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1) Introduction
• An hyperbolic partial differential equation like the Burgers equation

(1) ∂tu + ∂x
(

F (u)
)

= 0 , F (u) ≡
u2

2

exhibits shock waves (see e.g. [17]), id est discontinuities propagating with finite velocity.

In order to select the physically relevant weak solution, it is necessary to enforce the

so-called entropy condition

(2) ∂t
(

η(u)
)

+ ∂x
(

ζ(u)
)

≤ 0

as suggested by Godunov [18] and Friedrichs and Lax [15]. In the relation (2), η(•) is a

strictly convex function and ζ(•) the associated entropy flux (see e.g. [17], [10] or [25]).

For the Burgers equation, the quadratic entropy is usually considered

(3) η(u) ≡
u2

2
, ζ(u) ≡

u3

3
.

• The computation of weak solutions of hyperbolic problems with the lattice Boltzmann

scheme as described e.g. by Lallemand and Luo [24] is a difficult task. A first tentative

has been proposed in the pioneering work of d’Humières [11]. The study of nonlinear

scalar equation with the help of the lattice Boltzmann scheme has been emphasized by

Buick at al [6] for nonlinear acoustics. The approximation of the Burgers equation with

a quantum variant of the method has been presented by Yepez [31] and we refer to Duan

and Liu [12] for the approximation of two-dimensional Burgers equation with the lattice

Boltzmann scheme. The extension for gas dynamics equations is under study with e.g.

the works of Philippi et al, [29], Nie, Shan and Chen [26] and Karlin and Asinari [21].

• In this contribution, we start from the mathematical framework developed by Bouchut

[3] making the link between the finite volume method and kinetic models in the framework

of the BGK [1] approximation. The key notion is the representation of the dual entropy

with the help of the discrete velocities of the lattice. In section 2, we recal this framework

with emphasis to the one-dimensional scalar case and in section 3 we derive three equilibria

for a kinetic distribution associated with the lattice Boltzmann method. In section 4, we

recall the numerical D1Q3 scheme and in section 5 the link between this scheme and the

finite volume approach. We present our numerical experiments with the Burgers equation

in section 6 and propose natural extensions to other systems in section 7.

2) Kinetic representation of the dual entropy
• The Legendre-Fenchel-Moreau duality is a classic notion defined when we consider

a convex function η(•) of several variables. We can apply the duality transform that

suggests that any convex function η(•) is parametrized by the slopes of the tangent

planes. In other terms,

(4) η∗(ϕ) = sup
W

(

ϕ •W − η(W )
)

.
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The maximum is obtained (when it is not on the boundary of the domain of variation of

the state W ) by solving the equation of unknown W :

(5) η′(W ) = ϕ .

A first example is simply η(w) ≡ ew at one space dimension. Then ew = ϕ, η∗(ϕ) =

ϕ logϕ − ϕ and we recover in this way the fundamental tool to define the so-called

“Shannon entropy” [30].

• We can derive the dual function : if dη(W ) ≡ ϕ •dW then dη∗(ϕ) = dϕ •W and

the “physical state” W is the jacobian of the dual entropy. In an analogous way, we can

introduce (see e.g. [17], [10] or [25]) in the context of hyperbolic conservation laws

(6) ∂tW + ∂x
(

F (W )
)

= 0

the so-called “dual entropy flux” ζ∗(ϕ). It is defined with the help of the “physical flux”

F (•) according to
ζ∗(ϕ) = ϕ •F (W ) − ζ(W ) ,

with the condition (5) as previously. Then

(7) dζ∗(ϕ) = dϕ •F (W )

and the physical flux F (W ) is the jacobian of the dual entropy flux. In other terms, all

the physics associated with the conservation laws (6) can be expressed in terms of the

dual entropy η∗ and of the dual entropy flux ζ∗. The example of Burgers equation (1)

with the quadratic entropy and associated flux gives without difficulty

(8) η∗(ϕ) =
ϕ2

2
, ζ∗(ϕ) =

ϕ3

6
.

• Independently of the framework relative to hyperbolic conservation laws, the Boltz-

mann equation with discrete velocities has been studied by Gatignol [16] (see also [7]). In

this contribution, we write this model for J velocities in one space dimension :

(9) ∂tfj + vj ∂xfj = Qj(f) , 0 ≤ j ≤ J .

The unknown quantity fj(x, t) is the density of particles at point x and time t with a

discrete velocity vj . We have J = 2 for the D1Q3 lattice Boltzmann scheme (presented

in section 4). The equation (9) admits N microscopic collision invariants Mkj :
∑

j

Mkj Qj(f) = 0 , 1 ≤ k ≤ N

and N = 1 for a scalar (e.g. Burgers) equation. The N first conserved moments :

(10) Wk ≡
∑

j

Mkj fj , 1 ≤ k ≤ N

satisfy a system of conservation laws :

(11) ∂tWk + ∂x

(

∑

j

Mkj vj fj

)

= 0 , 1 ≤ k ≤ N.
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Of course, we make the hypothesis that this system admits a mathematical entropy η(W )

with an associated entropy flux ζ(W ). We denote by ϕ the derivative of the entropy (id

est dη = ϕ • dW ). Then the following scalar expression :

(12) ϕ •Mj ≡
N
∑

k=1

ϕkMkj , 0 ≤ j ≤ J ,

is well defined. We call it the jo “particle component of the entropy variables”.

• The link between the Boltzmann models and the entropy variables has been first

proposed by Perthame [28]. We follow here the approach developed by Bouchut [3]. We

suppose that there exists J convex scalar functions h∗j such that

(13)
∑

j

h∗j
(

ϕ •Mj

)

≡ η∗(ϕ) ,
∑

j

vj h
∗

j

(

ϕ •Mj

)

≡ ζ∗(ϕ) , ∀ϕ.

We introduce hj(fj) ≡ supy

(

y fj − h∗j(y)
)

the Legendre dual of the convex function

h∗j (•). The function hj(•) is a real scalar convex function and we can write here the

relation (5) making for each j the link between fj and ϕ •Mj under the scalar form

(14) h′j
(

fj
)

= ϕ •Mj , 0 ≤ j ≤ J .

The so-called microscopic entropy

H(f) ≡
∑

j

hj(fj)

is a convex function in the domain where the hj ’s are convex. When the hypothesis (13)

is satisfied, we can prove a discrete version of the Boltzmann H-theorem. If

(15)
∑

j

h′j(fj)Qj(f) ≤ 0,

we have dissipation of the microscopic entropy :

(16) ∂tH(f) + ∂x

(

∑

j

vj hj(fj)
)

≤ 0

and this function is a natural Lyapunov function. The equilibrium distribution f
eq
j (W )

is naturally defined by

(17) f
eq
j (W ) ≡

(

h∗j
)

′
(

ϕ •Mj

)

, 0 ≤ j ≤ J

because the relation (7) holds. Then we recover the Karlin et al [22] minimization prop-

erty : H(f) ≥ H(f eq) for each f such that
∑

j Mkj fj =
∑

j Mkj f
eq
j ≡ Wk with

1 ≤ k ≤ N.

• We recall that the equilibrium distribution of particles, the conserved variables and

the macroscopic fluxes are given respectively by the relations (17), (10) and

Fk(W ) ≡
∑

j

Mkj vj f
eq
j , 1 ≤ k ≤ N .

The macroscopic entropy and associated entropy fluxes satisfy

η(W ) =
∑

j

hj
(

f
eq
j

)

, ζ(W ) =
∑

j

vj hj
(

f
eq
j

)

.
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When the Boltzmann equation with discrete velocities satisfies the so-called BGK hy-

pothesis [1], id est

(18) Qj(f) =
1

τ

(

f
eq
j − fj

)

, 0 ≤ j ≤ J

for some constant τ > 0, the Boltzmann H-theorem is satisfied. We give the proof for

completeness : we first have the following convexity inequality
(

h′j
(

f
eq
j

)

− h′j
(

fj
)

) (

f
eq
j − fj

)

≥ 0 , 0 ≤ j ≤ J .

If the BGK hypothesis (18) occurs, we have by summation over j,

τ
∑

j

h′j
(

fj
)

Qj(f) =
∑

j

h′j
(

fj
)

(

f
eq
j − fj

)

≤
∑

j

h′j
(

f
eq
j

)

(

f
eq
j − fj

)

=

=
∑

j

(

ϕ •Mj

)

(

f
eq
j − fj

)

= ϕ •

∑

j

Mj

(

f
eq
j − fj

)

= 0

and due to (14), the hypothesis (15) is satisfied and the H-theorem is established in this

case.

• As a summary of this mathematical section in the case of the Burgers equation (1)

and following the work of Bouchut [2], if there exists convex functions h∗j(ϕ) of the

entropy variable ϕ such that

(19)
∑

j

h∗j (ϕ) ≡ η∗(ϕ) =
ϕ2

2
,

∑

j

vj h
∗

j (ϕ) ≡ ζ∗(ϕ) =
ϕ3

6

then the equilibrium f
eq
j (u) ≡

dh∗

j

dϕ
defines a stable approximation in a sense detailed in

Chen et al [8] and extended by Bouchut [4].

3) Particle decompositions for the Burgers equation
• We propose in this contribution to construct kinetic decompositions of a scalar variable

in order to solve the Burgers equation in cases where weak solutions can occur, id est

when shock waves can be developed. We consider only the simple D1Q3 stencil with

three discrete velocities −λ, 0 and λ. Recall that the scalar λ ≡ ∆x
∆t

is a fundamental

numerical parameter that is very often taken equal to unity by lattice Boltzmann scheme

users (see e.g. [24]). For the Burgers equation (1) a possible mathematical entropy is the

quadratic one (3). The dual entropy η∗(ϕ) and the associated dual entropy flux ζ∗(ϕ)

are given according to the relations (8). Due to the method proposed in the previous

section, we search three convex functions h∗+(ϕ) , h
∗

0(ϕ) and h∗
−
(ϕ) such that

(20) h∗+(ϕ) + h∗0(ϕ) + h∗
−
(ϕ) ≡

ϕ2

2
, λ

(

h∗+(ϕ) − h∗
−
(ϕ)

)

≡
ϕ3

6
.

• A first possible solution of the previous system consists in introducing some parameter

α such that 0 < α ≤ 1. Then we consider the particular function

(21) h∗0(ϕ) = (1− α)
ϕ2

2
.
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Due to (20), the two other dual fuctions h∗+(ϕ) and h∗
−
(ϕ) are determined :

(22) h∗+ = α
ϕ2

4
+

ϕ3

12 λ
, h∗

−
= α

ϕ2

4
−

ϕ3

12 λ
.

The associated dual functions can be explicited without particular difficulty :

(23)



























h+(f+) =
λ2

6

[(

α2 + 4
f+

λ

)3/2

−
(

α3 + 6α
f+

λ

)]

h0
(

f0
)

=
1

2 (1− α)
f 2
0

h−
(

f−
)

=
λ2

6

[(

α2 − 4
f−

λ

)3/2

+ 6α
f−

λ
− α3

]

.

The three functions h∗j introduced in (21) and (22) are convex when

(24) |ϕ | ≤ αλ

and the relation (24) can be interpreted as a Courant-Friedrichs-Lewy stability condition :

∆t ≤
α

|u |
∆x .

The stability is in fact defined as the domain of convexity of the dual functions h∗j pre-

sented algebraically by relations (21) (22) and illustrated in Figure 1. The explicit deter-

mination of the equilibrium distribution is then a consequence of the relation (17) taking

also into account that ϕ ≡ u for the quadratic entropy. We have

(25) f
eq
+ (u) =

α

2
u+

u2

4 λ
, f

eq
0 = (1− α) u , f

eq
−

=
α

2
u−

u2

4 λ
.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

-1 -0.5  0  0.5  1

h*+ h*0 h*-

Figure 1. Kinetic decomposition (21) (22) for the Burgers equation with a “centered”

D1Q3 scheme (α = 1
2
).

• An other solution of the previous system (20) can be obtained as follows. Derive the

two relations in (20) two times. Then
(

h∗+
)

′′

(ϕ) =
(

h∗
−

)

′′

(ϕ) +
ϕ

λ
,

(

h∗0
)

′′

(ϕ) + 2
(

h∗
−

)

′′

(ϕ) = 1−
ϕ

λ
.
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In order to have a better stability property than the condition (24) obtained previously,

we try to enforce the convexity condition
(

h∗j
)

′′

(ϕ) ≥ 0 if |ϕ | ≤ λ instead of (24). For

ϕ ≤ 0, we propose to replace the inequality
(

h∗+
)

′′

(ϕ) ≡
(

h∗
−

)

′′

(ϕ)+ ϕ
λ
≥ 0 by an equality.

Then
(

h∗
−

)

′′

(ϕ) = −ϕ
λ

if ϕ ≤ 0. We deduce
(

h∗+
)

′′

(ϕ) = 0 and
(

h∗0
)

′′

(ϕ) = 1 + ϕ
λ

if

ϕ ≤ 0. With analogous arguments, we obtain
(

h∗+
)

′′

(ϕ) = ϕ
λ
,

(

h∗0
)

′′

(ϕ) = 1 − ϕ
λ

and
(

h∗
−

)

′′

(ϕ) = 0 when ϕ ≥ λ.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

-1.5 -1 -0.5  0  0.5  1  1.5

h*+ h*0 h*-

Figure 2. Kinetic decomposition for Burgers equation, equilibria (26) for the lattice

Boltzmann upwind scheme D1Q3.

We construct in this way an “upwind” distribution for the decomposition of the dual

entropy:

(26) h∗+(ϕ) =















ϕ3

6 λ

0

, h∗0(ϕ) =



















ϕ2

2
−
ϕ3

6 λ

ϕ2

2
+
ϕ3

6 λ

, h∗
−
(ϕ) =















0, ϕ ≥ 0

−
ϕ3

6 λ
, ϕ ≤ 0.

It is presented in Figure 2. The associated equilibrium distribution (17) takes the form

(27) f
eq
+ (u) =















u2

2 λ

0

, f
eq
0 (u) =



















u−
u2

2 λ

u+
u2

2 λ

, f
eq
−
(u) =















0, u ≥ 0

−
u2

2 λ
, u ≤ 0 .
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By considering the Legendre duals of the relations (26), we have

(28)























h+(f+) =
2

3
f+

√

2 λ f+ with f+ ≥ 0

h0
(

f0
)

=
λ2

3

[(

1− 2
|f0|

λ

)3/2

+ 3
|f0|

λ
− 1

]

with f0 ∈ R

h−
(

f−
)

= −
2

3
f−

√

−2 λ f− with f− ≤ 0 .

• We observe that if α = 1 for the “centered” equilibrium for D1Q3 Burgers scheme,

the null velocity does not contribute to the equilibrium because h0(ϕ) ≡ 0 ; this vertex of

null velocity is no more active. In that case, we obtain a D1Q2 centered lattice Boltzmann

scheme for Burgers equation. Then

(29) h∗+(ϕ) =
ϕ2

4
+

ϕ3

12 λ
, h∗

−
=

ϕ2

4
−

ϕ3

12 λ
.

These two functions represented in Figure 3 are convex if

(30) |ϕ | ≤ λ

and the associated Courant-Friedrichs-Lewy stability condition states as follows

∆t ≤
1

|u |
∆x .

The dual equilibrium entropy function defined at relations (29) are represented on Fig-

ure 3. The associated components h+(f+) and h−(f−) of the microscopic entropy follow

from (23) in the particular case α = 1. Observe that h0(f0) is no more defined which is

coherent with a choice of a “D1Q2” lattice Boltzmann scheme. The associated equilibrium

particle distribution is obtained according to

(31) f
eq
+ (u) =

1

2
u+

u2

4 λ
, f

eq
−

=
1

2
u−

u2

4 λ
.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

-1.5 -1 -0.5  0  0.5  1  1.5

h*+ h*-

Figure 3. Kinetic decomposition for Burgers ; D1Q2 centered scheme.
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4) D1Q3 lattice Boltzmann scheme
• As developed in the preceding section, we here consider three examples of stable

equilibria in the context of the lattice Boltzmann scheme. More precisely, following the

approach proposed by d’Humières [11], we discretize in space and time the Boltzmann

equation with discrete velocities (9) in the following way. We introduce a matrix M that

links particle densities fj (j = −, 0, +) and moments mk. For the simple D1Q3 lattice

Boltzmann scheme, we obtain

(32) m ≡ M • f , M =





1 1 1

−λ 0 λ

λ2 0 λ2



 , u ≡ f−1 + f0 + f1 = m1 .

• The first equilibrium (25) can be translated in terms of moments under the form

meq,1 ≡
(

u ,
u2

2
, α λ2 u

)t
.

When using the “upwind” equilibrium (27), we obtain an other possible value for moments

at equilibrium :

meq,2 ≡
(

u ,
u2

2
, λ sgn(u)

u2

2

)t
.

The simpler scheme D1Q2 corresponds to the first equilibrium (25) with the particular

value α = 1 as proposed in relations (31). We have only two components in this case :

meq,3 ≡
(

u ,
u2

2

)t
.

• The relaxation step is nonlinear and local in space :

(33) m∗

1 = m
eq
1 = u , m∗

k = mk + sk (m
eq
k −mk) for k ≥ 2,

with s2 = s3 = 1.7 in our simulations unless otherwise stated. The particle distribution

f ∗

j after relaxation is obtained by inversion of relation (32) : f ∗ =M−1
• m∗.

• The time iteration of the scheme follows the characteristic directions of velocity vj :

fj(x, t+∆t) = f ∗

j (x− vj ∆t, t) .

This advection step is linear and associates the node x with its neighbours.

5) Comparison with finite volumes
• In [13] we have observed that a one-dimensional lattice Boltzmann scheme can be

interpreted with the help of finite volumes. In the case considered here, we have

1

∆t

(

u(x, t+∆t)− (u(x, t)
)

+
1

∆x

[

ψ
(

x+
∆x

2
, t
)

− ψ
(

x−
∆x

2
, t
)]

= 0

with a numerical flux ψ
(

x + ∆x
2
, t
)

at the interface between the vertices x and x+∆x

defined according to

(34) ψ
(

x+
∆x

2
, t
)

= λ
(

f ∗

+(x, t)− f ∗

−
(x+∆x, t)

)

.
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We observe that the resulting lattice Boltzmann scheme is not a traditional finite volume

scheme (in the sense proposed e.g. in [10]) if (s2, s3) 6= (1, 1) because the distribution

of particles after collision f ∗ is also a function of the two (or one in the D1Q2 scheme)

other nonconserved moments m2 and m3 as described in relations (33). Nevertheless,

if s2 = s3 = 1, we can give an interpretation of the associated flux (34) because in this

case, f ∗

j ≡ f
eq
j for all j.

• We observe that we can also decompose the “physical” flux F (•) (see the relation

(1) or (6) in all generality) under the form F (u) ≡ F+(u) + F−(u) with

(35) F+(u) = λ f
eq
+ (u) , F−(u) = −λ f eq

−
(u) .

We have F+

(

u(x, t)
)

+ F−

(

u(x + ∆x, t)
)

= λ
(

f
eq
+

(

u(x, t)
)

− f
eq
+

(

u(x + ∆x, t)
))

and

when s2 = s3 = 1 the numerical flux ψ introduced in (34) admits the classical so-called

flux splitting form :

(36) ψ
(

x+
∆x

2
, t
)

= F+

(

u(x, t)
)

+ F−

(

u(x+∆x, t)
)

.

With this above link between fluxes and particle distributions (36) it is natural to re-

interpret with classical flux decompositions as (35) those proposed in this contribution at

relations (25), (27) and (31). As remarked by Bouchut [5], the relations (25) and (31) are

associated with two variants of the Lax-Friedrichs scheme (see e.g. Lax [25]) whereas the

upwind scheme (27) corresponds exactly to the Engquist-Osher [14] scheme !

0

1

σ = 1/2

1

t

x

Figure 4. A converging schock wave for the Burgers equation. The decreasing profile

(37) at t = 0 leads to an admissible discontinuity at t = 1. Then a shock wave with

velocity σ = 1
2
develops.
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6) Test cases
We test the previous numerical schemes for two classical problems : a converging shock

wave and the Riemann problem. We use the three variants (25), (27) and (31) of the

lattice Boltzmann scheme for each physical problem.

• The first test case concerns a converging shock wave and is displayed in Figure 4. At

time t = 0 the initial profile u0(x) is given according to

(37) u0(x) =







1 if x ≤ 0

1− x if 0 ≤ x ≤ 1

0 if x ≥ 1 .

When t < 1 the profile u(x, t) remains a continuous function of space x but when t > 1

a shock wave with velocity σ = 1
2
is present (see e.g. [17], [10] or [25]). It is a challenge

if a lattice Boltzmann scheme is able to capture in a systematic way such a discontinuous

solution.

-0.5

 0

 0.5

 1

 1.5

 2

 0  0.5  1  1.5  2

 space 

Figure 5. Burgers equation. Instable D1Q3 lattice Boltzmann simulation for a con-

verging shock with equilibrium (25) associated to the parameters α = 1
2
, s2 = s3 = 1.7

and λ = 1.8. Computed values are displayed every 10 time steps.

• The first experiment (see Figure 5) concerns the first centered scheme (25) and the

choice α = 1
2
and λ = 1.8 for the numerical parameters. The result is catastrophic, as

depicted on Figure 5. The scheme is unstable and diverges within a very little time after

the solution becomes discontinuous. The reason is simple a posteriori. Observe that for

the previous test case α = 1
2

and particular values u(x, t) ≥ 1 have to be considered.

But the convexity-stability condition (24) reads as |u | ≤ λ
2
and is incompatible with the

chosen numerical values because we take λ = 1.8 in the numerical simulation. We observe

that under conditions that violate the inequality (24), the lattice Boltzmann scheme
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is unstable in this strongly nonlinear situation, even if we respect the linear stability

condition

(38) 0 < sj < 2

proposed initially by Hénon [20].

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.5  1  1.5  2

 space 

Figure 6. Burgers equation. Stable D1Q3 lattice Boltzmann simulation for a con-

verging shock with equilibrium (25) associated to the parameters α = 1
2
, λ = 3 and

s2 = s3 = 1.7. Computed values are displayed every 10 time steps.

 0

 0.5

 1

 1.5

 2

 0  0.5  1  1.5  2  2.5  3

 space  

Figure 7. Burgers equation. Same experiment as in Figure 6 except that s2 = s3 = 2.

The numerical algorithm remains stable but is no longer convergent. Computed values

are displayed every 10 time steps.
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• We repeat the same numerical experiment with a smaller time step. We take λ = 3

in a second experiment. The condition (24) is now satisfied and the scheme is stable. The

results are correct and are presented in Figure 6. The shock is spread on 4 to 5 mesh

points and we observe simply an overshoot at the location of the shock wave. With the

extreme set of values s2 = s3 = 2 (if we refer to relation (38)), the numerical experiment

does not give correct results because no entropy is dissipated. But the scheme remains

stable as presented on Figure 7 : the numerical values remain inside an interval [−0.4, 1.7]

relatively close to the set [0, 1] of correct values for this particular problem. The nonlinear

stability condition enters into competition with the linear stability condition (38).

• With the same initial condition (37), we use the D1Q3 upwind version (27) of the

lattice Boltzmann scheme. Now the stability condition is not so severe as in the previous

case and we take λ = 1.1. The results, presented in Figure 8, are qualitatively analogous

to the previous one (see Figure 6). We observe on Figure 8 an alternance of monotonic

and over or undershooting discrete shock profiles.

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 2.1  2.2  2.3  2.4  2.5  2.6

 space 

Figure 8. Burgers equation. Stable D1Q3 lattice Boltzmann simulation for a converg-

ing shock with upwind equilibrium (27) with λ = 1.1 and s2 = s3 = 1.7. Eight consecutive

discrete time steps.
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 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.5  1  1.5  2  2.5  3

 space 

Figure 9. Burgers equation. Stable D1Q2 lattice Boltzmann simulation for a converg-

ing shock with quilibrium (31), λ = 1.5 and s2 = 1.7. Computed values are displayed

every 10 time steps.

• With the same decreasing initial condition (37), using the D1Q2 version (31) leads

to results presented on Figure 9. We observe only an over-shooting at the discrete shock

profile without any under-overshooting.

• In a second set of experiments, we use the very simple “two steps” or “Riemann”

initial condition. The first one is simply

(39) u0(x) =

{

1 if x < 0.2

0 if x > 0.2 .

The entropic solution of this Riemann problem composed by the Burgers equation (1)

associated with the initial condition (39) is a discontinuity propagating at the velocity

σ = 1
2

(see e.g. [17], [10] or [25]). With the numerical schemes introduced previously,

this entropy satisfying solution is captured with a precision comparable to finite-volume

type methods. The results are presented on Figure 10 for numerical schemes (25), (27)

and (31). On Figure 11, a zoom of the previous data shows that this moving shock is

captured by a stencil of four to five mesh points.
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-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

d1q3c d1q3u d1q2 exact

Figure 10. The Riemann problem for the Burgers equation associated with the initial

condition (39) develops a shock wave. The figures shows the numerical solutions with

the three variants of the scheme after 100 discrete time steps and parameters λ = 3 and

s2 = s3 = 1.7.

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.5  0.55  0.6  0.65

d1q3c d1q3u d1q2 exact

Figure 11. Zoom of Figure 10 around the location of the shock wave.
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 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

d1q3c d1q3u d1q2 exact

Figure 12. The Riemann problem for the Burgers equation associated with the initial

condition (40) develops a rarefaction wave. Numerical solutions with the three variants

of the lattice Boltzmann scheme after 100 discrete time steps and parameters λ = 3,

s2 = s3 = 1.7.

• We reverse the values 0 and 1 in the initial condition (39) and obtain in this way a

new initial condition :

(40) u0(x) =

{

0 if x < 0.2

1 if x > 0.2 .

The entropic solution of (1)(40) is a rarefaction wave : a continuous solution with two

constant states and a self-similar component as detailed e.g. [17], [10] or [25]. Without

any modification of the scheme, the numerical solution with the three previous variants

are presented on Figure 12. At the tricky zones of the foot (Figure 13) and the top

(Figure 14) of the rarefaction, the slope is discontinuous and the solution of the problem

(1)(40) is just continuous. We observe that the “D1Q2” version of the lattice Boltzmann

scheme exhibits a two point discrete structure ; in some sense the little number of mesh

points of this version (31) induces some rigidity in the discrete approximation.

• In this section relative to test cases for unstationary solutions of the Burgers equa-

tion, we have observed two facts. First, a convex-satisfying lattice Boltzmann scheme

associated with a particle decomposition (20) of the dual entropy is naturally stable even

in circumstance where the classic linear analysis is a priori in defect. A precise analysis

of the competition between nonlinear equilibrium and over-relaxation step (33) could be

welcomed. Second, under the convexity condition of the h∗j functions of the particle de-

composition (20), we observe that the entropy condition is automatically enforced. No

so-called rarefaction shock has never been observed with the initial condition (40).
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 0
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 0.1

 0.15

 0.2

 0.25

 0.3

 0.1  0.15  0.2  0.25  0.3

d1q3c d1q3u d1q2 exact

Figure 13. Zoom of Figure 12 at the foot of the rarefaction.

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0.5  0.55  0.6  0.65  0.7

d1q3c d1q3u d1q2 exact

Figure 14. Zoom of Figure 12 at the top of the rarefaction.

7) Systems of conservation laws
• The extension of the previous ideas from scalar equation to hyperbolic systems is a

difficult task. We first consider the example of one-dimensional linear acoustics to fix the

ideas. We recall that we can write this physical model as an hyperbolic system of first

order :

(41) ∂t

(

ρ

q

)

+ ∂α

(

q

c20 ρ

)

= 0 .
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Then a mathematical entropy is simply a quadratic form that corresponds to the physical

energy :

(42) η(W ) ≡
ρ2

2
+

q2

2 c20
.

The entropy variables are the gradients of the entropy (42) relative to the conserved

variables (ρ, q) and we have

(43) ϕ =
(

ρ ,
q

c20

)

.

The associated entropy flux ζ(W ) is easy to determine and ζ(W ) = ρ q. The dual

entropy η∗(ϕ) ≡ ϕ•W − η(W ) and the dual entropy flux ζ∗(ϕ) ≡ ϕ•F (W )− ζ(W ) can

be evaluated without difficulty and we obtain

(44) η∗(ϕ) = η(W ) , ζ∗(ϕ) = ζ(W ) ;

all is quadratic in this system !

• We approach the system (41) with a D1Q3 lattice Boltzmann scheme. We use the

moments m associated with the same matrix M used for the Burgers equation (see (32)).

The associated particle components of the entropy variables ϕ•Mj introduced in (12) are

given according to

(45) ϕ •M+ ≡ ρ+
λ q

c20
, ϕ •M0 ≡ ρ , ϕ •M− ≡ ρ−

λ q

c20
.

The identities (13) take now the form

(46)

{

h∗+
(

ϕ •M+

)

+ h∗0
(

ϕ •M0

)

+ h∗
−

(

ϕ •M−

)

≡ η∗(ϕ)

λ h∗+
(

ϕ •M+

)

− λ h∗
−

(

ϕ •M−

)

≡ ζ∗(ϕ) .

We search a possible solution of system (46) with simple quadratic functions : h∗0(y) ≡

a y2 and h∗+(y) = h∗
−
(y) ≡ b y2. After some lines of algebra, the previous representation

and the above conditions (46) leads to

(47)



























h∗+

(

ρ+
λ q

c20

)

=
c20
4 λ2

(

ρ+
λ q

c20

)2

h∗0(ρ) =
1

2

(

1−
c20
λ2

)

ρ2

h∗
−

(

ρ−
λ q

c20

)

=
c20
4 λ2

(

ρ−
λ q

c20

)2

.

The functions proposed in (47) are convex under the stability condition :

|c0 | ≤ λ .

This inequality means that the numerical waves go faster than the physical ones, a familiar

interpretation of the Courant-Friedrichs-Lewy condition (see e.g. [25]). A microscopic

entropy H(f) = h+(f+) + h0(f0) + h−(f−) can be easily derived from (47) with the

following contributors :

h+
(

f+
)

=
λ2

c20
f 2
+ , h0

(

f0
)

=
1

2
(

1−
c20
λ2

)

f 2
0 , h−

(

f−
)

=
λ2

c20
f 2
−
.
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The particle distribution f
eq
j at equilibrium is a direct consequence of relations (17) and

(47) and we have

(48) f
eq
+ =

c20
2 λ2

(

ρ+
λ q

c20

)

, f
eq
0 =

1

2

(

1−
c20
λ2

)

ρ , f
eq
−

=
c20
2 λ2

(

ρ−
λ q

c20

)

.

In terms of moments, the relations (48) reduce to m
eq
3 = c20 ρ as used classically since

the work [24] of Lallemand and Luo !

• In the case of shallow water equations at one space dimension we can apply the

program presented above for the linear acoustic model and try to represent the dual

entropy with the help of a D1Q3 particle distribution. More precisely, we consider the

one-dimensional system of conservation laws due to A. Barré de Saint Venant :

(49)







∂tρ+ ∂xq = 0

∂tq + ∂x

(q2

ρ
+ k ργ

)

= 0

where k > 0 and γ > 1 are given positive constants. We introduce velocity u, pressure p

and sound velocity c > 0 according to the relations

u ≡
q

ρ
, p ≡ k ργ , c2 ≡

γ p

ρ
= γ k ργ−1 .

Then the entropy η and the entropy flux ζ satisfy

(50) η =
1

2
ρ u2 +

p

γ − 1
, ζ = η u+ p u ;

the entropy variables ϕ =
(

∂ρη, ∂qη
)

≡ (α, β) can be evaluated without difficulty :

α =
c2

γ − 1
−
u2

2
, β = u .

The dual entropy η∗ and the dual entropy flux ζ∗ can be expressed as functions of the

entropy variables :

(51) η∗ = K

(

α +
β2

2

)

γ
γ − 1

, ζ∗ = K

(

α +
β2

2

)

γ
γ − 1

β , K = k

(

γ − 1

γ k

)

γ
γ − 1

.

With the matrixM introduced at relation (32), we denote by ϕ+, ϕ0 and ϕ− the particle

components of the entropy variables ϕ•Mj and we have

ϕ+ = α + λ β , ϕ0 = α , ϕ− = α− λ β .

The unknown convex functions h∗j satisfy the identities (46) and take now the form

(52)























h∗+(ϕ+) + h∗0(ϕ0) + h∗
−
(ϕ−) = K

(

α +
β2

2

)

γ
γ − 1

λ h∗+(ϕ+)− λ h∗
−
(ϕ−) = K

(

α +
β2

2

)

γ
γ − 1

β .

• We prove in the following that the system of equations (52) where the unknowns are

the convex functions h∗j has no solution. In order to establish this property, we introduce
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the equilibrium distributions f
eq
j according to (17). We differentiate the relations (52)

relatively to α and β. We obtain

(53)







f
eq
+ (α + λ β) + f

eq
0 (α) + f

eq
−
(α− λ β) = ρ

λ f
eq
+ (α + λ β)− λ f

eq
−
(α− λ β) = ρ u

λ2 f
eq
+ (α + λ β) + λ2 f

eq
−
(α− λ β) = ρ u2 + p .

and we are supposed to determine an increasing function f
eq
0 of only one real variable

such that

(54) f
eq
0

(

c2

γ − 1
−
u2

2

)

≡ ρ−
1

λ2

(

ρ u2 + p
)

.

Due to the elementary calculus dc2

dρ
= γ k (γ − 1)ργ−2 = (γ − 1) c

2

ρ
, we differentiate the

relation (54) relative to ρ and independently relatively to u. We obtain

(55)
c2

ρ

(

f
eq
0

)

′

(α) +
1

λ2

(

u2 + c2
)

= 1 , −u
(

f
eq
0

)

′

(α) +
2 ρ u

λ2
= 0 .

We extract the derivative (f eq
0 )′(α) from the second equation of (55) and report the result

in the first equation. We deduce
u2 + 3 c2 = λ2

and this relation can be correct only for exceptional values of velocity and sound velocity !

This impossibility is mathematically natural : it is in general not possible to represent

a function of two variables (the right hand side of relation (54)) by a simple function of

only one variable.

• As a summary of this section, the generalization of what have been done in this

contribution for the Burgers equation is absolutely nontrivial and mathematically impos-

sible for the familiar nonlinear system of Saint-Venant equations. One idea is to keep the

approach as a possible approximation of systems of conservation laws.

8) Conclusion and perspectives
• We first propose a summary of the algebraic work that has to be done in order

to determine in which domain a given lattice Boltzmann scheme is stable in the sense

proposed by Bouchut [3]. If very interesting results are computed with a very good lattice

Boltzmann scheme in the framework proposed by d’Humières [11], we first determine

the conserved variables Wk ≡
∑

j Mkj fj . Then the convective fluxes follow the relation

Fαk(W ) ≡
∑

j Mkj v
α
j f

eq
j . First it is necessary to have a kinetic decomposition of the

entropy and the associated entropy flux of the type η(W ) =
∑

j hj(f
eq
j ) and ζα(W ) =

∑

j v
α
j hj(f

eq
j ). Second determine the entropy variables ϕ = ∇W η(W ) and the one to

one mapping between W and ϕ. Third evaluate the Legendre-Fenchel-Moreau duals

h∗j (y) ≡ supf (y f − hj(f)) of the scalar functions hj(•). Fourth determine in which

domain all the functions ϕ 7−→ h∗j
(

ϕ •Mj

)

are convex . Fifth report this domain in the

f space...

• Second, we recall that in this contribution, we have applied the above procedure to

the Burgers equation, a fundamental nonlinear scalar equation. Then nonlinear stability
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does not reduce to a simple criterion on the “s” parameters of the lattice Boltzmann

scheme. It remains open for as to understand why the discrete results with the lattice

Boltzmann scheme are so well interpreted in terms of Bouchut’s theory. Moreover, it is a

natural question to know why the entropy condition is naturally enforced in the context

of nonlinearly stable lattice Boltzmann schemes.

• Third we observe that the situation for systems is very tricky ! Progress could result

from t he use of a vectorial particle distribution as initially proposed by Khobalatte and

Perthame in [23] and developed by Bouchut [2] for the kinetic finite volume approach.

Observe that this idea has been also recognized as very useful in the lattice Boltzmann

community for the approximation of thermal fluids, as suggested by He, Chen and Doolen

[19], Dellar [9] and used by Peng, Shu and Chew [27] among others.
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