definings,, = >~7_, Y;, we can very concisely write

Cg(p) — e—inTHpE [TSin—Sn] einTHp. (53)

Accordingly, the study of the dynamics of the system is reduto that of a classi-
cal random walk. As a further remark, suppose that the Irsta@te of the particle is
invariant under the uncoupled dynamics, so that

p =) prlti) (Wil (5.4)
kEZ
Then, using EquLT29), we obtait}(p) = Yy, by [t} (4] with
oY = pep + popy” + popil (5.5)

Thus, the set ofi,-invariant states is invariant under the reduced dynamcthe
latter reduces to a classical Markov chain on this set.

Before turning to the proof of Lemnia 5.3, let us show that #tkiced dynamics has no
stationary state: there exists no density matron #,, such that,(p) = p. Indeed, it
follows from LemmadX5.1l that the subspacgs d € Z, defined by

Ja={p € B*(H,) | e rpette = ey forallt ¢ R}
={p e B' (My) | p = pultn) (rsal},

keZ
are globally invariant undef,. Hence, if a state is stationary, so is its diagonal part
Po = D, Prl k) (x|, wherepy, = (4] pir). Equ. [B.5) then writes
Ph1 — Zgpr +e PEp 1 =0,

which implies thay, = a + be®F* for some constants, b € R. But this contradicts the
factthatl = Trp =, ps.

Proof of Lemmal5.3. We start with the fact that
Za Zlfa
B )6p

—iTH 11—« lTH
A o
pge ® pg Zs B

efiTHA ® p(l—a)ﬁ eiTH7

so that, applying Lemnia4.1, we get

ZopZ(1-a .
#paﬂ (Aa-a)s(A)"b + Ba—ayp(Ar)b

+B1—a)p(A) 0" + C(l—a)ﬁ,t(At)bb*) .

pﬁ —1THA®p1 « ITH —
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Upon taking the partial trace ovét,, we obtain

Zagz(l,a)g e~ BE 1
Lo(A) = ——— —a)pt(A Ci—api(A)—=— ),
(A) Z Aa-a)i(Ar) Zos + C1—ayu( t)ZaB
and the result follows from Lemnia 4.1 with some elementagglada. O

6 Proof of Theorem 3.1

To complete the proof of our main results, we shall need theviing technical lemma.
Lemma6.1 1. If I # 0 then, for anyy € R, one has
}H?o HeitheinX/\/ie—ith N einX/\/iH —0.
2. If F # 0 then, for any, € R, there existg’, > 1 such that
07;1 < o~ 1X/2itHy (X (~itHp \—1X/2 < 0777

forall t € R.

Proof. 1. By Equ. [2.5), one has!> Xe~'"#» = X + B,, whereB, is a uniformly
bounded operator valued functiontofDuhamel formula yields

elthemX/\/Ze itHy, emX/\/E — _th’

7

where
1
R — / GBI nX /g
0

The claim follows from the fact thak, is also uniformly bounded.
2. By Equ. [2.8) we can write, for any ¢ € R,

Q(t, 77) — @itHpo=inX —itHy jinX _ (iG —itFX ~iG ~inX jiG itF X ~iG jinX
From the commutation relatioh (2.2) we get, foe R,
—i60X i0X 2 .
e Ge :Fsm(ﬁ—i—@),

so that
Q(t, ,',]) — eQi(sin f—sin(&—}—tF)—sin(f—‘,—n)—f—sin(f—f—tF—i—n))/F.
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It follows thatn — Q(t,n) € B(H,) extends to an entire analytic function. Moreover,
one easily shows that

C, = sup [|Q(t,n)| = e*sinimal/
teR

for anyn € C.

Now sinceX, = ¢i'» Xe 1 s self-adjoint the subspad®, = Dom(e*?) is dense in
H, and such that, fop € D,, the vector valued function — ¢"X*¢ is entire analytic.
Fory € Dy, ¢ € Dy andn € R one has

(™l o) = (Y]Q(t,n)9).

By analytic continuation, both sides of this identity exdeén complex values of. In
particular, one has

(" e ) = (LIQ(t, in)9),

for anyn € R. SinceD, is a core ofe™*¢, the last identity extends to alf €
Dom(e~") andy € Dom(e™*t). The modulus of its right hand side being bounded by
Ci 10|l l#]], one concludes thdtan(e~"*) C Dom(e™**) and

Xt —nX
JerXre™mX | < G
It follows that

e—nX/QenXte—nX/Q — (enXt/Ze—nX/Q)*(enXt/Qe—nX/Z) S 01217/2’

and
—nX/2 X, ,—nX/2\—1 nX/2 —nXi nX/2 2 2
(e / el te / ) =€ / e te / < C—in/2 - Cin/j27

which together imply

C2 < e X2gnXig=nX/2 < (2

in/2 = in/2*
O
We now turn to the proof of Theorelm 8.1. First, from Equ.(%®)find that
(F(X))n = Te(f(X)L5(pp)) = E[Tu (f(T~ e Xem ) py) |
Hence, using Equl(2.5), we get
(FXO)n =E[Tx (f (T (X + Ba) T%) pp)]
=E [TI“ (f (X + S, + Bn) pp)] ) (61)
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where

F 2

To prove Part 1, we study the convergence in distributiomefsequence of probability
measuregi,(J) = u,(vV2Dn7tJ + vgnt), J C R, wherey,, is defined in[(35). By the
Lévy-Cramér continuity theorem, this is equivalent te flointwise convergence of the
sequence of their characteristic functions. We shall foezeprove that for any € R

By = X gin (#) sin (g v @) . (6.2)

/jn(einf) = /Reinm dfin(z) = <ei17(X7vdn‘r)/\/m> nooo —n?/2

n

Using (6.1), we can write
[ln(einx) —F [Tr (ein(X—f—S"—vdnr—i—Bn)/\/QDnTpp)}

—F [ein(Sn—UdnT)/\/QDnT:| Tr (ein(X-l-Bn)/\/ZDnTpp) ) (63)

The classical CLT implies that the first factor of the laselconverges, as — oo, to
e~7/2 since, as a simple computation confirms
1 1
—E[S,] = v, —Var[S,] = 2D, (6.4)
nrt

nrt

wherevq and D are defined in[(3]3) and (3.4). The second factor is conttdliePart 1
of Lemmd&6.1 which implies

n—oo n—oo

lim Tr (ein(X+Bn)/v2DnTpp> — lim Tr (einX/\/2DnTpp> )
The right hand side of this identity isby the dominated convergence theorem.

The first assertion in Part 2 follows from

LX), = L m(xLnon)

nrt nrt

_ n—lTE (X + S+ Ba)py)]

1 1
=—K —Tr((X + B
nr [Sn] + o r((X + n)ﬂp)a

since the first term on the last line convergesjgby Equ. [(6.4)) while the second
vanishes ag — oo. The proof of the second assertion is similar.

To prove Part 3, we shall study the cumulant generating fonct
en (1) = log 11, (") = log Tr (" L5 (py)) - (6.5)
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By Equ. [6.1){(6.2) and (215), one has
en(n) = logE [Tr (e”(X+S”+B”)pp)] = logE [e”s"} + log Tr (e™™reXe " Hep )
One easily computes the first term on the right hand side
log E [e”S”] =nlogk [e”yl} =nlogf (_ﬁ%) .
Writing the second term as

log Tr (( p%/ 2 enX/Z) o 1X/2ginTHp X —inTHyp ,—nX/2 ( enX/2pI1) /2))

and applying Part 2 of Lemnha 6.1 we get the bound
| log Tr (ei"THPe”Xe_i"THPpp) | <log C,, + log Tr (e”pr) ,

from which we conclude that

.1 Ul
e(n) = lim —eq(n) = logf (—ﬁ—E) :
Sincee(n) is differentiable, the Gartner-Ellis theorem (see €.gZ][Dmplies the LDP
(3.6) with the rate functiori (z) related toe(n) via the Legendre-Fenchel transform.
Finally, the symmetry(1 — o) = 0(«) translates into

e(n) = e(=BE —n),

which impliesI(x) = —fFEx + I(—x).

7 Full counting statistics

In this section we start with a precise description of the m@asurements processes
involved in the formulation of Theorenmis 8.2 dnd]3.3 and peddien to the proofs of
these results.

Suppose that the initial state of the particle is describethé density matriy, and set
p= pp®p§M. LetA,..., A, be commuting self-adjoint operators on the Hilbert space
H =H, ® Heny. We assume thd; to have pure point spectrum. We define the vector
valued observabld = (A,,..., A,,) and its spectrurap A = sp A; X - - - X sp A,,,. We
denote byP, the spectral projection associated to the eigenvalaep A.

The outcome of a first measurement of the observablastimet = 0 willbe a € sp A
with probability Tr pP,. After this measurement the state of the combined system
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is reduced toy’ = P,pP,/Tr(pP,). This state now evolves under the repeated in-
teraction dynamics and, after theth interaction, become& (nr,0)p'U(n7,0)*. A
second measurement df at timet = nr will yield the resulta’ with probability
TrU(nt,0)p'U(nT,0)*P,. Thus, the joint probability distribution for the two susee
sive measurements df is given by
P (a,a") = Tr pP, x TrU(nt,0)p'U(nT,0)" Py
=TrU(n,0)P,pP,U(nt,0)*P,.

Therefore, the probability distribution of the measuredt@mentAa = o’ — a aftern
interactions is

Pi(Aa) = > TrU(nt,0)P.pPU(nT,0) Py
e
The cumulant generating function of this distribution is
gn(a) = log Z P"(Aa) e*2

Aa€csp A—sp A

= log Z e @ = Ty U(nr1,0) P,pPU(nt,0)* Py,

a,a’esp A

where - denotes the Euclidean scalar productiRsh. At this point, it is useful to note

that
ﬁ: Z Pappcm

a€sp A

is a density matrix which commutes withso thatP,pP, = pP,. Hence, we can rewrite

gn(a) = log Z e @ = Ty U(nr,0)pP,U(nT,0)* Py
a,a’ €sp A

=log Tr U(nt,0)pe *4U(nt,0)* e (7.1)
In the special case where thg are observables of the particle, we obtain
gn(@) =log Tr L (py e *H)e* A = log Tr p, e ALy (e*4), (7.2)

wherep, = > . 4 Papp P
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7.1 Proof of Theorem[3.2

To prove theorern 312 we consider the case (3*H,, —3H.,,). From Equ.[(711), and
foranyn < M (whereM is the number of atoms in the reservoir), we have

gn(apy aenv) — log En [eapASp,n“l‘OéenvASenv,n]

- log Tl" U(TLT’ O)ﬁe_apﬁ*Hp“l‘OéenvﬁHenvU(nT O)* apﬁ Hp Qenv BHeny

9

where
p= Z Epp p.E ® Penv E/pﬁ Penv,E/u

Eesp Hp
E!€sp Henv

andP, g, Peyv g are the spectral projections 8, andH.,,, . Sincep®M commutes with
Hey, this reduces t¢ = 5, @ p7™ with p, = 3=, i B zpp By - Hence, invoking

(2.11), we obtain

gn(apu aenv)

=1log Tr U(nT,0)(p, e e & p?Meae“VBHe“V)U(nT 0)* (e @) g tenvHHenv)
— log TI,( Oépﬁ Hp ® |:p04envj|®M)U(n7_’ O)(pp Oépﬁ Hp ® |:p1 Oéenvj|®M)U(n7_’ O)*

— log Try, €7 L2 (5, e~ 1)

— logTrH Z/{*n( apB* Hp)ﬁn (ﬁp —OépB*Hp)

Qenv

= log TI'H eapﬁ Hp/QLTL (e—apﬁ Hp/2p e_apﬁ*Hp/Q)eapﬁ*Hp/Q.

Qenv

Again, the numbei/ of interactions is now irrelevant and we may consider aabytr
values ofn. The commutation relations (2.2) impty»Te= "> = ¢="F'T so that, by

G.0),
apﬁ HD/ZE ( —apB*Hp/QAe—apB*HP/Z)eapB*HP/Q
= elawtaen)BEy T AT 4 po A 4 e~ (@ptaen)BED AT

= Z/Olp‘f'()lenv (A) *

Qenv

It follows that
gn(Qp, Veny) = log Tr ILT S taen (Pp) = log Tt ppﬁ(’;’;Jraenv([) = nlogf(ap + Qeny),
from which we conclude that
log E" [ea(ASP’”’ASE“V’")} =nlog6(0) =0,
which proves Part 1, from which Part 2,

gn(a) =log E" [e**%] = nlogf(a),
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immediately follows. Differentiation of the last identigt « = 0 gives Part 3. Since
0(«) is an entire function oft such that(0) = 1, log 6(«) is an analytic function of

in a complex neighborhood ofand Part 4 follows from the Bryc theorem (see [Bry]).
The Gartner-Ellis theorem directly applies to give PartFnally, Part 6 is a direct
consequence of the symmettyi — o) = 6(a) which implies

logZIP’" [AS,, = —s]e e logZIP’" [AS,,, = s]ell*
=go(1 —a) = gula) = logZIP’” [AS,, = s]e*,

and henc®” [AS,,, = —s]e™* =P"[AS,,, = s].

7.2 Proof of Theorem

We now consider the case whede= X. The cumulant generating function of the
incrementA X, is given by Equ.[(7]2),

gn(n) =log Q" [e"AX"] log Tr L (ppe XX
Using the factorizatior] = U™ o Eg, we further get

gn(n) = log Tr Lg (e /5, 72 )4 (")
— lOg Tr(enX/2Zg(ef17X/2ﬁp ean/2)enX/2> (ean/2eim-HpenXefim-Hpean/Z).

We note that™* Te "X = T ande™ T*e~"X = ¢~"T* so that, by[(5.]1),
N2 Lo(e X2 A e XY X/2 — o7y TAT 4 poA + "TAT* = Z_n/ﬁE(A).
It follows that
9ul1) =108 T £, 35 (Fy) (e P26 o X inrllyg-072),
Part 2 of Lemma@a6l1 yields the estimates
log " Tr L2512 (7o) < gu(n) < log Cy Tr L2, 515()1,

and sincelr £ /BE(pp)I_Trppﬁ Lyee) =0(—=n/BE)", we finally get

in-suo( ) 2
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so that .
i & _ _n
g(n) = lim —g,(n) logﬁ( BE)’

n—oo 1

which proves Part 1. Part 2 and Part 4 follow from the Gartiés theorem while Part
3 follows from the Bryc theorem. Finally, the LDP implies
Q" [ € [-q -5 —q+]]

1
lim —lo =— inf I(—z)+ inf I(z
n—oo N & Qn [% €lg—0,q+ 5]] lz—q|<d (=2) lz—q|<é (=)

and the fact that(—x) = I(x) + SEx leads to Part 5.
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