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We consider a closed semi-algebraic set X ⊂ R n and a C 2 semi-algebraic function f : R n → R such that f |X has a finite number of critical points. We relate the topology of X to the topology of the sets {f * α}, where * ∈ {≤, =, ≥} and α ∈ R, and the indices of the critical points of f |X and -f |X . We also relate the topology of X to the topology of the links at infinity of the sets {f * α} and the indices of these critical points. We give applications when X = R n and when f is a generic linear function.

Introduction

Let f : (R n , 0) → (R, 0) be an analytic function-germ with an isolated critical point at 0. The Khimshiashvili formula [Kh] states that:

χ f -1 (δ) ∩ B n ε = 1 -sign(-δ) n deg 0 ∇f, where 0 < |δ| ≪ ε ≪ 1, B n
ε is a closed ball of radius ε centered at 0, ∇f is the gradient of f and deg 0 ∇f is the topological degree of the mapping ∇f |∇f | : S n-1 ε → S n-1 . As a corollary of this formula, one gets (see [Ar] or [Wa]):

χ {f ≤ 0} ∩ S n-1 ε = 1 -deg 0 ∇f, χ {f ≥ 0} ∩ S n-1 ε = 1 + (-1) n-1 deg 0 ∇f,
and:

χ {f = 0} ∩ S n-1 ε = 2 -2deg 0 ∇f if n is even.
In [Se], Sekalski gives a global counterpart of Khimshiashvili's formula for a polynomial mapping f : R 2 → R with a finite number of critical points. He considers the set Λ f = {λ 1 , • • • , λ k } of critical values of f at infinity, where λ 1 < . . . < λ k , and its complement R \ Λ f = ∪ k i=0 ]λ i , λ i+1 [ where λ 0 = -∞ and λ k+1 = +∞. Denoting by r ∞ (g) the numbers of real branches at infinity of a curve {g = 0} in R 2 , he proves that:

deg ∞ ∇f = 1 + k i=1 r ∞ (f -λ i ) - k i=0 r ∞ (f -λ + i ),
where for i = 0, . . . , k, λ + i is an element of ]λ i , λ i+1 [ and deg ∞ ∇f is the topological degree of the mapping ∇f ∇f : S n-1 R → S n-1 , R ≫ 1. Here a real branch is homeomorphic to a neighborhood of infinity in R and hence has two connected components.

Our aim is to generalize Sekalski's formula and to establish other similar results. We consider a closed semi-algebraic set X ⊂ R n equipped with a finite semi-algebraic Whitney stratification (S α ) α∈A and a C 2 semi-algebraic function f : R n → R such that f |X has a finite number of critical points p 1 , . . . , p l . The index of f |X at p i is defined by: ind(f, X, p i ) = 1χ X ∩ {f = f (p i ) -δ} ∩ B n ε (p i ) , where 0 < δ ≪ ε ≪ 1. In Section 3, Proposition 3.6 and Corollary 3.7, we give relations between the Euler characteristics of the sets {f * α}, where * ∈ {≤, =, ≥} and α ∈ R, the indices of the critical points of f |X and -f |X and four numbers λ f,α , λ -f,-α , µ f,α and µ -f -,α . These numbers are defined in terms of the behavior of f |X at infinity (Definition 3.5). Then we consider the following finite subset of R:

Λ * f = α ∈ R | β → χ Lk ∞ (X ∩ {f * β}) is not constant in a neighborhood of α ,
where * ∈ {≤, =, ≥} and Lk ∞ (-) denotes the link at infinity. Writing

Λ ≤ f = {b 1 , . . . , b r }, R \ Λ ≤ f = ∪ r i=0 ]b i , b i+1
[ with b 0 = -∞ and b r+1 = +∞ and studying the behavior at infinity of the numbers λ f,α , λ -f,-α , µ f,α and µ -f -,α , we show that (Theorem 3.16):

χ(X) = k i=1 ind(f, X, p i ) + r j=0 χ Lk ∞ (X ∩ {f ≤ b + j }) - r j=1 χ Lk ∞ (X ∩ {f ≤ b j }) ,
where for j ∈ {0, . . . , r}, b + j ∈]b j , b j+1 [. Similar formulas involving Λ ≥ f and Λ = f are proved in Theorem 3.17 and Corollary 3.18.

Next we consider the finite subset Bf = f {p 1 , . . . , p l } ∪Λ ≤ f ∪Λ ≥ f of R. We show that if α / ∈ Bf then the functions β → χ X ∩ {f * β} , * ∈ {≤, =, ≥}, are constant in a neighborhood of α (Proposition 3.19). In Theorem 3.20 and Theorem 3.21 we express χ(X) in terms of the indices of the critical points of f |X and -f |X and the variations of the Euler characteristics of the sets {f * α}, α ∈ {≤, =, ≥}.

In Section 4, we apply all these results to the case X = R n in order to recover and generalize Sekalski's formula (Theorem 4.4).

In Section 5, we apply the results of Section 3 to generic linear functions. For v ∈ S n-1 , we denote by v * the function v * (x) = v, x . We show that for v generic in S n-1 , the sets Λ ≤ v * , Λ = v * and Λ ≥ v * are empty. Hence for such a v, the Euler characteristics of the sets X ∩ {v * ?α}, ? ∈ {≤, =, ≥} and α ∈ R, as well as the Euler characteristics of their links at infinity, can be expressed only in terms of the critical points of v * |X and -v * |X (Proposition 5.4 and Proposition 5.5). We use these results to give a new proof of the Gauss-Bonnet formula for closed semi-algebraic set (Theorem 5.8), that we initially proved in [START_REF] Dutertre | A Gauss-Bonnet formula for closed semi-algebraic sets[END_REF]Corollary 5.7] using the technology of the normal cycle [Fu] and a deep theorem of Fu and McCrory [FM,Theorem 3.7].

Section 2 of this paper contains three technical lemmas. We will use the following notations: for p ∈ R n and ε > 0, B n ε (p) is the ball of radius ε centered at p and S n-1 ε (p) the sphere of radius ε centered at p. If p = 0, we simply set B n ε and S n-1 ε and if p = 0 and ε = 1 we use the standard notations B n and S n-1 . If E is a subset of R n then E denotes its topological interior.

Some lemmas

Let X ⊂ R n be a closed semi-algebraic set equipped with a semi-algebraic Whitney stratification (S α ) α∈A : X = ⊔ α∈A S α . Let g : R n → R be a C 2 semi-algebraic function such that g -1 (0) intersects X transversally (in the stratified sense). Then the following partition:

X ∩ {g ≤ 0} = α∈A S α ∩ {g < 0} ⊔ α∈A S α ∩ {g = 0},
is a Whitney stratification of the closed semi-algebraic set X ∩ {g ≤ 0}.

Let f : R n → R be another C 2 semi-algebraic function such that f |X∩{g≤0} admits an isolated critical point p in X ∩{g = 0} which is not a critical point of f |X . If S denotes the stratum of X that contains p, this implies that:

∇(f |S )(p) = λ(p)∇(g |S )(p),
with λ(p) = 0. We assume that f |{g=0} is a submersion in the neighborhood of p if dim S < n and, for simplicity, that f (p) = 0.

Lemma 2.1. For 0 < δ ≪ ε ≪ 1, we have:

χ f -1 (-δ) ∩ B n ε (p) ∩ X ∩ {g ≤ 0} = 1 if λ(p) > 0, χ f -1 (-δ) ∩ B n ε (p) ∩ X ∩ {g ≤ 0} = χ f -1 (-δ) ∩ B n ε (p) ∩ X ∩ {g = 0} if λ(p) < 0.
Proof. We assume first that dim X < n. Let h : R n → R be a semialgebraic approximating function for X from outside (see [START_REF] Broecker | Integral geometry of tame sets[END_REF]Definition 6.1]). This implies that h satisfies the following conditions:

(i) The function h is nonnegative and h -1 {0} = X. (ii) The function h is of class C 3 on R n \ X.
(iii) There exists δ > 0 such that all t ∈]0, δ] are regular values of f . (iv) If (y k ) k∈N is a sequence of points in R n tending to a point x in X such that h(y k ) ∈]0, δ] and ∇h ∇h (y k ) tends to v, then v is normal to T x S, S being the stratum containing x. Let us choose ε sufficiently small so that the ball B n ε ′ (p) intersect X, {g ≤ 0} and X ∩ {g ≤ 0} transversally for ε ′ ≤ ε. For r > 0 sufficiently small, the set W ε,r = B n ε (p) ∩ {g ≤ 0} ∩ {h ≤ r} is a manifold with corners. To see this, it is enough to prove that r is not a critical value of h |B n ε (p)∩{g≤0} , which means that r is not a critical value of:

h 1 = h | Bn ε (p)∩{g<0} , h 2 = h | Bn ε (p)∩{g=0} , h 3 = h |S n-1 ε (p)∩{g<0}
, and:

h 4 = h |S n-1 ε (p)∩{g=0} .
The fact that r is not a critical value of h 1 is trivial by Condition (iii) above. If for r > 0 small, r is a critical value of h 2 then we can find a sequence of points (q n ) in B n ε (p) ∩ {g = 0} such that h(q n ) → 0 and h |{g=0} admits a critical point at q n . Applying Condition (iv) above, we see that there exists a point q in B n ε (p) ∩ X ∩ {g = 0} such that g -1 (0) does not intersect X transversally at q, which is impossible. Similarly, we can prove that r is not a critical value of h 3 and h 4 .

Let δ be such that 0 < δ ≪ ε and the fibres f -1 (-δ) and f -1 (δ) intersect X ∩ {g ≤ 0} ∩ B n ε (p) transversally. This is possible since f has an isolated critical point at p on X ∩ {g ≤ 0}. Let us study the critical points of f |Wε,r and f |Wε,r∩{g=0} lying in f -1 ([-δ, δ]), when r is small. Always using Condition (iv) above, we can see that they only appear in {h = r} ∩ {g = 0} ∩ Bn ε (p). Furthermore, with the terminology introduced in [Dut2, §2], if λ(p) > 0 then they are all outwards for f |Wε,r . If λ(p) < 0 then such a critical point is inwards for f |Wε,r if and only if it is inwards for f |Wε,r∩{g=0} . Moving f a little, we can assume that these critical points are non-degenerate for f |{h=r}∩{g=0}∩ Bn ε (p) . Applying Morse theory for manifolds with corners, if λ(p) > 0 then we get:

χ f -1 ([-δ, δ]) ∩ W ε,r -χ f -1 (-δ) ∩ W ε,r = 0.
If λ(p) < 0 then we get:

χ f -1 ([-δ, δ]) ∩ W ε,r -χ f -1 (-δ) ∩ W ε,r = χ f -1 ([-δ, δ]) ∩ {g = 0} ∩ W ε,r -χ f -1 (-δ) ∩ {g = 0} ∩ W ε,r .
We conclude remarking that:

χ f -1 ([-δ, δ]) ∩ W ε,r = χ f -1 ([-δ, δ]) ∩ X ∩ {g ≤ 0} ∩ B n ε (p) = χ f -1 (0) ∩ X ∩ {g ≤ 0} ∩ B n ε (p) = 1, χ f -1 (-δ) ∩ W ε,r = χ f -1 (-δ) ∩ X ∩ {g ≤ 0} ∩ B n ε (p) , χ f -1 ([-δ, δ])∩{g = 0}∩W ε,r = χ f -1 ([-δ, δ])∩X ∩{g = 0}∩B n ε (p) = 1,
and:

χ f -1 (-δ) ∩ {g = 0} ∩ W ε,r = χ f -1 (-δ) ∩ X ∩ {g = 0} ∩ B n ε (p) , if r is sufficiently small.
If dim X = n then we apply the previous case to the semi-algebraic set X × {0} ⊂ R n+1 and the functions F and G defined by F (x, t) = f (x) + t and G(x, t) = g(x), where (x, t) is a coordinate system of R n+1 = R n × R.

This lemma was inspired by results on indices of vector fields or 1-forms on stratified sets with boundary (see [KT] or [START_REF] Schuermann | Topology of singular spaces and constructible sheaves[END_REF]Chapter 5]).

Let M ⊂ R n be a C 2 semi-algebraic manifold of dimension k. Let f : R n → R be a C 2 semi-algebraic function. Let Σ M f be the critical set of f |M . For any a = (a 1 , . . . , a n ) ∈ R n , we denote by ρ a the function ρ a (x) = 1 2 n i=1 (x ia i ) 2 and by Γ M f,a the following semi-algebraic set:

Γ M f,a = x ∈ M | rank ∇(f |M )(x), ∇(ρ a|M )(x) < 2 . Lemma 2.2. For almost all a ∈ R n , Γ M f,a \ Σ M f is a smooth semi-algebraic curve (or empty).
Proof. Let Z be the semi-algebraic set of R n × R n defined as follows:

Z = (x, a) ∈ R n × R n | x ∈ M \ Σ M f and rank ∇(f |M )(x), ∇(ρ a|M )(x) < 2 .
Let (x, a) be a point in Z. We can suppose that around x, M is defined by the vanishing of l = nk semi-algebraic functions g 1 , . . . , g l of class C 2 . Hence in a neighborhood of (x, a), Z is defined by the vanishing of g 1 , . . . , g l and the minors: ∂(g 1 , . . . , g l , f, ρ a ) ∂(x i 1 , . . . , x i l+2 ) .

Furthermore since x belongs to M \ Σ M f , we can assume that:

∂(g 1 , . . . , g l , f ) ∂(x 1 , . . . , x l , x l+1 ) (x) = 0.
Therefore Z is locally defined by g 1 = . . . = g l = 0 and:

∂(g 1 , . . . , g l , f, ρ a ) ∂(x 1 , . . . , x l+1 , x l+2 ) = • • • = ∂(g 1 , . . . , g l , f, ρ a ) ∂(x 1 , . . . , x l+1 , x n ) = 0,
(see [START_REF] Dutertre | On the Milnor fibre of a real map-germ[END_REF]§5] for a proof of this fact). Since the gradient vectors of these functions are linearly independent, we see that Z is a smooth semi-algebraic manifold of dimension 2n

-(l + n -(l + 2) + 1) = n + 1. Now let us consider the projection π 2 : Z → R n , (x, a) → a.
Bertini-Sard's theorem (see [START_REF] Bochnak | Géométrie algébrique réelle[END_REF]Théorème 9.5.2]) implies that the set D π 2 of critical values of π 2 is a semi-algebraic set of dimension strictly less than n. Hence, for all a / ∈ D π 2 , π -1 2 (a) is a smooth semi-algebraic curve (maybe empty). But this set is exactly Γ M f,a \ Σ M f . Now consider a semi-algebraic set Y ⊂ M of dimension strictly less than k. We will need the following lemma.

Lemma 2.3. For almost all a ∈ R n , (Γ M f,a \ Σ M f ) ∩ Y is a semi-algebraic set of dimension at most 0.
Proof. Since Y admits a finite Whitney semi-algebraic stratification, we can assume that Y is smooth of dimension d < k. Let W be the semialgebraic set of R n × R n defined by:

W = (x, a) ∈ R n × R n | x ∈ Y \ Σ M f and rank ∇(f |M )(x), ∇(ρ a|M )(x) < 2 .
Using the same method as in the previous lemma, we can prove that W is a smooth semi-algebraic manifold of dimension n + 1 + dk. We can conclude as in the previous lemma, remarking that dk ≤ -1.

Topology of semi-algebraic functions

For any closed semi-algebraic set equipped with a Whitney stratification X = ⊔ α∈A S α , we denote by Lk ∞ (X) the link at infinity of X. It is defined as follows. Let ρ : R n → R be a C 2 proper semi-algebraic positive function. Since ρ |X is proper, the set of critical points of ρ |X (in the stratified sense) is compact. Hence for R sufficiently big, the map ρ :

X ∩ ρ -1 ([R, +∞[) → R
is a stratified submersion. The link at infinity of X is the fibre of this submersion. The topological type of Lk ∞ (X) does not depend on the choice of the function ρ. Indeed, if ρ 0 and ρ 1 : R n → R are two C 2 proper semialgebraic functions then X ∩ρ -1 0 (R 0 ) and X ∩ρ -1 1 (R 1 ) are homeomorphic for R 0 and R 1 big enough. To see this, we can apply the procedure described by Durfee in [Dur]. First we remark that, applying the Curve Selection Lemma at infinity [NZ, Lemma 2], for each stratum S α of X, the gradient vector fields ∇(ρ 0|S α ) and ∇(ρ 1|S α ) do not point in opposite direction in a neighborhood of infinity. Next we choose R 0 and R 1 sufficiently big so that

ρ -1 0 ([R 0 , +∞[) ⊂ ρ -1 1 ([R 1 , +∞[) and all the gradient vector fields ∇(ρ 0|S α ) and ∇(ρ 1|S α ) do not point in opposite direction in ρ -1 0 ([R 0 , +∞[). Then the function ρ : ρ -1 0 ([R 0 , +∞[) \ ρ -1 1 ([R 1 , +∞[) ∩ X → [0, 1] defined by: ρ(x) = R 1 -ρ 1 (x) R 1 -ρ 1 (x) + ρ 0 (x) -R 0 , is a proper stratified submersion such that ρ -1 (0) = X ∩ ρ -1 1 (R 1 ) and ρ -1 (1) = X ∩ ρ -1 0 (R 0 ). Let f : R n → R be a C 2 semi-algebraic function such that f |X : X → R
has a finite number of critical points (in the stratified sense) p 1 , . . . , p l . For each p i , we define the index of f |X at p i as follows:

ind(f, X, p i ) = 1 -χ X ∩ {f = f (p i ) -δ} ∩ B n ε (p i )
, where 0 < δ ≪ ε ≪ 1. Since we are in the semi-algebraic setting, this index is well-defined thanks to Hardt's theorem [Ha]. The following theorem is well-known.

Theorem 3.1. If f |X is proper then for any α ∈ R n , we have:

χ X ∩ {f ≥ α} -χ X ∩ {f = α} = i:f (p i )>α ind(f, X, p i ),
and:

χ X ∩ {f ≤ α} -χ Lk ∞ (X ∩ {f ≤ α}) = i:f (p i )≤α ind(f, X, p i ).
Proof. We use Viro's method of integration with respect to the Euler characteristic with compact support, denoted by χ c .

For all x ∈ X, let ϕ [START_REF] Viro | Some integral calculus based on Euler characteristic[END_REF]Theorem 3.A] to the restriction of f to X ∩ {f > α}, we get:

(x) = χ c X ∩ f -1 (x -) ∩ B n ε (x) where x -is a regular value of f close to f (x) with x -≤ f (x). Applying Fubini's theorem
X∩{f >α} ϕ(x)dχ c (x) = ]α,+∞[ f -1 (y) ϕ(x)dχ c (x) dχ c (y).
For any y ∈ R, let y -be a regular value of f |X close to y with y -≤ y. Let us denote by z 1 , . . . , z s the critical points of f |X lying in f -1 (y). We have:

χ c X ∩ f -1 (y -) = χ c X ∩ f -1 (y -) \ ∪ s i=1 B n ε (z i ) + s i=1 χ c X ∩ f -1 (y -) ∩ B n ε (z i ) = χ c X ∩ f -1 (y) \ ∪ s i=1 B n ε (z i ) + s i=1 ϕ(z i ) = χ c X ∩ f -1 (y) \ {z 1 , . . . , z s } + s i=1 ϕ(z i ) = X∩f -1 (y)\{z 1 ,...,zs} ϕ(x)dχ c (x) + s i=1 ϕ(z i ) = f -1 (y) ϕ(x)dχ c (x). Let us write: ]α, +∞[=]α, α 1 ] ∪ ]α 1 , α 2 ] ∪ . . . ∪ ]α j-1 , α j ] ∪ ]α j , +∞[,
where α 1 , . . . , α j are the critical values of f |X strictly greater than α. Since χ c (]α k , α k+1 ]) = 0 and f |X∩]α k ,α k+1 [ is locally trivial, we obtain that:

X∩{f >α} ϕ(x)dχ c (x) = -χ c (X ∩ f -1 (β)),
where β is a regular value of f strictly greater than α j and therefore:

χ c X ∩ {f > α} + χ c X ∩ f -1 (β) = i:f (p i )>α ind(f, X, p i ).
Applying this equality to α = β and using the local triviality of f |X over [β, +∞[, we get:

χ c X ∩ {f > β} + χ c X ∩ f -1 (β) = 0. Therefore: χ c X ∩ {f > α} + χ c X ∩ f -1 (β) = χ c X∩{α ≤ f ≤ β} -χ c X∩{f = α} -χ c X∩{f > β} +χ c X∩f -1 (β) = χ X ∩ {α ≤ f ≤ β} -χ X ∩ {f = α} .
To conclude, we remark that, since f |X∩{f ≥α} is proper and locally trivial over

[β, +∞[, X ∩ {α ≤ f ≤ β} is a deformation retract of X ∩ {α ≤ f }.
The second equality is proved with the same method and the fact that

χ c (Y ) = χ(Y ) -χ Lk ∞ (Y ) for any closed semi-algebraic set Y ⊂ R n .
The following corollaries are straightforward consequences of the previous theorem.

Corollary 3.2. If f |X is proper then for any α ∈ R, we have:

χ X∩{f = α} = χ(X)- i:f (p i )>α ind(f, X, p i )- i:f (p i )<α ind(-f, X, p i ),
and:

χ X ∩ {f ≥ α} -χ X ∩ {f ≤ α} = i:f (p i )>α ind(f, X, p i )- i:f (p i )<α ind(f, X, p i ). Corollary 3.3. If f |X is proper then for any α ∈ R n , we have : χ Lk ∞ (X ∩ {f ≤ α}) = χ(X) - l i=1 ind(f, X, p i ). Corollary 3.4. If f |X is proper then we have: 2χ(X) -χ Lk ∞ (X) = l i=1 ind(f, X, p i ) + l i=1 ind(-f, X, p i ).
Now we want to investigate the case when f |X is not proper. Keeping the notations of the previous section, for a ∈ R n , we define Γ X f,a and Γ f,a by:

Γ X f,a = x ∈ X | rank ∇(f |S )(x), ∇(ρ a|S )(x) < 2
where S is the stratum that contains x ,

Γ f,a = {x ∈ R n | rank [∇f (x), ∇ρ a (x)] < 2} .
By Lemma 2.2, we can choose a such that Γ X f,a is a smooth semi-algebraic curve outside a compact set of X. Applying Lemma 2.3 to M = R n and Y the closed semi-algebraic set defined as the union of the strata of X of dimension strictly less than n, we can choose a such that Γ X f,a and Γ f,a do not intersect outside a compact set of Y . Let us fix α ∈ R and R ≫ 1 such that:

(1)

X ∩ B n R (a) is a deformation retract of X, (2) X ∩ {f * α} ∩ B n R (a) is a deformation retract of X ∩ {f * α} where * ∈ {≤, =, ≥}, (3) S n-1 R (a) intersects X and X ∩ {f * α} transversally, (4) Γ X f,a ∩ S n-1 R (a) is a finite set of points q R 1 , . . . , q R m , (5) p 1 , . . . , p l ∈ Bn R (a). For each j ∈ {1, . . . , m}, q R j is a critical point of f |X∩S n-1 R (a)
but not a critical point of f |X . Hence there exists µ R j = 0 such that:

∇(f |S )(q R j ) = µ R j ∇(ρ a|S )(q R j )
, where S is the stratum that contains q R j . Definition 3.5. We set:

λ f,α = j:f (q R j )>α µ R j <0 ind(f, X ∩ S n-1 R (a), q R j ), µ f,α = j:f (q R j )<α µ R j >0 ind(f, X ∩ S n-1 R (a), q R j ), ν f,α = j:f (q R j )<α µ R j <0 ind(f, X ∩ S n-1 R (a), q R j ).
The fact that λ f,α , µ f,α and ν f,α do not depend on R will appear in the next propositions. Let us remark that if µ R j < 0 then f (q R j ) decreases to -∞ or to a finite value as R tends to +∞, and that if µ R j > 0 then f (q R j ) increases to +∞ or to a finite value as R tends to +∞. This implies that when f |X is proper, the numbers λ f,α and µ f,α vanish.

Proposition 3.6. For any α ∈ R, we have:

χ X ∩ {f ≥ α} -χ X ∩ {f = α} = i:f (p i )>α ind(f, X, p i ) + λ f,α ,
and:

χ X ∩ {f ≤ α} -χ X ∩ {f = α} = i:f (p i )<α ind(-f, X, p i ) + λ -f,-α .
Proof. We apply Theorem 3.1 to f |X∩B n R (a) and we get:

χ X ∩ B n R (a) ∩ {f ≥ α} -χ X ∩ B n R (a) ∩ {f = α} = i:f (p i )>α ind(f, X, p i ) + j:f (q R j )>α ind(f, X ∩ B n R (a), q R j ),
and:

χ X ∩ B n R (a) ∩ {f ≤ α} -χ X ∩ B n R (a) ∩ {f = α} = i:f (p i )<α ind(-f, X, p i ) + j:f (q R j )<α ind(-f, X ∩ B n R (a), q R j ).
Since Γ X f,a and Γ f,a do not intersect outside a compact set of Y , we can use Lemma 2.1 to evaluate ind(f,

X ∩ B n R (a), q R j ) and ind(-f, X ∩ B n R (a), q R j ). Namely, if µ R j > 0 then we have: ind(f, X ∩ B n R (a), q R j ) = 0, and: ind(-f, X ∩ B n R (a), q R j ) = ind(-f, X ∩ S n-1 R (a), q R j ). If µ R j < 0 then we have: ind(f, X ∩ B n R (a), q R j ) = ind(f, X ∩ S n-1 R (a), q R j ), and: ind(-f, X ∩ B n R (a), q R j ) = 0. Moreover, by our choice on R, χ X ∩ B n R (a) ∩ {f * α} = χ X ∩ {f * α} for * ∈ {≤, =, ≥}.
Corollary 3.7. For any α ∈ R, we have:

χ X ∩ {f = α} = χ(X) - i:f (p i )>α ind(f, X, p i ) - i:f (p i )<α ind(-f, X, p i ) -λ f,α -λ -f,-α ,
and:

χ X ∩ {f ≥ α} -χ X ∩ {f ≤ α} = i:f (p i )>α ind(f, X, p i ) + λ f,α - i:f (p i )>α ind(f, X, p i ) -λ -f,-α .
It is also possible to write indices formulas for χ Lk ∞ (X ∩ {f * α} , * ∈ {≤, =, ≥}.

Proposition 3.8. For any α ∈ R, we have:

χ Lk ∞ (X ∩ {f ≤ α} = χ(X) - l i=1 ind(f, X, p i ) -λ f,α + µ f,α , χ Lk ∞ (X ∩ {f ≥ α} = χ(X) - l i=1 ind(-f, X, p i ) -λ -f,-α + µ -f,-α . Proof. By Theorem 3.1 applied to f |X∩S n-1 R (a) , we have: χ Lk ∞ (X ∩ {f ≤ α} = µ f,α + ν f,α ,
and, by Corollary 3.3 applied to f |X∩B n R (a) and by Lemma 2.1:

χ(X) = l i=1 ind(f, X, p i ) + λ f,α + ν f,α , because f -1 (α) intersect X ∩ S n-1 R (a) transversally. Similarly, we can write: χ Lk ∞ (X ∩ {f ≥ α} = µ -f,-α + ν -f,-α ,
and:

χ(X) = l i=1 ind(-f, X, p i ) + λ -f,-α + ν -f,-α .
Corollary 3.9. For any α ∈ R, we have:

χ Lk ∞ (X ∩ {f = α} = 2χ(X) -χ Lk ∞ (X) - l i=1 ind(f, X, p i ) - l i=1 ind(-f, X, p i ) -λ f,α + µ f,α -λ -f,-α + µ -f,-α .
In the sequel, we will use these results to establish relations between χ(X), the indices of the critical points of f |X and -f |X and the variations of the Euler characteristics χ Lk ∞ ({f * α}) , where * ∈ {≤, =, ≥} and α ∈ R. We start with definitions. Definition 3.10. Let Λ f be the following set:

Λ f = α ∈ R | ∃(x n ) n∈N in Γ X f,a such that x n → +∞ and f (x n ) → α .
Since Γ X f,a is a curve, Λ f is clearly a finite set. The set Λ f was introduced and studied by Tibar [START_REF] Tibar | Regularity at infinity of real and complex polynomial functions[END_REF] when X = R n and f : R n → R is a polynomial. Following his terminology, Λ f is the set of points α such that the fibre f -1 (α) is not ρ a -regular. Definition 3.11. Let * ∈ {≤, =, ≥}. We define Λ * f by:

Λ * f = α ∈ R | β → χ Lk ∞ (X ∩ {f * β}) is not constant in a neighborhood of α .
Lemma 3.12. The sets

Λ ≤ f , Λ = f and Λ ≥ f are included in Λ f . Proof. If α does not belong to Λ f then we can find a small interval ] -δ + α, α + δ[ such that Γ X f,a and f -1 (] -δ + α, α + δ[) ∩ X do not intersect outside a compact set of X. Then we can choose R ≫ 1 such that for all β ∈] -δ + α, α + δ[, Lk ∞ (X ∩ {f * β}) = X ∩ {f * β} ∩ S n-1 R (a). But f has no critical point in X ∩ {-δ + α < f < α + δ} ∩ S n-1 R (a), so the Euler characteristics χ(X ∩ {f * β}) are constant in ] -δ + α, α + δ[. Corollary 3.13. The sets Λ ≤ f , Λ = f and Λ ≥ f are finite.
Lemma 3.14. We have:

Λ = f ⊂ Λ ≤ f ∪ Λ ≥ f , Λ ≤ f ⊂ Λ = f ∪ Λ ≥ f , Λ ≥ f ⊂ Λ ≤ f ∪ Λ = f . Proof. If α / ∈ Λ ≤ f ∪ Λ ≥ f , then β → χ Lk ∞ (X ∩ {f ≤ β}) and β → χ Lk ∞ (X ∩ {f ≥ β}) are constant in an interval ] -δ + α, α + δ[. By the Mayer-Vietoris sequence, β → χ Lk ∞ (X ∩ {f = β}) is also constant in ] -δ + α, α + δ[. Corollary 3.15. We have: Λ ≤ f ∪ Λ ≥ f = Λ ≤ f ∪ Λ = f = Λ = f ∪ Λ ≥ f . Since Λ ≤ f is finite, we can write Λ ≤ f = {b 1 , . . . , b r } where b 1 < b 2 < . . . < b r and: R \ Λ ≤ f =] -∞, b 1 [ ∪ ]b 1 , b 2 [ ∪ • • • ∪ ]b r-1 , b r [ ∪ ]b r , +∞[. On each connected component of R \Λ ≤ f , the function β → χ Lk ∞ (X ∩ {f ≤ β} is constant. For each j ∈ {0, . . . , r}, let b + j be an element of ]b j , b j+1 [ where b 0 = -∞ and b r+1 = +∞.
Theorem 3.16. We have:

χ(X) = k i=1 ind(f, X, p i ) + r j=0 χ Lk ∞ (X ∩ {f ≤ b + j }) - r j=1 χ Lk ∞ (X ∩ {f ≤ b j }) . Proof. Assume first that Λ f = Λ ≤ f . Let us choose R ≫ 1 such that X ∩ B n R (a) is a deformation retract of X, {p 1 , . . . , p l } ⊂ Bn R (a) and: Γ X f,a ∩ R n \ Bn R (a) = ⊔ m i=j B j . We have Γ X f,a ∩ S n-1 R (a) = {q R 1 , . . . , q R m }. Let us recall that: ∇(f |S )(q R j ) = µ R j ∇(ρ a|S )(q R j )
, where S is the stratum that contains q j . By Corollary 3.3 and Lemma 2.1, we can write:

χ(X) = l i=1 ind(f, X, p i ) + j:µ R j <0 ind(f, X ∩ S n-1 R (a), q R j ).
We can decompose the second sum in the right hand side of this equality into:

j:µ R j <0 f (q R j )→-∞ ind(f, X ∩ S n-1 R (a), q R j ),
and:

r i=1 j:µ R j <0 f (q R j )→b i ind(f, X ∩ S n-1 R (a), q R j ).
Let us fix i in {1, . . . , r} and evaluate

j:µ R j <0 f (q R j )→b i ind(f, X ∩ S n-1 R (a), q R j ). Since µ R j < 0, the points q R j lie in {f > b i }. Let us choose R ≫ 1 and b + i close to b i in ]b i , b i+1 [ such that: ∪ j:f →b i along B j B j ∩ { x -a ≥ R} ⊂ f -1 (]b i , b + i [) ∩ { x -a ≥ R} , and X ∩ {f ≤ b i } (resp. X ∩ {f ≤ b + i }) retracts by deformation to X ∩ {f ≤ b i } ∩ B n R (a) (resp. X ∩ {f ≤ b + i } ∩ B n R (a)
). Hence, we have:

χ Lk ∞ (X ∩ {f ≤ b + i }) -χ Lk ∞ (X ∩ {f ≤ b i }) = χ X ∩ {f ≤ b + i } ∩ S n-1 R (a) -χ X ∩ {f ≤ b i } ∩ S n-1 R (a) = j:f (q R j )∈]b i ,b + i [ ind(f, X ∩ S n-1 R (a), q R j ) = j:µ R j <0 f (q R j )→b i ind(f, X ∩ S n-1 R (a), q R j ).
It remains to express a) and:

j:µ R j <0 f (q R j )→-∞ ind(f, X ∩ S n-1 R (a), q R j ). Let us choose R ≫ 1 and b + 0 in ] -∞, b 1 [ such that: ∪ j:f →-∞ along B j B j ∩ { x -a ≥ R} ⊂ f -1 (] -∞, b + 0 [) ∩ { x -a ≥ R} , X ∩ {f ≤ b + 0 } retracts by deformation to X ∩ {f ≤ b + 0 } ∩ B n R (
∪ j:f -∞ along B j B j ∩ { x -a ≥ R} ⊂ f -1 (]b + 0 , +∞[) ∩ { x -a ≥ R} .
By Theorem 3.1, we can write:

χ Lk ∞ (X ∩ {f ≤ b + 0 }) = χ X ∩ {f ≤ b + 0 } ∩ S n-1 R (a)} = j:f (q R j )≤b + 0 ind(f, X ∩ S n-1 R (a), q R j ) = j:µ R j <0 f (q R j )→-∞ ind(f, X ∩ S n-1 R (a), q R j ).
To get the final result, we just remark

that if b / ∈ Λ ≤ f then: χ Lk ∞ (X ∩ {f ≤ b + }) -χ Lk ∞ (X ∩ {f ≤ b}) = 0. Similarly, Λ ≥ f = {c 1 , . . . , c s } with c 1 < c 2 < • • • < c s and: R \ Λ ≥ f =] -∞, c 1 [ ∪ ]c 1 , c 2 [ ∪ • • • ∪ ]c s 1 , c s [ ∪ ]c s , +∞[. For each i ∈ {0, . . . , s}, let c + i be an element in ]c i , c i+1 [ with c 0 = -∞ and c s+1 = +∞.
Theorem 3.17. We have:

χ(X) = l i=1 ind(-f, X, p i ) + s j=0 χ Lk ∞ (X ∩ {f ≥ c + j }) - s j=1 χ Lk ∞ (X ∩ {f ≥ c j }) .
Proof. Same proof as Theorem 3.16.

Let us write Λ

= f = {d 1 , . . . , d t } with d 1 < d 2 < . . . < d t and: R \ Λ = f =] -∞, d 1 [ ∪ ]d 1 , d 2 [ ∪ • • • ∪ ]d t 1 , d t [ ∪ ]d t , +∞[. For each i ∈ {0, . . . , t}, let d + i be an element in ]d i , d i+1 [. Corollary 3.18. We have: 2χ(X) -χ Lk ∞ (X) = l i=1 ind(f, X, p i ) + l i=1 ind(-f, X, p i )+ t j=0 χ Lk ∞ (X ∩ {f = d + j }) - t j=1 χ Lk ∞ (X ∩ {f = d j }) . Proof. Assume that Λ ≤ f ∪ Λ ≥ f = Λ = f .
We have:

χ(X) = l i=1 ind(f, X, p i ) + t j=0 χ Lk ∞ (X ∩ {f ≤ d + j }) - t j=1 χ Lk ∞ (X ∩ {f ≤ d j }) , χ(X) = l i=1 ind(-f, X, p i ) + t j=0 χ Lk ∞ (X ∩ {f ≥ d + j }) - t j=1 χ Lk ∞ (X ∩ {f ≥ d j }) .
Adding these two equalities and using the Mayer-Vietoris sequence, we obtain the result when

Λ ≤ f ∪ Λ ≥ f = Λ = f . But if d j / ∈ Λ = f then χ Lk ∞ (X ∩ {f = d + j }) -χ Lk ∞ (X ∩ {f = d j }) = 0.
By Hardt's theorem, we know that there is a finite subset B(f

) of R such that f |X∩f -1 (B(f )
) is a semi-algebraic locally trivial fibration. Hence outside B(f ), the function β → χ(X ∩{f = β}) is locally constant. In the sequel, we will give formulas relating the topology of X and the variations of topology in the fibres of f . Let us set B(f

) = f ({p 1 , . . . , p l }) ∪ Λ ≤ f ∪ Λ ≥ f . This set is clearly finite. Proposition 3.19. If α /
∈ B(f ) then the following functions:

β → χ(X ∩ {f * β}), * ∈ {≤, =, ≥},
are constant in a neighborhood of α.

Proof. We study the local behaviors of the numbers λ f,α and µ f,α , α ∈ R. We denote by α + (resp. α -) an element of ]α, +∞ [ (resp. ] 

-∞, α[) close to α. If R ≫ 1 is big enough and α + is close enough to α then in S n-1 R (a)∩{α ≤ f ≤ α + }, there is no points q R j such that ∇(f |S )(q R j ) = µ R j ∇(ρ a|S )(q R j ) with µ R j > 0 because f (q R j )
decreases to α as R tends to infinity. Hence if α + is close enough to α then µ f,α + = µ f,α . In the same way, we can show that λ f,α -= λ f,α . Applying this argument to -f and -α, we see that

λ -f,-α + = λ -f,-α and µ -f,-α -= µ -f,-α . If α / ∈ B(f ) then, by Proposition 3.8, λ f,α + = λ f,α , µ f,α -= µ f,α , λ -f,-α -= λ f,-α and µ -f,-α + = µ -f,-α .
The formulas established in Proposition 3.6 and Corollary 3.7 enable us to conclude.

Let us write B(f ) = {γ 1 , . . . , γ u } and:

R \ B(f ) =] -∞, γ 1 [ ∪ ]γ 1 , γ 2 [ ∪ • • • ∪ ]γ u-1 , γ u [ ∪ ]γ u , +∞[. For i ∈ {0, . . . , u}, let γ + i be an element of ]γ i , γ i+1 [ where γ 0 = -∞ and γ u+1 = +∞.
Theorem 3.20. We have:

χ(X) = l i=1 ind(f, X, p i ) + l i=1 ind(-f, X, p i )+ u k=0 χ X ∩ {f = γ + k } - u k=1 χ X ∩ {f = γ k } . Proof. Let us assume first that B(f ) = f ({p 1 , . . . , p l }) ∪ Λ f , i.e that Λ ≤ f ∪ Λ ≥ f = Λ f . For k ∈ {1, .
. . , u}, we have by Corollary 3.7:

χ X∩{f = γ k } = χ(X)- i:f (p i )>γ k ind(f, X, p i )- i:f (p i )<γ k ind(-f, X, p i )- λ f,γ k -λ -f,-γ k , χ X∩{f = γ + k } = χ(X)- i:f (p i )>γ + k ind(f, X, p i )- i:f (p i )<γ + k ind(-f, X, p i )- λ f,γ + k -λ -f,-γ + k , hence: χ X ∩ {f = γ + k } -χ X ∩ {f = γ k } = - i:f (p i )=γ k ind(-f, X, p i ) -(λ f,γ + k -λ f,γ k ), because as already noticed, λ -f,-γ + k = λ -f,-γ k . If γ k does not belong to Λ f then λ f,γ + k = λ f,γ k . If γ k belongs to Λ f then: λ f,γ k -λ f,γ + k = j:µ R j <0 f (q R j )→γ k ind(f, X ∩ S n-1 R (a), q R j ).
Therefore,

u k=1 χ X ∩ {f = γ + k } -χ X ∩ {f = γ k } = - l i=1 ind(-f, X, p i )+ k:γ k ∈Λ f j:µ R j <0 f (q R j )→γ k ind(f, X ∩ S n-1 R (a), q R j ).
By Corollary 3.7, we have:

χ X ∩ {f = γ + 0 } = χ(X) - l i=1 ind(f, X, p i ) -λ f,γ + 0 -λ -f,-γ + 0 .
But we remark that:

λ f,γ + 0 = k:γ k ∈Λ f j:µ R j <0 f (q R j )→γ k ind(f, X ∩ S n-1 R (a), q R j ), because if ∇(f |S )(q R j ) = µ R j ∇(ρ a|S )(q R j ) with µ R j < 0 then f (q R j ) > γ + 0
for f (q R j ) decreases to one of the γ i 's. Similarly we see that λ -f,-γ + 0 = 0.

Corollary 3.22. We have:

u k=0 χ X ∩ {f ≥ γ + k } -χ X ∩ {f ≤ γ + k } - u k=1 χ X ∩ {f ≥ γ k } -χ X ∩ {f ≤ γ k } = l i=1 ind(f, X, p i ) -ind(-f, X, p i ). 4. Case X = R n
In this section, we apply our previous results to the case X = R n . In this case ind(f, X, p i ) = (-1) n ind(-f, X, p i ) = deg p i ∇f , the local degree of ∇f at p i and l i=1 ind(f, X, p i ) = deg ∞ ∇f , the degree of ∇f at infinity, i.e the topological degree of ∇f |∇f | :

S n-1 R → S n-1 where S n-1 R is a sphere of big radius R. Furthermore, µ f,α = (-1) n-1 λ -f,-α and µ -f,-α = (-1) n-1 λ f,α .
We can restate our result in this setting.

Proposition 4.1. For all α ∈ R, we have:

χ {f ≥ α} -χ {f = α} = i:f (p i )>α deg p i ∇f + λ f,α , χ {f ≤ α} -χ {f = α} = (-1) n i:f (p i )<α deg p i ∇f + (-1) n-1 µ f,α .
Corollary 4.2. If n is even then for all α ∈ R, we have:

χ {f = α} = 1 - i:f (p i ) =α deg p i ∇f -λ f,α + µ f,α , χ {f ≥ α} -χ {f ≤ α} = i:f (p i )>α deg p i ∇f - i:f (p i )<α deg p i ∇f +λ f,α +µ f,α .
If n is odd then for all α ∈ R, we have:

χ {f = α} = 1 - i:f (p i )>α deg p i ∇f + i:f (p i )<α deg p i ∇f -λ f,α + µ f,α , χ {f ≥ α} -χ {f ≤ α} = i:f (p i ) =α deg p i ∇f + λ f,α + µ f,α .
The above formulas can be viewed as real versions of results on the topology of the fibres of a complex polynomial (see for instance [Pa] or [ST]).

1 = -deg ∞ ∇f + u k=0 χ {f ≥ γ + k } - u k=1 χ {f ≥ γ k } , u k=0 χ {f ≥ γ + k } -χ {f ≤ γ + k } = u k=1 χ {f ≥ γ k } -χ {f ≤ γ k } +2deg ∞ ∇f.

Application to generic linear functions

We apply the results of Section 3 to the case of a generic linear function. Let X ⊂ R n be a closed semi-algebraic set. For v ∈ S n-1 , let us denote by v * the function v * (x) = v, x . We are going to study the critical points of v * |X∩S n-1 R (a) for v generic and R sufficiently big. Let Γ 1 (X) be the subset of S n-1 defined as follows: a vector v belongs to Γ 1 (X) if there exists a sequence (x k ) k∈N such that x k → +∞ and a sequence (v k ) k∈N of vectors in S n-1 such that v k ⊥ T x k S(x k ) and v k → v, where S(x k ) is the stratum containing x k .

Lemma 5.1. The set Γ 1 (X) is a semi-algebraic set of S n-1 of dimension strictly less than n -1.

Proof. If we write X = ⊔ α∈A S α , where (S α ) α∈A is a finite semi-algebraic Whitney stratification of X, then we see that Γ 1 (X) = ⊔ α∈A Γ 1 (S α ). Hence it is enough to prove the lemma when X is a smooth semi-algebraic manifold of dimension nk, 0 < k < n.

Let us take x = (x 1 , . . . , x n ) as a coordinate system for R n and (x 0 , x) for R n+1 . Let ϕ be the semi-algebraic diffeomorphism between R n and S n ∩ {x 0 > 0} given by:

ϕ(x) = 1 1 + x 2 , x 1 1 + x 2 , . . . , x n 1 + x 2 .
Observe that (x 0 , x) = ϕ(z) if and only if z = x x 0 . The set ϕ(X) is a smooth semi-algebraic set of dimension nk. Let M be the following semi-algebraic set:

M = (x 0 , x, y) ∈ R n+1 × R n | (x 0 , x) ∈ ϕ(X) and y ⊥ T x x 0 X .
We will show that M is a smooth manifold of dimension n. Let p = (x 0 , x, y) be a point in M and let z = ϕ -1 (x 0 , x) = x x 0 . In a neighborhood of z, X is defined by the vanishing of smooth functions g 1 , . . . , g k . For i ∈ {1, . . . , k}, let G i be the smooth function defined by:

G i (x 0 , x) = g i x x 0 = g i (ϕ -1 (x 0 , x)).
Then in a neighborhood of (x 0 , x), ϕ(X) is defined by the vanishing of G 1 , . . . , G k and

x 2 0 + x 2 1 + • • • + x 2 n -1. Note that for i, k ∈ {1, . . . , n} 2 , ∂G i ∂x k (x 0 , x) = 1 x 0 ∂g i ∂x k (x).
Hence in a neighborhood of p, M is defined by the vanishing of G 1 , . . . , G k , x 2 0 + x 2 1 + • • • + x 2 n -1 and the following minors m i 1 i 2 ...i k+1 , (i 1 , . . . , i k+1 ) ∈ {1, . . . , n} k+1 , given by:

m i 1 i 2 ...i k+1 (x 0 , x, y) = ∂G 1 ∂x i 1 (x 0 , x) • • • ∂G 1 ∂x i k+1 (x 0 , x) . . . . . . . . . ∂G k ∂x i 1 (x 0 , x) • • • ∂G k ∂x i k+1 (x 0 , x) y i 1 • • • y i k+1
.

Since rank(∇g 1 , . . . , ∇g k ) = k at z = ϕ -1 (x 0 , x), one can assume that:

∂G 1 ∂x 1 (x 0 , x) • • • ∂G 1 ∂x k (x 0 , x) . . . . . . . . . ∂G k ∂x 1 (x 0 , x) • • • ∂G k ∂x k (x 0 , x) = 0.
This implies that around p, M is defined by the vanishing of G 1 , . . . , G k , m 1...kk+1 , . . . , m 1...kn and x 2 0 +x 2 1 +• • •+x 2 n -1 (a similar argument is given and proved in [START_REF] Dutertre | On the Milnor fibre of a real map-germ[END_REF]§5]). It is straightforward to see that the gradient vectors of these functions are linearly independent. Then M \ M is a semi-algebraic set of dimension less than n. If π y : R n+1 × R n → R n denotes the projection on the last n coordinates, then we have Γ 1 (X) = S n-1 ∩ π y ( M \ M ).

Corollary 5.2. Let v be vector in S n-1 and let a ∈ R n . If there exists a sequence (x k ) k∈N of points in X such that:

• x k → +∞, • v ∈ N x k S(x k ) ⊕ R(x k -a), • lim k→+∞ |v * (x k )| < +∞, then v belongs to Γ 1 (X) (Here N x k S(x k ) is the normal space to the stratum S(x k )).
Proof. We can assume that v = e 1 = (1, 0, . . . , 0). In this case, v * = x 1 . Since the stratification is finite, we can assume that (x k ) k∈N is a sequence of points lying in a stratum S. By the Curve Selection Lemma at infinity, there exists an analytic curve p(t) :]0, ε[→ S such that lim t→0 p(t) = +∞, lim t→0 p 1 (t) < +∞ and for t ∈]0, ε[, e 1 belongs to the space N p(t) S ⊕R(p(t)a). Let us consider the expansions as Laurent series of the p i 's:

p i (t) = h i t α i + • • • , i = 1, . . . , n.
Let α be the minimum of the α i 's. Necessarily, α < 0 and α 1 ≥ 0. It is straightforward to see that p(t)a has an expansion of the form:

p(t) -a = bt α + • • • , b > 0.
Let us denote by π t the orthogonal projection onto T p(t) S. For every t ∈]0, ε[, there exists a real number λ(t) such that:

π t (e 1 ) = λ(t)π t (p(t) -a) = λ(t) π t (p(t) -a) π t (p(t) -a) π t (p(t) -a) .
Observe that if t is small enough, we can assume that π t (p(t)a) does not vanish because S p(t)-a (a) intersects S transversally. Using the fact that p ′ (t) is tangent to S at p(t), we find that:

p ′ 1 (t) = p ′ (t), e 1 = p ′ (t), π t (e 1 ) = λ(t) p ′ (t), p(t) -a . This implies that ord(λ) ≥ α 1 -2α. Let β be the order of π t (p -a) . Since p(t) -a ≥ π t (p(t) -a)
, β is greater or equal to α. Finally we obtain that ord(λ π t (p(t)a) ) is greater or equal to α 1 -2α + β, which is strictly positive. This proves the lemma.

Lemma 5.3. There exists a semi-algebraic set Γ 2 (X) ⊂ S n-1 of dimension strictly less than n -1 such that if v / ∈ Γ 2 (X), then v * |X has a finite number of critical points.

Proof. It is enough to prove the lemma for a semi-algebraic stratum S of dimension s < n. Let N S be the following semi-algebraic set:

N S = {(x, y) ∈ R n × R n | x ∈ S and y ⊥ T x S}.
Using the same kind of arguments as in Lemmas 2.2, 2.3, and 5.1, we see that N S is a smooth semi-algebraic manifold of dimension n. Let π y : N S → R n (x, y) → y be the projection onto the last n coordinates. The Bertini-Sard theorem implies that the set D πy of critical values of π y is semi-algebraic of dimension strictly less than n. We take Γ 2 (X) = S n-1 ∩ D πy . Let us set Γ(X) = Γ 1 (X) ∪ Γ 2 (X), it is a semi-algebraic set of S n-1 of dimension strictly less than n -1. If v / ∈ Γ(X) then v * |X admits a finite number of critical points p 1 , . . . , p l . Moreover, if there is a family of points q R j in S ∩ S n-1 R (a) such that ∇v * |S (q R j ) = µ R j ∇ρ a|S (q R j ), where S is a stratum of X, and µ R j < 0 then v * (q R j ) → -∞ because v / ∈ Γ 1 . Similarly if µ R j > 0 then v * (q R j ) → +∞. We conclude that the set Λ v * is empty and that for all α ∈ R: λ v * ,α = µ v * ,α = λ -v * ,-α = µ -v * ,-α = 0. Hence, we can restate the results of Section 3 in this setting and get relations between the topology of X and the topology of generic hyperplane sections of X (see [START_REF] Tibar | Asymptotic Equisingularity and Topology of Complex Hypersurfaces[END_REF] for similar relations in the complex setting). ind(-v * , X, p i ).

Proposition 5.5. If v / ∈ Γ(X) then for all α ∈ R, we have:

χ Lk ∞ (X ∩ {v * ≤ α}) = χ(X) - l i=1 ind(v * , X, p i ), χ Lk ∞ (X ∩ {v * ≥ α}) = χ(X) - l i=1 ind(-v * , X, p i ), χ Lk ∞ (X ∩ {v * = α}) = 2χ(X) -χ Lk ∞ (X) - l i=1 ind(v * , X, p i ) - l i=1
ind(-v * , X, p i ).

Note that the functions β → χ(Lk ∞ (X ∩ {v * ?β})), ? ∈ {≤, =, ≥}, are constant on R. Theorem 3.20, Theorem 3.21 and Corollary 3.22 are also valid in this context. They have the same formulation as in the general case with the difference that B(v * ) = v * ({p 1 , . . . , p l }).

As an application, we will give a short proof of the Gauss-Bonnet formula for closed semi-algebraic sets. Let Λ 0 (X, -) be the Gauss-Bonnet measure on X defined by: Λ 0 (X, U ) = 1 Vol(S n-1 ) S n-1 x∈U ind(v * , X, x)dv,

where U is a Borel set of X. Note that if x is not a critical point of v * |X then ind(v * , X, x) = 0 and therefore that for v / ∈ Γ(X), the sum x∈U ind(v * , X, x) is finite. The Gauss-Bonnet theorem for compact semialgebraic sets is due to Fu [Fu] and Broecker and Kuppe [BK].

Theorem 5.6. If X is a compact semi-algebraic set then: Λ 0 (X, X) = χ(X). Now assume that X is just closed. Let (K R ) R>0 be an exhaustive family of compact Borel sets of X, that is a family (K R ) R>0 of compact Borel sets of X such that ∪ R>0 K R = X and K R K R ′ if R ≤ R ′ . For every R > 0, we have: Λ 0 (X, X ∩ K R ) = 1 Vol(S n-1 ) S n-1 x∈X∩K R ind(v * , X, x)dv.

Moreover the following limit: Definition 5.7. We set:

Λ 0 (X, X) = lim R→+∞ Λ 0 (X, X ∩ K R ),
where (K R ) R>0 is an exhaustive family of compact Borel sets of X.

Theorem 5.8. If X is a closed semi-algebraic set then:

Λ 0 (X, X) = χ(X) - 1 2 χ Lk ∞ (X)
-1 2Vol(S n-1 ) S n-1 χ Lk ∞ (X ∩ {v * = 0}) dv.

Proof. We have: Λ 0 (X, X) = 1 Vol(S n-1 ) S n-1 x∈X ind(v * , X, x)dv = 1 2Vol(S n-1 ) S n-1 x∈X ind(v * , X, x) + ind(-v * , X, x)dv = 1 2Vol(S n-1 ) S n-1 2χ(X)χ Lk ∞ (X)χ Lk ∞ (X ∩ {v * = 0}) dv, by Proposition 5.5.

Proposition 5. 4 .

 4 If v / ∈ Γ(X) then for all α ∈ R, we have:χ X ∩ {v * ≥ α}χ X ∩ {v * = α} = i:v * (p i )>α ind(v * , X, p i ), χ X ∩ {v * ≤ α}χ X ∩ {v * = α} = i:v * (p i )<α ind(-v * , X, p i ), χ X ∩{v * = α} = χ(X)i:v * (p i )>α ind(v * , X, p i )i:v * (p i )<α ind(-v * , X, p i ), χ X ∩ {v * ≥ α}χ X ∩ {v * ≤ α} = i:v * (p i )>α ind(v * , X, p i )i:v * (p i )<α

  * , X, x), is equal to x∈X ind(v * , X, x) which is uniformly bounded by Hardt's theorem. Applying Lebesgue's theorem, we obtain:lim R→+∞ Λ 0 (X, X∩K R ) = 1 Vol(S n-1 ) S n-1 lim R→+∞ x∈X∩K R ind(v * , X, x)dv = 1 Vol(S n-1 ) S n-1 x∈Xind(v * , X, x)dv.

Combining these equalities, we get the result when Bf = Λ f ∪f ({p 1 , . . . , p l }).

Theorem 3.21. We have:

Proof. We prove the first equality in the case B(f ) = f ({p 1 , . . . , p l })∪ Λ f . For k ∈ {1, . . . , u}, we have by Proposition 3.6:

Proposition 4.3. If n is even then, for all α ∈ R, we have:

We also obtain generalizations of Sekalski's formula [Se]. We keep the notations introduced in the general case.

Theorem 4.4. We have:

If n is even then we have:

Theorem 4.5. If n is even, we have:

If n is odd, we have: