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PRICE DECOMPOSITION IN LARGE-SCALE STOCHASTIC
OPTIMAL CONTROL

KENGY BARTY, PIERRE CARPENTIER, GUY COHEN, AND PIERRE GIRARDEAU

ABSTRACT. We are interested in optimally driving a dynamical system that
can be influenced by exogenous noises. This is generally called a Stochastic
Optimal Control (SOC) problem and the Dynamic Programming (DP) prin-
ciple is the natural way of solving it. Unfortunately, DP faces the so-called
curse of dimensionality: the complexity of solving DP equations grows expo-
nentially with the dimension of the information variable that is sufficient to
take optimal decisions (the state variable).

For a large class of SOC problems, which includes important practical prob-
lems, we propose an original way of obtaining strategies to drive the system.
The algorithm we introduce is based on Lagrangian relaxation, of which the
application to decomposition is well-known in the deterministic framework.
However, its application to such closed-loop problems is not straightforward
and an additional statistical approximation concerning the dual process is
needed. We give a convergence proof, that derives directly from classical re-
sults concerning duality in optimization, and enlghten the error made by our
approximation. Numerical results are also provided, on a large-scale SOC
problem. This idea extends the original DADP algorithm that was presented
by Barty, Carpentier, and Girardeau (2010).

INTRODUCTION

Consider a controlled dynamical system over a discrete and finite time horizon.
This system may be influenced by exogenous noises that affect its behaviour. We
suppose that, at every instant, the decision maker is able to observe these noises
and to keep these observations in memory. Since it is generally profitable to take
available observations into account when designing future decisions, we are looking
for strategies rather than simple decisions. Such strategies (or policies) are feedback
functions that map every instant and every possible history of the system to a
decision to be made.

More precisely, we are here interested in optimization problems with a large
number of variables. The typical application we have in mind is the following.
Consider a power producer that owns a certain number of power units. Each unit
has its own local characteristics such as physical constraints that restrain the set of
feasible decisions, and production costs that depend on the type of fuel that is used
to produce power. The power producer has to control the power units so that a
global power demand is met at every instant. The power demand, as well as other
parameters such as inflows in water reservoirs or unit breakdowns, are random.
Naturally, he is looking for strategies that make the production cost minimal, over
a given time horizon. In such a problem, both the number of power units and the
number of time steps are usually large.
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One classical approach when dealing with stochastic dynamic optimization prob-
lems is to discretize the random inputs of the problem using scenario trees. Such
an approach has been widely studied within the Stochastic Programming commu-
nity (see the book by Shapiro, Dentcheva, and Ruszczytiski, 2009, for an overview
of this methodology). One of the advantages of such a technique is that as soon as
the scenario tree is drawn, the derived problem can be treated by classical Mathe-
matical Programming techniques. Thus, a number of decomposition methodologies
have been proposed (Higle and Sen, 1996, Carpentier, Cohen, Culioli, and Renaud,
1996, Ruszczynski and Shapiro, 2003, Chapter 3) and even applied to energy plan-
ning problems (Bacaud, Lemaréchal, Renaud, and Sagastizabal, 2001). A general
theoteric point of view concerning the way to combine the discretization of ex-
pectation together with the discretization of information is given by Barty (2004).
However, in a multi-stage setting, this methodology suffers from the drawbacks that
arise with scenario trees. As it was pointed out by Shapiro (2006), the number of
scenarios needed to achieve a given accuracy grows exponentially with the number
of time steps of the problem.

The other natural approach to solve SOC problems is to rely on the Dynamic
Programming (DP) principle (see Bellman, 1957, Bertsekas, 2000). The core of
the DP approach is the definition of a state variable that is, roughly speaking, the
variable that, in conjunction with the time variable, is sufficient to take an opti-
mal decision at every instant. It does not have the drawback of the scenario trees
concerning the number of time steps since strategies are, in this context, depend-
ing on a state variable whose space dimension usually does not grow with time'.
However, DP suffers from another drawback which is the so-called curse of di-
mensionality: the complexity of solving the DP equation grows exponentially with
the state space dimension. Hence, brutally solving the DP equation is generally
intractable when the state space dimension goes beyond several units. Recently,
Vezolle, Vialle, and Warin (2009) were able to solve it on a 10-state-variables en-
ergy management problem, using parallel computation coupled with adequate data
distribution.

Another popular idea is to represent the value functions (solutions of the DP
equation) as a linear combination of a priori chosen basis functions (see among oth-
ers Bellman and Dreyfus, 1959, Bertsekas and Tsitsiklis, 1996, Sect. 6.5). This ap-
proach, called Approximate Dynamic Programming or often Least-Squares Monte-
Carlo, has also become very popular in the context of American option pricing
through the work of Longstaff and Schwartz (2001). This approximation reduces
the complexity of solving the DP equation drastically. However, in order to be
practically efficient, such an approach requires some a priori information about the
problem, in order to define a well suited functional subspace. Indeed, there is no
systematic means to choose the basis functions and several choices have been pro-
posed in the literature (de Farias and Van Roy, 2003, Tsitsiklis and Van Roy, 1996,
Bouchard and Warin, 2010).

When dealing with large-scale optimization problems, the decomposition/coordi-
nation approach aims at finding a solution to the original problem by iteratively
solving smaller-dimensional subproblems. In the deterministic case, several types
of decomposition have been proposed (e.g. by prices or by quantities) and unified
in a general framework using the Auxiliary Problem Principle by Cohen (1980a).
In the open-loop stochastic case, i.e. when controls do not rely on any observation,
Cohen and Culioli (1990) proposed to take advantage of both decomposition tech-
niques and stochastic gradient algorithms. These techniques have been extended
in the closed-loop stochastic case by Barty, Roy, and Strugarek (2009), but so far

n the case of power management, the state dimension is usually the number of power units.
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they fail to provide decomposed state dependent strategies in the Markovian case.
This is because a subproblem optimal strategy depends on the state of the whole
system, not only on the local state. In other words, decomposition approaches are
meant to decompose the control space, namely the range of the strategy, but the
numerical complexity of the problems we consider here also arises because of the
dimensionality of the state space, that is to say the domain of the strategy.

We here propose a way to use price decomposition within the closed-loop stochas-
tic case. The coupling constraints, namely the constraints preventing the problem
from being naturally decomposed, are dualized using a Lagrange multiplier (price).
At each iteration, the price decomposition algorithm solves each subproblem using
the current price, then uses the solutions to update the price. In the stochastic con-
text, price is a random process whose dynamics is not available, so the subproblems
do not in general fall into the Markovian setting. However, in a specific instance
of this problem, Strugarek (2006) exhibited a dynamics for the optimal multiplier,
and he showed that these dynamics were independent with respect to the decision
variables. Hence it was possible to come down to the Markovian framework and
to use DP to solve the subproblems in this case. Following this idea, Barty et al.
(2010) proposed to choose a parametrized dynamics for these multipliers in such
a way that solving subproblems using DP becomes possible. While the approach,
called Dual Approximate Dynamic Programming (DADP), showed promising re-
sults on numerical examples, it suffers from the fact that the induced restrained
dual space is non-convex. This led to some numerical instabilities and, probably
more important, it was not possible to give convergence results for the algorithm.
We here propose to extend DADP in a more general way that allows us to derive
convergence results and solves the problem of numerical instabilities.

The paper is organized as follows. In Section 1, we present the general SOC
problem and the DP principle. Then we concentrate on a more specific class of
problems, that we call decomposable problems, and recall the previous version of
the DADP algorithm. In Section 2, we present the new version we propose and give
convergence results for the algorithm. Finally, in Section 3, we apply DADP to two
numerical examples, the first being the one from the previous paper by Barty et al.
(2010) and the second one being a more realistic power management example.

1. MATHEMATICAL FORMULATION

1.1. General problem setting. All along the paper, random variables are de-
noted using bold letters. Consider a discrete and finite time horizon 0, 1, ..., T
and a probability space (92, 4,P). To define a stochastic dynamical system, we
need:

e a stock process X = (Xy,..., X 1) which represents the physical states of
the system through time, the value of X lying, at every instant ¢, in a
Hilbert space X¢;

e a control process U = (Uy,...,Ur—_1), the value of U; lying, at every
instant ¢, in a Hilbert space Uy;

e a noise process W = (Wy, ..., Wrp_1), the value of W, lying, at every
instant ¢, in a Hilbert space W,.

The spaces Xy, Uy and W, are generally finite-dimensional spaces. In the sequel,
we suppose X; = R" and U; = R™. The decision variable U; being a random
variable, and our purpose being to use variational techniques that require the no-
tion of gradient, it is natural to suppose that U; lies in a Hilbert space U;, for
example L2(Q, A, P; U,).

The three types of variables are linked together in the following way. At every
time step ¢, there exists a function f; (the dynamics of the system) that maps the
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triplet (X, Uy, W) to the next stock value X;y1. Let (Ap,..., Ar_1) be the
filtration associated with the stochastic process W. We suppose that, at every
time step ¢, the decision maker is able to observe and to keep in memory all the
past history of W up to time ¢t. The causality principle states that the decision U,
at time t is Aj;-measurable, i.e. only depends on past observations. Moreover, at
each time step t, a cost Cy(X ¢, Uy, W) is incurred. Finally, at the final time T’ a
cost K(X ) is added. The Stochastic Optimal Control (SOC) problem we would
like to solve hence reads:

T—1
(1a) BT(HII} E (; Ce (X4, Uy, Wy) + K (XT)> ;
subject to dynamics constraints:
(1b) X1 = fi ( X, Uy, W), Vti=0,...,T—1,
(1c) X is given,

as well as bound constraints:

(1d) r, <X, <7, Vt=1,...,T,
(le) w, <Uy <7, Vt=0,....T—1,

static constraints:
(lf) gt(Xt,Ut,Wt):O, Vt:(),,T—l,
and the non-anticipativity constraint:

(1g) U, is A;-measurable.

Constraints (1b), (1d), (le) and (1f) have to be understood in the P-almost sure
sense. We give examples for constraint (1f) in §2. With no further assumptions,
Problem (1) cannot generally be solved analytically, except for quite particular
cases among which is, for instance, the Linear Quadratic Gaussian (LQG) case.
One has to be aware that, when solving this problem, one is looking for functions
that map every possible history of the system to a decision; the domain of such
a function is clearly growing with time and representing it on a computer rapidly
becomes intractable.

1.2. The Dynamic Programming Principle. Fortunately enough, control the-
ory helps us reduce the size of the optimal strategy’s domain in some cases. Let us
first make the following assumption.

Assumption 1. Noises Wy, ..., Wp_;1 are independent over time.
Now define functions V4, for every time step t =0,...,7, as:
T—1
Vi(z)= min_ E (Z Cs (X, U, W)+ K(Xr)| X, = ,7:) , Vo e Xy,
Xy, X —
Uiy, Upoy 50

subject to the same? constraints as in Problem (1). Function V; represents the

minimal remaining cost of the problem when starting at time ¢, for every possible
stock value z.

Under Assumption 1, the Dynamic Programming (DP) principle states that the
variable X, along with the current noise value Wy, contains all the information
that is sufficient to take the optimal decision at time ¢, hence the term state variable.

2while starting at time ¢



PRICE DECOMPOSITION IN LARGE-SCALE STOCHASTIC OPTIMAL CONTROL 5

Moreover, it provides a way to compute functions V;, that we now call Bellman
functions (or value functions), as well as optimal strategy, in a backward manner.

(2a) Vr (z) = K (x), Vo € Xrp,
and, for every time step t =17 —1,...,0:

(2b) Vi(z) =E (muin Cy (x,u, W) + Vi (fe (z,u, Wt))) , Vo € Xy.

Compared with the original setting where the optimal strategy domain was growing
along with time steps, the DP principle drastically reduces the size of the informa-
tion needed to make an optimal decision.

Remark 1 (About the overtime independence). In the case when the model is such
that noises that affect the system have some sort of correlation through time, one
can always explicit the dynamics of the noise variable and add it to the dynamics
of X, thus defining a new (albeit larger!) state variable as well as a new noise
variable that is now independent over time.

Remark 2 (Hazard-Decision setting). The reader may have noticed that the way
the non-anticipativity constraint in written allows the decision maker at time ¢ to
observe the current noise value W, before choosing the control U,. In such a setting
the optimal decision at time ¢ depends on both the state variable X; and the noise
variable W, whereas the value function only depends on the state variable X;.

Note however that the dimension of the state space X; might still be quite large.
Yet the complexity of solving the DP equation (2) grows exponentially with the
dimension of X;; this unpleasant feature is well known as the curse of dimensionality
and prevents us from solving this equation by discretization when the state space
dimension is, say, greater than 5.

1.3. Decomposable problem setting. Let us now present a particular instance
of Problem (1) on which we are able to reduce even more the size of the information
needed to take a reasonable decision.

We consider a system which consists of N subsystems®, whose dynamics and
cost functions are independent one from another. More precisely, the state X, (re-
spectively the control U;) of the global system writes (X}, ey Xév) with Xi €
L2 (Q, A, P;R™) (resp. (Uy,....U;) with U; € L*(Q,A,P;R™)) and n =
Zf.vzl n; (resp. m = vazl m; ), so that the global dynamics X1 = fi (X, Uy, W)
can be written independently unit by unit: XiH = f} (X;i, i, Wt), 1=1,...,N.
In the same way, the global cost C; (X, U, W) is equal to the sum of the local
unit costs C (Xi, i, Wt), 1=1,..., N. At the end of the time period, each unit i
causes a cost K* that only depends on its final state X ZT

Remark that, without further constraints, the induced SOC problem can be
stated independently unit by unit, though the same noise variable affects all units
(see Appendix B for a precise proof). Hence, under Assumption 1, the solving of the
DP equation can be decomposed unit by unit. For each unit, the optimal strategy
depends only on its local state?, which is usually far smaller than the dimension of
the global state space.

Consider now a static constraint (1f) that couples the units together. We suppose
that such a coupling arises from a set of static R%-valued constraints, the constraint
at time step t reading Zf;l gt (X;, f;, Wt) = (. This kind of coupling constraint is
natural in many industrial applications, including the case of a power management

3We often use the term “units” for subsystems.
4and on the noise at the current time step because we are in the Hazard-Decision setting
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problem that we already mentioned in the introduction: the sum of the productions
of the power units must meet an uncertain power demand.
The decomposable problem we are interested in solving in the following reads:

RS SRS W)

t=0 i=1 i=1

subject to dynamics constraints:

(3b) = (XU W), Vt=0,...,T—1,Yi=1,...,N,
(3¢) X is given, Vi=1,...,N,

as well as bound constraints:

(3d) i < Xi<7, Vt=1,...,T,Vi=1,...,N,
(3e) ul <UL <, Vt=0,...,T—1,Yi=1,...,N,

static constraints:
N . .

(3f) Y g (XLULW,) =0,  Vt=0,...,T -1,
i=1

and the non-anticipativity constraint:
(3g) U! is A;-measurable, vt=0,...,T—1,Vi=1,...,N.

There are three types of coupling in Problem (3):

e The first comes from the state dynamics (3b) that induce a temporal cou-
pling.

e The second one arises from the static constraints (3f) that induce a spatial
coupling: they link together all the subsystems at each time step t.

e The third type of coupling is informational: it comes from the causality
constraint (3g), which prevents us from decomposing directly scenario by
scenario : if two realizations of the noise process are identical up to time ¢,
then the same control has to be applied at time t on both realizations.

Constraints (3f) prevent us from decomposing the optimization problem unit
by unit: the solution U} for unit i and time ¢ has to be searched as a feedback
function ¢! depending on the current noise value and on the whole stock vari-
able X, = (X7},..., XY) rather than on the local stock variable X! Adding the
coupling constraint (3f) drastically changed the structure of the problem.

Remark 3 (Local and global noises). Applications we have in mind are power man-
agement problems which are completely “flower-shaped”, in the following sense.
The noise variable W at time ¢ is composed of two different kinds of noise:

e a local noise W; for every subsystem i, i.e. at every petal of the flower (un-
certain inflows entering a water reservoir, for instance);

e a global noise D; at the center of the flower (a total power demand, for
instance).

In such a setting, only the local noise appears in the cost function and in the
dynamics, leading to functions of the form:

Cj (X}, U, W}) and f/ (X}, U;,W}),
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while the global noise appears only in the coupling constraint as, for instance:
N
Zgz (Xga U;) = Dt-
i=1

Keeping this particular case in mind shall give us some insight about how to de-
compose the global problem as well as possible. This is explained in more details
in §2.1 and such settings are treated in the numerical experiments of §3.

1.4. Previous paper. In a previous study (Barty et al., 2010), the authors pro-
posed a way of handling Problem (3) by approximate Lagrangian decomposition.
The proposed algorithm, called Dual Approximate Dynamic Programming (DADP)
is as follows. Let us introduce the Lagrangian of Problem (3):

T—1 N
L(X,UN):=E ( 3 (C;’ (XLULW,) + A g (X5, UL Wt))

t=0 =1
N . .
£ K (Xh) )
=1

with A\; € L2(Q, A, P; R?) the Lagrange multiplier of the coupling constraint (3f)
and A := (Ao, ..., Ar—1). Note that, since the dualized constraint is .A;-measurable,
the Lagrange multiplier A\; need only to have the same measurability.

Problem (3) is always equivalent to:

minmax L (X,U,\),
XU A

where the minimization is subject to all constraints of Problem (3) except con-
straint (3f). If £ has a saddle point (see Appendix A for a definition and a char-
acterization of saddle points), then this problem is equivalent to the so-called dual
problem:
(4) maxmin  L(X,U, ),

X XU
under, once again, the same constraints as in Problem (3) except the coupling
constraint (3f).

The key point of the so-called price decomposition algorithm is that the inner
minimization problem can be split into N subproblems, each one involving a single
subsystem (once again, see Appendix B for more details). One might think that
solving these subproblems is much simpler than solving the original global prob-
lem. This is not the case here: because the dual variable X is a stochastic process
that depends in general on the whole history of the system, we cannot reasonably
make the overtime independence assumption that leads to the DP principle and
subproblems are just as hard as Problem (1)!

The idea of Barty et al. (2010) is to force the dual process to satisfy a prescribed
dynamics:

(5&) )\0 = hcm (WQ) s
(5b) At1 = hops A, W),  VE=0,...,T -2,

where h,, is an a priori chosen function parametrized by oy € R?. We note o =
(cg,...,ar_1). Given a vector a* of coefficients at iteration k of the algorithm
which defines the current values of the dual variables, the first step of DADP is
to solve the N subproblems by DP with state (X% X;). In order to update the
Lagrange multipliers, the authors propose to draw S trajectory samples of the
noise W and integrate the dynamics (3b)—(3c) and (5) using the optimal feedback
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laws obtained at the first step, thus obtaining S sample trajectories of X k, U*
and A\*. A gradient step is then performed sample by sample:

N
14 . . .
AR AP e x Mg (XU W) s =18,
=1

with p: obeying the rules of the step-size choice in Uzawa’s algorithm (see Appen-
dix A). Finally, we solve the following regression problem:

S
min g ’
QQy-XT —1
S

=1

s k+%,s 2
h(lo (WO) - )‘O

Rd
T—2 5
+ Z ‘ R4 >
t=0
The last minimization produces coefficients a**! which define, using Equation (5),
a new process AL

This procedure has several advantages, notably that its complexity is linear
with respect to the number N of subproblems and that it may lead, depending
on the choice for the dual dynamics h, to tractable approximations of the original
problem. The authors illustrate this fact on a small example on which they are
able to compare standard DP and DADP.

Still, it has some drawbacks, mainly theoretical. First of all, the shape of the
dynamics introduced for the dual process is arbitrarily and once for all chosen and
the quality of the result depends on this choice. Moreover, this dynamics defines
a subspace which is non-convex. The next iterate A*! being a projection on this
subspace, it is not well defined and some oscillations observed in practice may be

due to this fact. Finally, this non-convexity prevents us from obtaining convergence
results for this algorithm.

k+%,s s k+%,s
hat+1 (At ) t+1 ) >‘t+1

2. DUAL APPROXIMATE DYNAMIC PROGRAMMING REVISITED

We now propose a new version of the DADP algorithm and show how it over-
comes the above mentioned drawbacks encountered with the original algorithm. In
this new approach, we do not suppose a given dynamics for the multipliers anymore.
Still, we use the standard price decomposition algorithm and perform the update
of the multipliers scenario-wise using the classical gradient step:

N
N =X o Y gl (KPP UV W)L s =1,
1=1

The difficulty is now to solve the subproblems, as explained in §2.1.

2.1. Projection of the dual process. After Lagrangian decomposition of Prob-
lem (3) with a given multiplier A, the i-th subproblem reads:

T—1
) min E(Z(Oﬁ(xi, LW A (X :;,wg)m(m))

(3 i
XU =
subject to dynamic constraints:

(Gb) ;+1:ftl(X;5 ;aWt)a Vtio,,T*I,
(6¢) X} is given,
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as well as bound constraints:
(6d) f<Xi<zm, vt=1,....T
(6e) w<Ul<u, vt=0,...,T—1,

)

and the non-anticipativity constraint:

(61) U! is A;-measurable.

As it was already mentioned, since the dual stochastic process A generally de-
pends on the whole history of the process, solving this problem is in general as
complex as solving the original problem. In order to bypass this difficulty, let us
choose at each time step ¢t a random variable Yi that is measurable with respect
to Ar. We call Y' = (Y§,..., Y} ) the information process for subsystem i.
The idea is to rely on a short memory process Y. Note that we require that this
random process is not influenced by controls. We propose to replace Problem (6)
by:

(7)
-1 . . . T . . . .
Jnin (Z (c; (X, U, W) +E (N | Y}) g (X, ;,Wt)) + K (X;)) :
’ t=0
subject to constraints (6b)—(6f).

Let us first examine the special situation in which the information variable Yf;
only depends on the current noise W;. The process Y does not add memory in
the system so that Problem (7) can be solved using the standard DP equation:

Vi(z) = K (), Yz € X,
i i iyt i
Vi(z) = E( Hé$ Cy (x,u, W)+ E ()\t ‘ Yt) gy (x,u, W)

Vi (fl@u W) ), Veexi

The expectation quadrature only involves the noise variable W;. Remember, as
explained in Remark 2, that we are in the “hazard-decision” setting: even though
the control at each instant ¢ depends on both X 1 and W, the Bellman function
only depends on X 1

Because of the overtime independence of the information variables Y, we have
to solve DP equations whose dimension is the subsystem dimension n;. Let us give
three examples of choices for Y.

Ezample 1 (Maximal information). One can choose to include in Y all the noise
at time t. As already explained in Remark 3, the cost function and dynamics of
a subsystem may only depend on a part of the whole noise W, (a kind of local
information denoted by Wi in Remark 3). Yet some global noise, denoted by D;
in Remark 3 may appear in the coupling constraint (e.g. a global power demand).
Hence this maximal choice for the information variable makes the multiplier depend
on both local and global information: this shall improve the subsystem’s vision of
the rest of the system and hence improves strategies. Note, however, that includ-
ing all the noise at time ¢ in the information variable is only possible in practice
when the noise dimension is not too large. Indeed, the information variable ap-
pears in a conditional expectation, whose computation is subject to the curse of
dimensionality.

Ezample 2 (Minimal information). On the opposite, one can choose Y = 0 or any
other constant. The dual stochastic process is then approximated by its expecta-
tion at every instant. Compared to the previous example, there is no conditional
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Scenario-wise coordination

N
N =M D (XU W)
i=1

control U** and state X*

Subproblem 1 Subproblem i Suproblem N

Compute E(A; | Y7}) Compute E(A; | Y?) Compute E(A; | YV)
and solve subproblem and solve subproblem and solve subproblem

F1GURE 1. Dual Approximate Dynamic Programming

expectation anymore but one obtains a strategy that corresponds to the vision of
an average price.

Ezample 3 (In between). One can choose Yi of the form hi(W,). In practice,
this choice will be guided by the intuition one has on which information mostly
“explains” the optimal price of the system. One has to make a compromise between
sufficient information to take reasonable actions and a not too large information
variable to be able to compute the conditional expectation in (7).

Let us move towards the general case where one can choose to keep some infor-
mation in memory. In other words, one can choose an information variable that has
a Markovian dynamics, i.e. of the form Y, ; = hi(Y}, W;11). In order to derive
a DP equation in this case, one has to augment the state vector by embedding Yi,
that is the necessary memory to compute the next information variable. Thus,
the Bellman function associated with the i-th subproblem depends, at time ¢, on
both X¢ and Y?_,. The DP equation writes:

Vi (x,y) = E(min Cl(x,u, W) +E ()\tT ‘ Y@) - gi (z,u, W)
u
+ ‘/tz+1 (fg (IE,U, Wt) 5Y:5) )7
with Yi="h! | (y,W,).

When solving this equation, one obtains controls as feedback functions on the local
stock X}, the current noise W, and the information variable Y7;_; of the previous
time step. The index gap between information and stock variables comes from the
“hazard-decision” setting: at time ¢, the information that is used to take decisions
is the conjunction of the information kept in memory (that has index ¢t — 1) and of

the noise observed at the current time step Wy. The sketch of the DADP algorithm
is depicted in Figure 1.

Ezample 4 (Perfect memory). The choice Y. = (Wy,...,W,) stands in the Mar-
kovian case. We have then E ()\t | Y;) = X;. This choice hence allows us to model
the dual variable perfectly, but the induced DP equation is unsolvable in practice.
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Ezample 5 (Strugarek, 2006). In his PhD thesis, Strugarek exhibited a case when an
exact model for the dual process can be obtained. His example is inspired from the
kind of power management problem mentioned in the introduction, where N water
reservoirs have to contribute to a global power demand, the rest of this demand
being produced by fossil fuel. The noise at each time step ¢ is composed of a scalar
inflow Af; for each reservoir ¢ = 1,..., N, and of a scalar power demand D;. The
problem reads:

T-1 n (U{)Q _ ‘ s
(8a) min  E Zch +l(X§—x]1) :

, 2 2
t=1 j=1

where ¢j, 7 = 1,...,N and ;, j = 1,...,N are given real values, subject to
dynamic constraints on reservoirs:

(8b) Xl =X]+Al,,-U, Wt=1,...T-1Vji=1,...,n,

the power demand constraint:
n .
(8¢c) Y Ui=Dy, Vt=1,..,T-1,
j=1

and the non-anticipativity constraint:
(8d) U;:is 0{D, s <t;As s <t}-measurable.
Let us denote A7 := Zf\il Al The author then shows the following result.

Proposition 1 (Strugarek, 2006, Chapter V). If random variables (Dy, Ay)i=1,... 7
are independent over time, and if there exists o > 0 such that v; = acj, for all j =
1,...,n, then the optimal multiplier X associated with the coupling constraints (8c)
satisfies the following dynamics:

1 T T-1
M=t (DlaamZE(AszE(Dﬁ)v

j:l C]‘

1
A1 =N+ = [
Dic1 6_11

~a (A7, ~E(A7,)], wi=1,...T-2

This allows the solving of subproblems using DP in dimension 3. Note that this
example enters our approach if one chooses (Y, D;) as an information variable,
with:

1 T T-1
Y, ST <D1(1a)aZE(Ag)aZE(DS)>,

and, forall t=1,...,7 — 2:

1 (e o
Y=Y+ = {Dm (1+a)— D, — aE (Dt+1)—a(At+1—E(At+1))]

Zi:l i
We get back to the particular case when E(X; | Y}) = A, with a small dimensional

information variable Yi. Note however that conditions of Proposition 1, especially
the proportionality relation on costs, make little sense in practice.
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2.2. Convergence. We now give convergence results about DADP and explain in
more details the relation between the strategies it builds and the solution of the
original problem (1). To make the paper self-contained, we recall in Appendix A
the general results concerning duality in optimization, of which the properties of
DADP are direct consequences.

The approximation made on the dual process gives us a tractable way of com-
puting strategies for each one of the subsystems. Depending on the choice we make
for the information variable, it is quite clear that some strategies will lead to better
results than others, concerning the value of the dual problem or the satisfaction of
the coupling constraint. Let us here state more precisely these facts.

From now on, we consider a unique information variable for all subsystems. We
denote it by Y; and define Hilbert spaces

Vi = {\ € L*(Q, A, P) : \; is Y;-measurable},
for every t =0,..., 7 — 1.

Proposition 2. Consider the following optimization problem:

T—1 N N
(92)  min E(;Z;CZ (Xi,Ui,Wt)+Z;KZ (Xér)>,

subject to the same constraints as in Problem (3) except the coupling constraint (3g)
which is replaced by:

N
(9b) E (Zgg (XL, UL W,) ‘ Yt> =0, Vt=0,...,T,.
i=1

Suppose the Lagrangian associated with Problem (9) has a saddle point. Then
DADP solves Problem (9).

Proof. The DADP algorithm consists in:

e given a price process, solving subproblems using the projection of this price
process on Yy X -+ X Vpr_q;
e updating the price process using a gradient formula.
Alternatively, one may consider that the gradient formula is composed with the
projection operation in the updating formula. Therefore, this algorithm may also
be viewed as a projected gradient algorithm which exactly solves the following
max-min problem :

(10a)
T N N . .
m}z\%xmm E (ZZ(CZ X%aU;aWt)—i_At gt (XianaWt ) +ZK1 (X'ZT)> )
t=0 i=1 i
(10b)

st. X =f (XL UL W), Vt=0,...,T—1,Vi=1,...,N,
(10c) Xo =Wy,
(10d) < XP<T, vi=1,...,T\Vi=1,...,N,
(10e) wl <U! <, Vt=0,...,T—1,Vi=1,...,N,
(10f) U, is A;-measurable, Vt=0,...,T,
(10g) A¢ is Y-measurable, vt=0,...,T
Observe that the max operation is restricted to a linear subspace defined by (10g).

Now, if within the inner product (a,b) = E (aTb), the variable a belongs to
a given subspace, then the component of b which is orthogonal to that subspace
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yields 0 in the inner product. Hence it is useless. Put in our context, the multi-
plier A; can only control the part of g¢ (X i, Uf;, Wt) which has the same measur-
ability as A;. Thus, assuming the existence of a saddle point, that is, the max and
min operations can be interchanged in Problem (10), this problem appears as the
dual counterpart of Problem (9). O

Loosely speaking, DADP somehow consists in replacing an almost-sure con-
straint by a constraint involving a conditional expectation with respect to a so-called
information variable. So it is once again clear that if we choose the information
variable Y; to be the whole history of the system, then we come back to the initial
constraint and we in fact solve the original problem. This is the case of Exam-
ple 4. On the contrary, putting no information at all in Y, is the same as satisfying
the coupling constraint only in expectation. This is the case of Example 2. Note
however that it is generally a poor way of representing an almost-sure constraint.

The main difficulty is to find the information variable Y; that is going to satisfy
the coupling constraint in a fairly good way while keeping the solving process of
the subproblems tractable.

We now state the convergence of the DADP algorithm. Let us introduce the
objective function J : Uy X - -+ x Up_1 — R associated with strategy U, i.e.:

T—1 N N
J:U~ E (Z S CHXLULW) + ) K (X%)),
t=0 i=1 =1

with: X¢ = W,
and: X}, = f{ (X}, U,, W), Vt=0,...,T—1,Yi=1,...,N.
Proposition 3. If:

(1) J is convex, lower semi-continuous, Gateaux differentiable,

(2) J is a-strongly conver,

(3) all g} are linear and c-Lipschitz continuous,

(4) the Lagrangian associated with Problem (9) has a saddle point (U, X),
(5) the step-size p of the algorithm is such that 0 < p < 2%,

(1) there exists a unique solution U of Problem (9),
(2) DADP converges in the sense that :
Uk — v mn Uy X - X Up_1,
k——+o00
(3) the sequence (A\¥)p>o is bounded and every cluster point X in the weak

topology is such that (U, ) is a saddle point of the Lagrangian associated
with Problem (9).

Proof. The convergence of the algorithm is then a direct application of Theorem 1,
Appendix A. O

Note that assumptions of Proposition 3 plus the qualification of constraint (9b)
ensure that the Lagrangian associated with Problem (9) has a saddle point.

3. NUMERICAL EXPERIMENT

We now show the efficiency of DADP on two numerical examples. The first one
comes from a previous paper (Barty et al., 2010) in which the authors developped
a preliminary version of DADP (see §1.4). We show in §3.2 the good performance
of the new version of DADP. The second one, in §3.3, is an application to a more
realistic power management problem.
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3.1. Computing conditional expectations. Within the DADP procedure, at
each iteration, we have to compute conditional expectations in the criteria (7) of
the subproblems. In order to compute these conditional expectations, we used Gen-
eralized Additive Models (GAMSs), that were introduced by Hastie and Tibshirani
(1990). The estimate takes the form:

Functions f; are splines (piecewise polynoms) whose characteristics are optimized
by cross-validation on the input statistical data. Our purpose here is not to explain
in details this methodology. The interested reader will find further explanations
about this model and its implementation in the book by Wood (2006). We used
an easy-to-use implementation that is available within the free statistical software
R (R Development Core Team, 2009). The GAM toolkit, called mgcv, also returns
useful indicators concerning the quality of the estimation. In particular, we use
the deviance indicator, which takes value 0 if Z is estimated as poorly as by its
expectation E (Z) and value 1 if the estimate is exact, i.e. if > | fi(P;) = Z.

Remark 4 (Kernel estimator). We chose to use GAMs to compute conditional ex-
pectations after a numerical comparison with the more classical kernel regression
methods (Nadaraya, 1964, Watson, 1964) also available in the R environment. Even
though both of them gave similar results, GAMs appeared to be several times faster
than the kernel method on our problem.

3.2. Back to an example from a previous paper. We first implement the new
version of DADP algorithm on a simple power management problem introduced by
Barty et al. (2010). On this small-scale example, we are able to compare DADP
results to those obtained by DP and to illustrate the theoretical results described
above. Let us first recall this example. Consider a power producer who owns two
types of power plants:

e Two hydraulic plants that are characterized at each time step t by their
water stock Xt and power production U, and receive water inflows A} 1
1 = 1,2. Such units are usually cost-free. We however impose small qua-
dratic costs on the hydraulic power productions in order to ensure strong
convexity.

e One thermal unit with a production cost that is quadratic with respect to
its production U?. There are no dynamics associated with this unit.

Using these plants, the power producer must supply a power demand D; at each
time step t, over a discrete time horizon of T = 25 time steps. All noises, i.e.
demand D; and inflows A% and At2 are supposed to be overtime independent noise
processes. The interested reader may find more details on this numerical experiment
in the previous paper by Barty et al. (2010).
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The problem reads:

(11a) min E (Tz_l (@) +e (U} + L. (UY)) + K (Xp) + K (X%))

X, U
t=0

(11b)  st. X, =X, -Uj+Al,,, Vi=12 ¥Vt=0,..,T-1,
(11c) Ul +U?+U}=D,, Vt=0,...,T-1,

(11d) ' < X<, Vi=1,2, Vt=1,...,T,

(11e) 0< U <, Vi=1,2, Vt=0,...,T—1,

(11f) 0<U?, Vt=0,...,T -1,

(11g) U! is J{DO, Aj AL .,Dt,A%,Af}—measurable, Vi=1,2,3.

In this problem, the state X is two-dimensional, hence DP remains numerically
tractable and we can use the DP solution as a reference. In order to use DADP, we
choose an information variable Y; at time ¢ that is equal to the power demand D;.
This comes from the insight that the power demand is a “global” information and
has all reasons to be useful to the subproblems.

Remark 5 (Primal feasibility). In order to validate the method, it has to be evalu-
ated within a simulation procedure. For the evaluation to be fair, the strategy must
be feasible. Yet, as explained in §2.2, DADP does not ensure that the coupling con-
straint (3f) is satisfied. To circumvent this difficulty, the thermal unit strategy is
chosen in the simulation process so as to ensure feasibility of the coupling constraint,
ie.

(12) Ul = D - (Ul U2).

That is, DADP returns three strategies, for each of the hydraulic units and for
the thermal unit. However, we use relation (12) for the thermal strategy during
simulations in order to ensure demand satisfaction and give an estimation of the
cost of the DADP strategy.

We run the algorithm for 20 iterations and depict its behaviour in Figure 2. We
draw the dual cost (evaluation of the dual function with the current strategy) and
the primal cost (the one with all constraints satisfied) at each iteration. Each point
of the primal and dual curves is computed by Monte Carlo simulation over 500
scenarios. We observe the regular increase of the dual function, as expected, and
the decrease of the primal function. The distance between the primal and dual
costs is an upper bound for the distance to the optimal value that graphically, in
this case, seems quite tight.

Moreover, the GAM toolkit used to compute the conditional expectations of the
form E (A, | D) returns that the deviance, i.e. the quality of the explanation of A,
by D is 98.5%. This indicates that the marginal cost of the system is almost
perfectly explained by the time variable and the power demand. Otherwise stated,
using E (A; | D;) instead of using A; within Problem (11) does not alter too much
the quality of the solution.

3.3. A larger-scale SOC problem. We now apply DADP on a real-life power
management problem, inspired by a case encountered at EDF, which is the major
European power producer. We do not give the exact order of magnitude for costs
and productions because of confidentiality issues. We consider :

e a power demand on a single node (we neglect network issues) at each instant

of a finite time horizon of 163 weeks (one time step per week);
e 7 (hydraulic) stocks which are in fact aggregations of many smaller stocks;
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FiGURE 2. Primal, dual and optimal costs with respect to the
number of iterations

e 122 other (thermal) power units with no stock constraints.

All the thermal power units are aggregated so that the thermal cost C; at each

time ¢ only depends on the total thermal production Uffh and forms a quadratic

cost. We note C; using bold letters, which means that this thermal cost is random,

because of the breakdowns that may happen on thermal power plants.
The problem reads:

(13a)
T-1
wy = (Lo (o))

subject to hydraulic stock dynamics :

(13b)  X{=xb, Vi=1,...,7,
(13¢) X, =X,-U,+A;, Vi=1...7Vt=0,...

power demand constraints :

7

(13d) M U +U=D,, Wt
i=1

0,...
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bound constraints on stocks and controls :

(13e) wih<UM <@h, vi=0,...,T -1,

(13f)  ul <U! <@, Vi=1,...,7,¥t=0,....,T—1,

(13g) z! < X! <7, Vi=1,...,7,¥t=0,...,T,

and non-anticipativity constraints :

(13h)  Ulis (Wo,...,W;)-measurable, Vi=1,...,7,¥t=0,...,T — 1,
(131) U;h is (Woy,..., W,)-measurable, vt=0,...,T —1,

with W := (A4, Ct, Dy) being the set of all noises that affect the system at time t.

Because we consider 7 stocks, we are unable to use DP directly on this problem.
In order to obtain a reference point, we use an aggregation method introduced by
Turgeon (1980) and currently in use at EDF. This numerical method is known to be
especially well-suited for the problem under consideration. It consists in solving IV
subproblems (7 in our case) by 2-dimensional DP, each subproblem relying on a
particular power unit, instead of one N-dimensional DP problem. The idea is, for
every unit, to look for strategies that depend on the stock of the unit and on an
aggregation of the remaining stocks.

We then make use of DADP using three different choices for the information
variable Y.

e In the first setting, we replace the price at each time step by its expectation.
In other words, we explain the price only by the time variable ¢t. According
to Proposition 3, we are in fact solving Problem (13) with constraint (13d)
replaced by its expectation. Then we are able to solve each subproblem i
by DP in dimension 1 (the stock variable of unit 7) and we obtain strategies
that depend, for each unit ¢ and each instant ¢, on the stock X i and the
inflow Ai.

e In the second setting, we replace the price at each time step by its con-
ditional expectation with respect to the power demand. Put differently,
we explain the price by time and demand. We still have to solve a 1-
dimensional DP equation and we obtain for each instant t a strategy that
depends on X!, A! and D;.

e In the third setting, we replace the price at each instant by its conditional
expectation with respect to the power demand and the thermal availabil-
ity® P;. We then obtain a strategy that depends, for every unit i and every
instant ¢, on Xf;, Af;, D, and P;,.

The behaviour of the algorithm in the second setting is depicted in Figure 3.
We observe the increase of the dual value and the decrease of the primal value,
the latter value stabilizing rapidly to a value close to the one of the aggregation
method. Even though we are aware that only 10 iterations is generally much too
less for this kind of primal-dual algorithm, it seems like the primal cost does not
evolve significantly after 10 iterations.

In order to compare the three settings, we simulate the corresponding strate-
gies® on a large set of i.i.d. noise scenarios and compute both the mean cost and
confidence interval for each strategy. The results are presented in Table 1. The
“Deviance” column gives the deviance indicator returned by the GAM procedure

5The thermal availability is a scalar variable computed out of the thermal cost function C¢. It
gives insight on how tense the thermal generation mix is.

6As in the previous example, the thermal unit strategy is chosen so as to ensure feasibility of
the coupling constraint (see Remark 5).
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FIGURE 3. Primal and dual costs along with iterations compared
to the aggregation method

Mean cost | Clgsy | Deviance
First setting 2.363 1.3-1072 | 50.0%
Second setting 2.340 1.3-1072 | 82.4%
Third setting | 2.338 | 1.3-10°2| 86.1%
TABLE 1. Results for DADP
! \‘\ P ——set. 2 -set. 1
/ ---set. 3 -set. 2

cost

FIGURE 4. Distribution of cost differences between settings of DADP

for the estimation of the conditional expectation of the price with respect to the
information variable. We observe that the DADP strategy still benefits from a good
choice for the information variable Y;: it appears from the mean costs comparison
that adding information within the estimator improves the quality of the estima-
tion. The mean costs differences are however not so easy to compare for the two
last experiments, because the confidence interval is too large compared to the cost
values. Thus we compute for each scenario the gap between costs obtained by two
different strategies and draw in Figure 4 the associated probability distributions.
It becomes clearer that adding the thermal availability in the information variable
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FIGURE 5. Distribution of the production/demand gap for a given
time step

improves the strategy: the major part of the probability weight when comparing
settings 2 and 3 is negative.

As a last point, let us numerically verify that Proposition 3 holds in our example,
for instance in the first setting. Remember that, in this case, our algorithm aims
at satisfying the coupling constraint only in expectation. We draw in Figure 5 the
probability distribution of the production/demand gap at several iterations. We
observe that, along with iterations, the distribution of this gap becomes symmetric
with respect to 0, the corresponding expectation hence being equal to zero.

CONCLUSION

We presented an original algorithm for solving a certain kind of large-scale sto-
chastic optimal control problems. It is based on an approximate Lagrangian de-
composition: the Lagrange multiplier, which is a stochastic process in this context,
is projected using a conditional expectation with respect to another stochastic pro-
cess called the information process. This information process is chosen a priori and,
when it has a limited memory, the solving of subproblems becomes tractable. We
give theoretical results concerning the convergence of the algorithm and show how
it actually solves an approximate problem, whose relation with the original problem
is driven by the choice of information variable. Finally, we show on two numerical
examples the efficiency of the approach.

Future works will be concerned with the application of this algorithm to more
general problem structures, like chained subsystems or networks.

APPENDIX A. DUALITY IN CONVEX OPTIMIZATION

The results presented here come from the paper by Cohen (1980a). Let U and A
be Hilbert spaces”, and 44>? and A?? be subsets of i and A (respectively). Moreover,
let us define a function L : U x A — R. We describe here the relations that link the
so-called primal problem:

(14) inf sup L (u, ),
u€U?d \ c pad

"These results can be generalized to Banach spaces (see Ekeland and Temam, 1999), but this
is not necessary for our purpose.
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to its dual counterpart:
sup inf L (u,\).
A€ Aad uelad

U is called the primal space while A is called the dual one.

Definition 1 (Saddle point). A pair (7, \) € U x A* is called a saddle point
of L on U x A2 if:

L@\ <L(@A\ <L(uX), Yueld vreA*

Let us now concentrate on the case where function L corresponds to the La-
grangian of an optimization problem:

L(u,\) = J (u) 4+ (N g(u).
The Uzawa algorithm is defined as follows. Take an initial value A\g € A®d. At each
iteration n > 0, compute u,, by minimizing J (u) + (\,, g (v)), and update \,, using
the following rule:

Ang1 = Hpaa (>\n + png (un)) >
with p, some positive value. The following theorem gives conditions for the se-
quence (un)n>0 to converge to the optimum of Problem (14).

Theorem 1 (Cohen, 1980a, Theorem 6.1). If:

(1) J is convez, lower semi-continuous, Gateauz differentiable,
(2) J is a-strongly convex,

(3) g is linear and c-Lipschitz continuous,

(4) L has at least a saddle point (U, \),

(5) the step-size p of the algorithm is such that 0 < p < 2%,

(1) @ is unique and is a solution of Problem (14),
(2) Uzawa’s algorithm converges in the sense that :
Uy — Win U,
n—-+o0o
(3) the sequence (An)n>o is bounded and every cluster point \ in the weak topol-
ogy is such that (u, \) is a saddle point of L.

Given the other assumptions of the theorem, assumption (4) is satisfied as long
as the dualized constraint satisfies a so-called “qualification” condition. In addi-
tion, the latter is always satisfied for affine constraints, which is the case in our
application.

APPENDIX B. A LEMMA ABOUT DECOMPOSITION

We here depict in more details the reasons why a Stochastic Optimal Prob-
lem (SOC) involving N independent® subsystems is equivalent, under certain con-
ditions, to N problems where each one involves only one of the subsystems. Though
this result may seem trivial at first sight, it is not true in general: the interested
reader will find a counter example in the paper by Cohen (1980b).

Lemma 1. Consider the following problem:

T—-1 N N
(152) win E (; 20; (X ULW,, Z,) +;Kz (X;)>

8in a sense that is made clear in Lemma 1
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subject to dynamics constraints:

(15b) = (XL ULWL Zy) Vt=0,...,T—1,Yi=1,...,N,
(15¢) X, is given, Vi=1,...,N,

as well as bound constraints:

(15d) zi < XL <7, Vt=0,...,T\Vi=1,...,N,

(15€) ul <UL <, Vt=0,...,T—1,Yi=1,...,N,

and the non-anticipativity constraint:

(15f) Uf; is Ai-measurable, Vi=0,...,T—1,Vi=1,...,N,

where Ay is the o-algebra generated by the random wvariables {Wi,ZS} for i =
1,....,N and s =0,...,t. We assume that:

o the W'’s and Z. are all white noise processes, _
o that W} is not necessarily independent from W for j # i nor from Zy.

Then, the optimal feedback solution is partially decentralized, that is, each optimal
decision Ui, that may a priori depend on the whole X, and the whole Wy and
Z, according to (15f), indeed only depends on (X, W', Z,); the Bellman function
Vi(Xt) is additive (Vi(Xy) = Zl]\il V(X)) and the optimal solution only involves
the marginal probability laws of the pairs ( i, Z) but not the joint probability laws
of the pairs (W, Zy).

Proof. The proof is by induction over time. The statement that V is additive is
true at the final time T since the final cost K is additive. Assume this is true from
T to t + 1 (backward). The Bellman equation at ¢ reads:

N N

Vi(x) E(min Cia' ut, W Z) + Y Vi (filah ut, W, Zy) > ,

i ; ; b ( )
in which

e the minimization operation is done over an expression is which x, Z; and
W; are fixed (hazard-decision scheme) and the argmin in u parametrically
depends on those values (which yields the optimal feedback function) ;

e the minimization operation is subject to the bound constraints (15e) for v’
and (15d) for fi(x', u’, Wi, Zy) ;

e the expectation concerns random variables (W, Z;) whereas x is still fixed
(X and (W4, Z;) are independent from each other, thus this expectation
may be considered as a conditional expectation knowing that X; = x): this
yields a function of z, namely V;(-).

Now observe that, at the minimization stage, each v’ is involved into a separate
expression depending only on x?, Wé and Z; subject also to independent con-
straints, hence the claimed partially decentralized optimal feedback. Then, at the
outer expectation stage, we get a sum of functions of z* and (W¥, Z;): thus only
the marginal probability law of each pair (W%, Z;) is involved in the expectation
of the corresponding term in this sum, and the result is an additive function of the

2%, which completes the proof by induction. U

Let us now comment some particular cases.
o If Z, is absent and if W' and W7 are independent whenever j # i, then
the overall problem is obviously made up of N independent subproblems;
the optimal feedbacks are fully decentralized (that is U* is in closed loop



22 K. BARTY, P. CARPENTIER, G. COHEN, AND P. GIRARDEAU

on (X', W?), and the optimal controls U’ and U’ are also independent
random variables whenever j # i.

e If we drop the independency assumption about W' and W, then the same
subproblems still provide the overall problem solution with decentralized
feedbacks, but U’ and U7 are no longer independent.

e Another “extreme” situation is when only the “shared” noise Z is present
in all subsystems (the W%s are supposed absent for the sake of clarity
but now, Z may be thought as the concatenation of all the Wi’s). The
conclusions of the lemma are of course still valid, that is, the Bellman
function is still additive and each term of this sum can be calculated in a
separate subproblem, yielding a feedback on (X", Z). However the price to
be payed for the presence of this shared random variable is that, first, the
minimization operation in the Bellman function is parametrized by both
x' and Z,, which may be costly if Z; is of large dimension, and, second,
the outer expectation in this Bellman equation involves a multiple integral
over that vector Z;, which may also be costly.
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