M I Isaev 
email: isaev.m.i@gmail.com
  
Exponential instability in the Gel'fand inverse problem on the energy intervals

We consider the Gel'fand inverse problem and continue studies of [Mandache,2001]. We show that the Mandache-type instability remains valid even in the case of Dirichletto-Neumann map given on the energy intervals. These instability results show, in particular, that the logarithmic stability estimates of [Alessandrini,1988], [Novikov, Santacesaria,2010] and especially of [Novikov,2010] are optimal (up to the value of the exponent).

Introdution

We consider the Schrödinger equation

-∆ψ + v(x)ψ = Eψ, x ∈ D, (1.1) 
where

D is an open bounded domain in R d , d ≥ 2, ∂D ∈ C 2 , v ∈ L ∞ (D). (1.2)
Consider the map Φ(E) such that

Φ(E)(ψ| ∂D ) = ∂ψ ∂ν | ∂D . (1.3) 
for all sufficiently regular solutions ψ of (1.1) in D = D ∪ ∂D, where ν is the outward normal to ∂D. Here we assume also that E is not a Dirichlet eigenvalue for operator -∆ + v in D.

(1.4)

The map Φ(E) is called the Dirichlet-to-Neumann map and is considered as boundary measurements.

We consider the following inverse boundary value problem for equation (1.1).

Problem 1.1. Given Φ(E) on the union of the energy intervals S = K j=1 I j , find v.

Here we suppose that condition (1.4) is fulfilled for any E ∈ S. This problem can be considered as the Gel'fand inverse boundary value problem for the Schrödinger equation on the energy intervals (see [START_REF] Gelfand | Some problems of functional analysis and algebra[END_REF], [START_REF] Novikov | Multidimensional inverse spectral problem for the equation -∆ψ + (v(x) -Eu(x))ψ = 0 Funkt[END_REF]).

Problem 1.1 includes, in particular, the following questions: (a) uniqueness, (b) reconstruction, (c) stability.
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Global uniqueness for Problem 1.1 was obtained for the first time by Novikov (see Theorem 5.3 in [4]). Some global reconstruction method for Problem 1.1 was proposed for the first time in [START_REF] Henkin | The ∂-equation in the multidimensional inverse scattering problem[END_REF] also. Global uniqueness theorems and global reconstruction methods in the case of fixed energy were given for the first time in [START_REF] Novikov | Multidimensional inverse spectral problem for the equation -∆ψ + (v(x) -Eu(x))ψ = 0 Funkt[END_REF] in dimension d ≥ 3 and in [START_REF] Bukhgeim | Recovering a potential from Cauchy data in the two-dimensional case[END_REF] in dimension d = 2.

Global stability estimates for Problem 1.1 were given for the first time in [START_REF] Alessandrini | Stable determination of conductivity by boundary measurements[END_REF] in dimension d ≥ 3 and in [START_REF] Novikov | A global stability estimate for the Gel'fand-Calderon inverse problem in two dimensions[END_REF] in dimension d = 2. The Alessandrini result of [START_REF] Alessandrini | Stable determination of conductivity by boundary measurements[END_REF] was recently improved by Novikov in [START_REF] Novikov | New global stability estimates for the Gel'fand-Calderon inverse problem[END_REF]. In the case of fixed energy, Mandache showed in [START_REF] Mandache | Exponential instability in an inverse problem for the Schrödinger equation Inverse Problems[END_REF] that these logarithmic stability results are optimal (up to the value of the exponent). Mandache-type instability estimates for inverse inclusion and scattering problems are given in [START_REF] Cristo | Examples of exponential instability for inverse inclusion and scattering problems Inverse Problems[END_REF].

In the present work we extend studies of Mandache to the case of Dirichlet-to-Neumann map given on the energy intervals. The stability estimates and our instability results for Problem 1.1 are presented and discussed in Section 2. In Section 5 we prove the main results, using a ball packing and covering by ball arguments. In Section 3 we prove some basic properties of the Dirichlet-to-Neumann map, using some Lemmas about the Bessel functions wich we proved in Section 6.

Stability estimates and main results

As in [START_REF] Novikov | New global stability estimates for the Gel'fand-Calderon inverse problem[END_REF] we assume for simplicity that

D is an open bounded domain in R d , ∂D ∈ C 2 , v ∈ W m,1 (R d ) for some m > d, supp v ⊂ D, d ≥ 2, (2.1) 
where

W m,1 (R d ) = {v : ∂ J v ∈ L 1 (R d ), |J| ≤ m}, m ∈ N ∪ 0, (2.2) 
where

J ∈ (N ∪ 0) d , |J| = d i=1 J i , ∂ J v(x) = ∂ |J| v(x) ∂x J 1 1 . . . ∂x J d d . (2.3) Let ||v|| m,1 = max |J|≤m ||∂ J v|| L 1 (R d ) . (2.4) 
We recall that if v 1 , v 2 are potentials satisfying (1.4), (1.3), where E and D are fixed, then

Φ 1 -Φ 2 is a compact operator in L ∞ (∂D), (2.5) 
where Φ 1 , Φ 2 are the DtN maps for v 1 , v 2 respectively, see [START_REF] Novikov | Multidimensional inverse spectral problem for the equation -∆ψ + (v(x) -Eu(x))ψ = 0 Funkt[END_REF]. Note also that (2.1) ⇒ (1.2).

Theorem 2.1 (variation of the result of [START_REF] Alessandrini | Stable determination of conductivity by boundary measurements[END_REF], see [START_REF] Novikov | New global stability estimates for the Gel'fand-Calderon inverse problem[END_REF]). Let conditions (1.4), (2.1) hold for potentials v 1 and v 2 , where E and D are fixed,

d ≥ 3. Let ||v j || m,1 ≤ N, j = 1, 2, for some N > 0. Let Φ 1 , Φ 2 denote DtN maps for v 1 , v 2 respectively. Then ||v 1 -v 2 || L ∞ (D) ≤ c 1 (ln(3 + ||Φ 1 -Φ 2 || -1 )) -α 1 , (2.6) 
where

c 1 = c 1 (N, D, m), α 1 = (m -d)/m, ||Φ 1 -Φ 2 || = ||Φ 1 -Φ 2 || L ∞ (∂D)→L ∞ (∂D) .
An analog of stability estimate of [START_REF] Alessandrini | Stable determination of conductivity by boundary measurements[END_REF] for d = 2 is given in [START_REF] Novikov | A global stability estimate for the Gel'fand-Calderon inverse problem in two dimensions[END_REF].

A disadvantage of estimate (2.6) is that

α 1 < 1 for any m > d even if m is very great. (2.7)
Theorem 2.2 (the result of [START_REF] Novikov | New global stability estimates for the Gel'fand-Calderon inverse problem[END_REF]). Let the assumptions of Theorem 2.1 hold. Then

||v 1 -v 2 || L ∞ (D) ≤ c 2 (ln(3 + ||Φ 1 -Φ 2 || -1 )) -α 2 , (2.8) 
where

c 2 = c 2 (N, D, m), α 2 = m -d, ||Φ 1 -Φ 2 || = ||Φ 1 -Φ 2 || L ∞ (∂D)→L ∞ (∂D) .
A principal advantage of estimate (2.8) in comparison with (2.6) is that

α 2 → +∞ as m → +∞, (2.9) 
in contrast with (2.7). Note that strictly speaking Theorem 2.2 was proved in [START_REF] Novikov | New global stability estimates for the Gel'fand-Calderon inverse problem[END_REF] for E = 0 with the condition that supp v ⊂ D, so we cant make use of substitution

v E = v -E, since condition supp v E ⊂ D does not hold.
We would like to mention that, under the assumptions of Theorems 2.1 and 2.2, according to the Mandache results of [START_REF] Mandache | Exponential instability in an inverse problem for the Schrödinger equation Inverse Problems[END_REF], estimate (2.8) can not hold with α 2 > m(2d -1)/d for realvalued potentials and with α 2 > m for complex potentials.

As in [START_REF] Mandache | Exponential instability in an inverse problem for the Schrödinger equation Inverse Problems[END_REF] in what follows we fix D = B(0, 1), where B(x, r) is the open ball of radius r centred at x. We fix an orthonormal basis in L 2 (S d-1 ) = L 2 (∂D)

{f jp : j ≥ 0; 1 ≤ p ≤ p j }, f jp is a spherical harmonic of degree j, (2.10) 
where p j is the dimension of the space of spherical harmonics of order j,

p j = j + d -1 d -1 - j + d -3 d -1 , (2.11) 
where

n k = n(n -1) • • • (n -k + 1) k! for n ≥ 0 (2.12)
and n k = 0 for n < 0.

(2.13)

The precise choice of f jp is irrelevant for our purposes. Besides orthonormality, we only need f jp to be the restriction of a homogeneous harmonic polynomial of degree j to the sphere and so |x| j f jp (x/|x|) is harmonic. In the Sobolev spaces H s (S d-1 ) we will use the norm

|| j,p c jp f jp || 2 H s = j,p (1 + j) 2s |c jp | 2 . (2.14)
The notation (a jpiq ) stands for a multiple sequence. We will drop the subscript Then for any m > 0 and any s ≥ 0 there is a constant β > 0, such that for any ǫ ∈ (0, σ/3) and v 0 ∈ C m (D) with ||v 0 || L ∞ (D) ≤ σ/3 and supp v 0 ⊂ B(0, 1/3) there are real-valued potentials v 1 , v 2 ∈ C m (D), also supported in B(0, 1/3), such that

0 ≤ j, 1 ≤ p ≤ p j , 0 ≤ i, 1 ≤ q ≤ p i . ( 2 
sup E∈S ||Φ 1 (E) -Φ 2 (E)|| H -s →H s ≤ exp -ǫ -1 2m , ||v 1 -v 2 || L ∞ (D) ≥ ǫ, ||v i -v 0 || C m (D) ≤ β, i = 1, 2, ||v i -v 0 || L ∞ (D) ≤ ǫ, i = 1, 2, (2.17) 
where Φ 1 (E), Φ 2 (E) are the DtN maps for v 1 and v 2 respectively.

Remark 2.1. We can allow β to be arbitrarily small in Theorem 2.3, if we require ǫ ≤ ǫ 0 and replace the right-hand side in the instability estimate by exp(-cǫ -1 2m ), with ǫ 0 > 0 and c > 0, depending on β.

In addition to Theorem 2.3, we consider explicit instability example with a complex potential given by Mandache in [START_REF] Mandache | Exponential instability in an inverse problem for the Schrödinger equation Inverse Problems[END_REF]. We show that it gives exponential instability even in case of Dirichlet-to-Neumann map given on the energy intervals. Consider the cylindrical variables

(r 1 , θ, x ′ ) ∈ R + × R/2πZ × R d-2 , with x ′ = (x 3 , . . . , x d ), r 1 cos θ = x 1 and r 1 sin θ = x 2 . Take φ ∈ C ∞ (R 2 ) with support in B(0, 1/3) ∩ {x 1 > 1/4} and with ||φ|| L ∞ = 1. Theorem 2.4. For σ > 0, m > 0, integer n > 0 and dimension d ≥ 2 consider the union S = K j=1
I j of σ-regular intervals and define the complex potential

v nm (x) = σ 3 n -m e inθ φ(r 1 , |x ′ |). ( 2 

.18)

Then ||v mn || L ∞ (D) = σ 3 n -m and for every s ≥ 0 and m > 0 there are constants c, c ′ such that ||v mn || C m (D) ≤ c and for every n

sup E∈S ||Φ mn (E) -Φ 0 (E)|| H -s →H s ≤ c ′ 2 -n/4 , (2.19) 
where Φ mn (E), Φ 0 (E) are the DtN maps for v mn and v 0 ≡ 0 respectively.

In some important sense, this is stronger than Theorem 2.3. Indeed, if we take ǫ = σ 3 n -m we obtain (2.17) with exp(-Cǫ -1/m ) in the right-hand side. An explicit real-valued counterexample should be difficult to find. This is due to nonlinearity of the map v → Φ. Remark 2.2. Note that for sufficient large s one can see that

||Φ 1 -Φ 2 || L ∞ (∂D)→L ∞ (∂D) ≤ C||Φ 1 -Φ 2 || H -s →H s .
(2.20) So Theorem 2.3 and Theorem 2.4 imply, in particular, that the estimate

||v 1 -v 2 || L ∞ (D) ≤ c 3 sup E∈S ln(3 + ||Φ 1 (E) -Φ 2 (E)|| -1 ) -α 3 , (2.21) 
where

c 3 = c 3 (N, D, m, S) and ||Φ 1 (E) -Φ 2 (E)|| = ||Φ 1 (E) -Φ 2 (E)|| L ∞ (∂D)→L ∞ (∂D)
, can not hold with α 3 > 2m for real-valued potentials and with α 3 > m for complex potentials. Thus Theorem 2.3 and Theorem 2.4 show optimality of logarithmic stability results of Alessandrini and Novikov in considerably stronger sense that results of Mandache.

Some basic properties of Dirichlet-to-Neumann map

We continue to consider D = B(0, 1) and also to use polar coordinates (r, ω) ∈ R + × S d-1 , with x = rω. Solutions of equation -∆ψ = Eψ in D can be expressed by the Bessel functions J α and Y α with integer or half-integer order α, see definitions of Section 6. Here we state some Lemmas about these functions (Lemma 3.1, Lemma 3.2 and Lemma 3.3).

Lemma 3.1. Suppose k = 0 and k 2 is not a Dirichlet eigenvalue for operator -∆ in D. Then

ψ 0 (r, ω) = r -d-2 2 J j+ d-2 2 
(kr)

J j+ d-2 2 (k) f jp (ω) (3.1)
is the solution of equation (1.1) with v ≡ 0, E = k 2 and boundary condition ψ| ∂D = f jp .

Remark 3.1. Note that the assumptions of Lemma 3.1 imply

J j+ d-2 2 (k) = 0. Lemma 3.2.
Let the assumptions of Lemma 3.1 hold. Then system of functions

{ψ jp (r, ω) = R j (k, r)f jp (ω) : j ≥ 0; 1 ≤ p ≤ p j } , (3.2) 
where 

R j (k, r) = r -d-2 2 Y j+ d-2 2 (kr)J j+ d-2 2 (k) -J j+ d-2 2 (kr)Y j+ d-2 2 (k) , (3.3) 
(|z|/2) α Γ(α + 1) ≤ |J α (z)| ≤ 3 2 (|z|/2) α Γ(α + 1) , (3.4 
)

|J ′ α (z)| ≤ 3 (|z|/2) α-1 Γ(α) , (3.5) 
1 2π (|z|/2) -α Γ(α) ≤ |Y α (z)| ≤ 3 2π (|z|/2) -α Γ(α) (3.6) |Y ′ α (z)| ≤ 3 π (|z|/2) -α-1 Γ(α + 1) (3.7)
where ′ denotes derivation with respect to z, α = n + d-2 2 and Γ(x) is the Gamma function. Proofs of Lemma 3.1, Lemma 3.2 and Lemma 3.3 are given in Section 6. Lemma 3.4. Consider a compact W ⊂ C. Suppose, that v is bounded, supp v ⊂ B(0, 1/3) and condition (1.4) is fulfilled for any E ∈ W and potentials v and v 0 , where v 0 ≡ 0.

Denote Λ v,E = Φ(E) -Φ 0 (E). Then there is a constant ρ = ρ(W, d), such that for any 0 ≤ j, 1 ≤ p ≤ p j , 0 ≤ i, 1 ≤ q ≤ p i , we have | Λ v,E f jp , f iq | ≤ ρ 2 -max(j,i) ||v|| L ∞ (D) ||(-∆ + v -E) -1 || L 2 (D) , (3.8) 
where Φ(E), Φ 0 (E) are the DtN maps for v and v 0 respectively and (-∆ + v -E) -1 is considered with the Dirichlet boundary condition.

Proof of Lemma 3.4. For simplicity we give first a proof under the additional assumtions that 0 / ∈ W and there is a holomorphic germ √ E for E ∈ W . Since W is compact there is C > 0 such that for any z ∈ W we have |z| ≤ C. We take N from Lemma 3.3 for this C. We fix indeces j, p. Consider solutions ψ(E), ψ 0 (E) of equation (1.1) with E ∈ W , boundary condition ψ| ∂D = f jp and potentials v and v 0 respectively. Then ψ(E) -ψ 0 (E) has zero boundary values, so it is domain of -∆ + v -E, and since

(-∆ + v -E) (ψ(E) -ψ 0 (E)) = -vψ 0 (E) in D, (3.9) 
we obtain that

ψ(E) -ψ 0 (E) = -(-∆ + v -E) -1 vψ 0 (E). (3.10) 
If j ≥ N from Lemma 3.1 and Lemma 3.3 we have that

||ψ 0 (E)|| 2 L 2 (B(0,1/3)) = ||f jp || 2 L 2 (S d-1 ) 1/3 0 r -d-2 2 J j+ d-2 2 ( √ E r) J j+ d-2 2 ( √ E) 2 r d-1 dr ≤ ≤ 1/3 0 3 2 (|E| 1/2 r/2) j+ d-2 2 Γ(j + d-2 2 + 1) 2 1 2 (|E| 1/2 /2) j+ d-2 2 Γ(j + d-2 2 + 1) 2 r dr = = 3 1/3 0 r 2j+d-1 dr = 3 2j + d 1 3 2j+d < 2 -2j . (3.11)
For j < N we use fact that ||ψ 0 (E)|| L 2 (B(0,1)) is continuous function on compact W and, since N depends only on W , we get that there is a constant

ρ 1 = ρ 1 (W, d) such that ||ψ 0 (E)|| L 2 (B(0,1/3)) ≤ ρ 1 2 -j . (3.12) 
Since v has support in B(0, 1/3) from (3.10) we get that 

||ψ(E) -ψ 0 (E)|| L 2 (B(0,1)) ≤ ρ 1 2 -j ||v|| L ∞ (D) ||(-∆ + v -E) -1 || L 2 (D) . ( 3 
ψ(E) -ψ 0 (E) = 0≤i,1≤q≤p i c iq (E)ψ iq (E) in D ′ (3.14)
for some c iq , where

ψ iq (E)(r, ω) = R i ( √ E, r)f iq (ω). (3.15) Since R i ( √ E, 1) = 0 ∂R i ( √ E, r) ∂r r=1 = ∂ r d-2 2 R i ( √ E, r) ∂r r=1
.

(3.16)

For i ≥ N from Lemma 3.3 we have that

∂R i ( √ E,r) ∂r r=1 Y α ( √ E)J α ( √ E) = |E| 1/2 Y ′ α ( √ E) Y α ( √ E) - J ′ α ( √ E) J α ( √ E) ≤ ≤ 6|E| 1/2 (|E| 1/2 /2) -α-1 Γ(α + 1) (|E| 1/2 /2) -α Γ(α) + (|E| 1/2 /2) α-1 Γ(α + 1) (|E| 1/2 /2) α Γ(α) = 6α, (3.17) ||r -d-2 2 Y α ( √ Er)|| L 2 ({1/3<|x|<2/5}) |Y α ( √ E)| 2 ≥ 2/5 1/3 1 3 (|E| 1/2 r/2) -α Γ(α) (|E| 1/2 /2) -α Γ(α) 2 r dr ≥ 2 5 - 1 3 1 3 1 3 (5/2) α 2 , (3.18) ||r -d-2 2 J α ( √ Er)|| L 2 ({1/3<|x|<2/5}) |J α ( √ E)| 2 ≤ 2/5 1/3 3 (|E| 1/2 r/2) α Γ(α) (|E| 1/2 /2) α Γ(α) 2 r dr ≤ 2 5 - 1 3 
1 3 (3(2/5) α ) 2 , (3.19) 
where

α = i + d-2 2 .
Since N > 3 we have that α > 3. Using (3.18) and (3.19) we get that

||ψ iq (E)|| L 2 ({1/3<|x|<2/5}) Y α ( √ E)J α ( √ E) ≥ 2 5 - 1 3 
1 3 1/2 1 3 (5/2) α -3(2/5) α ≥ 1 1000
(5/2) α . (3.20)

For i ≥ N we get that

∂R i ( √ E, r) ∂r r=1 ≤ 1000α(5/2) -α ||ψ iq (E)|| L 2 ({1/3<|x|<1}) . (3.21) 
For i < N we use the fact that ∂R i ( √ E,r) ∂r r=1

/||ψ iq (E)|| L 2 ({1/3<|x|<1}) is continuous function on compact W and get that for any i ≥ 0 there is a constant

ρ 2 = ρ 2 (W, d) such that ∂R i ( √ E, r) ∂r r=1 ≤ ρ 2 2 -i ||ψ iq (E)|| L 2 ({1/3<|x|<1}) .
(3.22)

Proceeding from (3.14) and using the Cauchy-Schwarz inequality we get that

|c iq (E)| = ψ(E) -ψ 0 (E), ψ iq (E) L 2 ({1/3<|x|<1}) ||ψ iq (E)|| 2 L 2 ({1/3<|x|<1}) ≤ ||ψ(E) -ψ 0 (E)|| L 2 (B(0,1)) ||ψ iq (E)|| L 2 ({1/3<|x|<1}) . (3.23) 
Taking into account 

Λ v,E f jp , f iq = ∂(ψ(E) -ψ 0 (E)) ∂ν ∂D , f iq = c iq (E) ∂R i ( √ E, r) ∂r r=1 (3.
| Λ v,E f jp , f iq | ≤ ρ 2 2 -i ||ψ(E) -ψ 0 (E)|| L 2 (B(0,1)) .
(3.25)

From (3.13) and (3.25) we get (3.8).

For the general case we consider two compacts ( √ E) have removable singularity in E = 0 or, more precisely,

W ± = W ∩ {z | ± Imz ≥ 0} . ( 3 
J j+ d-2 2 ( √ Er) J j+ d-2 2 ( √ E) -→ r j+ d-2 2 , Y j+ d-2 2 ( √ Er) Y j+ d-2 2 ( √ E) -→ r -j-d-2
2 as E -→ 0.

(3.27)

Considering the limit as E → 0 we get that (3.13), (3.25) and consequently (3.8) are valid for W ± . To complete proof we can take ρ = max{ρ + , ρ -}.

Remark 3.2. From (3.1) and (3.10) we get that

Λ v,E f jp , f iq is holomorphic function in W.
(3.28)

A fat metric space and a thin metric space

Definition 4.1. Let (X, dist) be a metric space and ǫ > 0. We say that a set Y ⊂ X is an ǫ-net for X 1 ⊂ X if for any x ∈ X 1 there is y ∈ Y such that dist(x, y) ≤ ǫ. We call ǫ-entropy of the set X 1 the number

H ǫ (X 1 ) := log 2 min{|Y | : Y is an ǫ-net fot X 1 }. A set Z ⊂ X is called ǫ-discrete if for any distinct z 1 , z 2 ∈ Z, we have dist(z 1 , z 2 ) ≥ ǫ.
We call ǫ-capacity of the set X 1 the number C ǫ := log 2 max{|Z| : Z ⊂ X 1 and Z is ǫ-discrete}.

The use of ǫ-entropy and ǫ-capacity to derive properties of mappings between metric spaces goes back to Vitushkin and Kolmogorov (see [START_REF] Kolmogorov | Tikhomirov ǫ-entropy and ǫ-capacity in functional spaces Usp[END_REF] and references therein). One notable application was Hilbert's 13th problem (about representing a function of several variables as a composition of functions of a smaller number of variables). In essence, Lemma 4.1 and Lemma 4.2 are parts of the Theorem XIV and the Theorem XVII in [START_REF] Kolmogorov | Tikhomirov ǫ-entropy and ǫ-capacity in functional spaces Usp[END_REF]. Lemma 4.1. Let d ≥ 2 и m > 0. For ǫ, β > 0, consider the real metric space

X mǫβ = {f ∈ C m (D) | supp f ⊂ B(0, 1/3), ||f || L ∞ (D) ≤ ǫ, ||f || C m (D) ≤ β},
with the metric induced by L ∞ . Then there is a µ > 0 such that for any β > 0 and ǫ ∈ (0, µβ), there is an ǫ-discrete set Z ⊂ X mǫβ with at least exp 2 -d-1 (µβ/ǫ) d/m elements. Lemma 4.1 was also formulated and proved in [START_REF] Mandache | Exponential instability in an inverse problem for the Schrödinger equation Inverse Problems[END_REF]. 

W I,γ = { a + b 2 + a -b 2 cos z | |Im z| ≤ γ}. (4.1)
Then there is a constant ν = ν(C, γ) > 0, such that for every δ ∈ (0, e -1 ), there is a δ-net for the space functions on I with L ∞ -norm, having holomorphic continuation to W I,γ with module bounded above on W I,γ by the constant C, with at most exp(ν(ln δ -1 ) 2 ) elements.

Proof of Lemma 4.2. Theorem XVII in [START_REF] Kolmogorov | Tikhomirov ǫ-entropy and ǫ-capacity in functional spaces Usp[END_REF] provides asymptotic behaviour of the entropy of this space with respect to δ → 0. Here we get upper estimate of it. Suppose g(z) is holomorphic function in W I,γ with module bounded above by the constant C. Consider the function f (z) = g( a+b 2 + a-b 2 cos z). By the choise of W I,γ we get that f (z) is 2π-periodic holomorphic function in the stripe |Im z| ≤ γ. Then for any integer n

|c n | = 2π 0 e inx f (x)dx ≤ 2π 0 e -|n|γ Cdx ≤ 2πCe -|n|γ . (4.2)
Let n δ be the smallest natural number such that 2πCe -nγ ≤ 6π -2 (n + 1) -2 δ for any n ≥ n δ .

Taking natural logarithm and using ln δ -1 ≥ 1, we get that

n δ ≤ C ′ ln δ -1 , (4.3) 
where C ′ depends only on C and γ. We denote δ ′ = 3π -2 (n δ + 1) -2 δ. Consider the set

Y δ = δ ′ Z [-2πC, 2πC] + i • δ ′ Z [-2πC, 2πC]. (4.4)
Using (4.3), we have that

|Y δ | = (1 + 2[2πC/δ ′ ]) 2 ≤ C ′′ δ -2 ln 4 δ -1 , (4.5) 
with C ′′ depending only on C and γ. We set For n > n δ this is true by the construction of n δ , otherwise by the choise of δ ′ . Since f (x) is 2π-periodic even function, we get

Y = ∞ n=0 d n cos n arccos x -a+b 2 a-b 2 | d n ∈ Y δ for n ≤ n δ , d n = 0 otherwise . ( 4 
g Y (x) ∈ Y such that ||g(x) -g Y (x)|| L ∞ (a,b) ≤ ∞ n=0 |c n -d n | ≤ 6π -2 δ ∞ n=1 1 n 2 = δ. (4.8) 
We have that |Y | = |Y δ | n δ . Taking into account (4.3),(4.5) and ln δ -1 ≥ 1, we get

|Y | ≤ (C ′′ δ -2 ln 4 δ -1 ) C ′ ln δ -1 ≤ exp C ′′′ ln δ -1 C ′ ln δ -1 ≤ exp(ν(ln δ -1 ) 2 ). (4.9) 
Remark 4.1. The assertion is valid even in the case of a = b. As δ-net we can take

Y = δ 2 Z [-C, C] + i • δ 2 Z [-C, C]. (4.10) 
Consider an operator A : H -s (S d-1 ) → H s (S d-1 ). We denote its matrix elements in the basis {f jp } by a jpiq = Af jp , f iq . From [START_REF] Mandache | Exponential instability in an inverse problem for the Schrödinger equation Inverse Problems[END_REF] we have that

||A|| H -s →H s ≤ 4 sup j,p,i,q (1 + max(j, i)) 2s+d |a jpiq |. (4.11) 
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Consider system S = K j=1 I j of σ-regular intervals. We introduce the Banach space

X S,s = a jpiq (E) | a jpiq (E) X S,s := sup j,p,i,q (1 + max(j, i)) 2s+d sup E∈S |a jpiq (E)| < ∞ .
Denote by B ∞ the ball of centre 0 and radius 2σ/3 in L ∞ (B(0, 1/3)). We identify in the sequel an operator A(E) : H -s (S d-1 ) → H s (S d-1 ) with its matrix a jpiq (E) . Note that the estimate (4.11) implies that

sup E∈S A(E) H -s →H s ≤ 4 a jpiq (E) X S,s . (4.12) 
We consider operator Λ v,E from Lemma 3.4 as

Λ : B ∞ → a jpiq (E) , (4.13) 
where a jpiq (E) are matrix elements in the basis {f jp } of operator Λ v,E .

Lemma 4.3. Λ maps B ∞ into X S,s for any s. There is a constant 0 < η = η(S, s, d), such that for every δ ∈ (0, e -1 ), there is a δ-net Y for Λ(B ∞ ) in X S,s with at most exp(η(ln δ -1 ) 2d ) elements.

Proof of Lemma 4.3. For simplicity we give first a proof in case of S consists of only one σ-regular interval I. From (4.1) we take W I = W I,γ , where constant γ > 0 is such as for any E ∈ W I there is E I in I such as |E -E I | < σ/6. From (2.16) we get that

|E -λ| ≥ |E I -λ| -|E -E I | ≥ 5σ/6, (4.14) 
with λ being Dirichlet eigenvalue for operator -∆ in D which is closest to E. Then for potential v ∈ B ∞ and E ∈ W I we have that

||(-∆ + v -E) -1 || L 2 (D) ≤ (|λ -E| -2σ/3) -1 ≤ (5σ/6 -2σ/3) -1 = 6/σ (4.15) and ||v|| L ∞ (D) ||(-∆ + v -E) -1 || L 2 (D) ≤ (2σ/3)(6/σ) = 4, (4.16) 
where (-∆ + v -E) -1 is considered with the Dirichlet boundary condition. We obtain from Lemma 3.4 that

|a jpiq (E)| ≤ 4ρ 2 -max(j,i) , (4.17) 
where ρ = ρ(W I , d). Hence ||(a jpiq (E))|| X S,s ≤ sup l (1 + l) 2s+d 4ρ 2 -l < ∞ for any s and d and so the first assertion of the Lemma 4.3 is proved. Let l δs be the smallest natural number such that (1 + l) 2s+d 4ρ 2 -l ≤ δ for any l ≥ l δs . Taking natural logarithm and using ln δ -1 ≥ 1, we get that For any (a jpiq (E)) ∈ Λ(B ∞ ) there is an element (b jpiq (E)) ∈ Y such that

l δs ≤ C ′ ln δ -1 , ( 4 
(1 + max(j, i)) 2s+d |a jpiq (E) -b jpiq (E)| ≤ (1 + max(j, i)) 2s+d δ jpiq = δ, (4.20) 
in case of max(j, i) ≤ l δs and

(1 + max(j, i)) 2s+d |a jpiq (E) -b jpiq (E)| ≤ (1 + max(j, i)) 2s+d 2ρ 2 -max(j,i) ≤ δ, (4.21) 
otherwise.

It remains to count the elements of Y . Using again the fact that ln δ -1 ≥ 1 and (4.18) we get for max(j, i) ≤ l δs

|Y jpiq | ≤ exp(ν(ln δ -1 jpiq ) 2 ) ≤ exp(ν ′ (ln δ -1 ) 2 ). (4.22)
From [START_REF] Mandache | Exponential instability in an inverse problem for the Schrödinger equation Inverse Problems[END_REF] we have that n δs ≤ 8(1 + l δs ) 2d-2 , where n δs is the number of four-tuples (j, p, i, q) with max(j, i) ≤ l δs . Taking η to be big enough we get that

|Y | ≤ exp(ν ′ (ln δ -1 ) 2 ) n δs ≤ exp ν ′ (ln δ -1 ) 2 8(1 + C ′ ln δ -1 ) 2d-2
≤ exp η(ln δ -1 ) 2d . 

Proofs of the main results

In this section we give proofs of Theorem 2.3 and Theorem 2.4.

Proof of Theorem 2.3. Take v 0 ∈ L ∞ (B(0, 1/3)), ||v 0 || L ∞ (D) ≤ σ/3 and ǫ ∈ (0, σ/3). By Lemma 4.1, the set v 0 + X mǫβ has an ǫ-discrete subset v 0 + Z. Since for ǫ ∈ (0, σ/3) we have v 0 + X mǫβ ⊂ B ∞ , where B ∞ is the ball of centre 0 and radius 2σ/3 in L ∞ (B(0, 1/3)).

The set Y constructed in Lemma 4.3 is also δ-net for Λ(v 0 + X mǫβ ). We take δ such that 8δ = exp -ǫ -1 2m . Note that inequalities of (2.17) follow from

|v 0 + Z| > |Y |. (5.1)
In fact, if |v 0 + Z| > |Y |, then there are two potentials v 1 , v 2 ∈ v 0 + Z with images under Λ in the same X S,s -ball radius δ centered at a point of Y , so we get from (4.12) 

sup E∈S ||Φ 1 (E) -Φ 2 (E)|| H -s →H s ≤ 4||Λ v 1 ,E -Λ v 2 ,E || X S,s ≤ 8δ = exp -ǫ -1 2m . ( 5 
|v 0 + Z| = |Z| ≥ exp 2 -d-1 (µβ/ǫ) d/m (5.4) > > max exp 2 -d-1 (η m/d 2 3m /ǫ) d/m , exp 2 -d-1 (η m/d 2 m (2 ln 8) 2m ) d/m (5.3) ≥ |Y |.
(5.5)

Proof of Theorem 2.4. In a similar way with the proof of Theorem 2 of [START_REF] Mandache | Exponential instability in an inverse problem for the Schrödinger equation Inverse Problems[END_REF] we obtain that

(Φ mn (E) -Φ 0 (E)) f jp , f iq = 0 (5.6) for j, i ≤ n-1 2 
. The only difference is that instead of the operator -∆ we consider the operator -∆ -E. From (4.11), (4.17) and (5.6) we get

||Φ mn (E) -Φ 0 (E)|| H -s →H s ≤ 16ρ sup l≥n/2 (1 + l) 2s+d 2 -l ≤ c ′ 2 -n/4 .
(5.7)

The fact that ||v mn || C m (D) is bounded as n → ∞ is also a part of Theorem 2 of [3].

Bessel functions

In this section we prove Lemma 3.1, Lemma 3.2 and Lemma 3.3 about the Bessel functions.

Consider the problem of finding solutions of the form ψ(r, ω) = R(r)f jp (ω) of equation (1.1) with v ≡ 0 . We have that

∆ = ∂ 2 (∂r) 2 + (d -1)r -1 ∂ ∂r + r -2 ∆ S d-1 , (6.1) 
where ∆ S d-1 is Laplace-Beltrami operator on S d-1 . We have that

∆ S d-1 f jp = -j(j + d -2)f jp . (6.2) 
Then we have the following equation for R(r):

-R ′′ - d -1 r R ′ + j(j + d -2) r 2 R = ER. (6.3) Taking R(r) = r -d-2 2 R(r), we get r 2 R′′ + r R′ + Er 2 -j + d -2 2 2 R = 0. (6.4)
This equation is known as Bessel's equation. For E = k 2 = 0 it has two linearly independent solutions J j+ d-2

2

(kr) and Y j+ d-2

2

(kr), where

J α (z) = ∞ m=0 (-1) m (z/2) 2m+α Γ(m + 1)Γ(m + α + 1) , (6.5) 
Y α (z) = J α (z) cos πα -J -α (z) sin πα for α / ∈ Z, (6.6) 
and

Y α (z) = lim α ′ →α Y α ′ (z) for α ∈ Z. (6.7)
The following Lemma is called the Nielsen inequality. A proof can be found in [START_REF] Watson | A Treatise on the Theory of Bessel Functions[END_REF] Lemma 6.1.

J α (z) = (z/2) α Γ(α + 1) (1 + θ), |θ| < exp |z| 2 /4 |α 0 + 1| -1, (6.8) 
where |α 0 + 1| is the least of numbers |α + 1|, |α + 2|, |α + 3|, . . . .

Lemma 6.1 implies that r -d-2 2 J j+ d-2 2 
(kr) has removable singularity at r = 0. Using the boundary conditions R(1) = 1 and R(1) = 0, we obtain assertions of Lemma 3.1 and Lemma 3.2, respectively. Proof of Lemma 3.3 Formula (3.4) follows immediately from Lemma 6.1. We have from [START_REF] Watson | A Treatise on the Theory of Bessel Functions[END_REF] that J ′ α (z) = J α-1 (z) - 
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Using well-known equality Γ ′ (x)/Γ(x) < ln x, x > 1, see [START_REF] Abramowitz | Psi (Digamma) Function. §6.3 in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables[END_REF], we get following estimation for the coefficients b m are defined in (6.13). (6.15) Formula (3.6) follows from (6.12) and (6.15). We have from [START_REF] Watson | A Treatise on the Theory of Bessel Functions[END_REF] that 

|b
Y ′ α (z) = Y α-1 (z) - α z Y α (z). ( 6 

Theorem 2 . 3 .

 23 .15) We use notations: |A| is the cardinality of a set A, [a] is the integer part of real number a and (r, ω) ∈ R + × S d-1 are polar coordinates for rω = x ∈ R d . The interval I = [a, b] will be referred as σ-regular interval if for any potential v ∈ L ∞ (D) with ||v|| L ∞ (D) ≤ σ and any E ∈ I condition (1.4) is fulfilled. Note that for any E ∈ I and any Dirichlet eigenvalue λ for operator -∆ in D we have that |E -λ| ≥ σ. (2.16) It follows from the definition of σ-regular interval, taking v ≡ E -λ. M.I. Isaev For σ > 0 and dimension d ≥ 2 consider the union S = K j=1 I j of σ-regular intervals.

  is complete orthogonal system (in the sense of L 2 ) in the space of solutions of equation (1.1) in D ′ = B(0, 1) \ B(0, 1/3) with v ≡ 0, E = k2 and boundary condition ψ| r=1 = 0. Lemma 3.3. For any C > 0 and integer d ≥ 2 there is a constant N > 3 depending on C such that for any integer n ≥ N and any |z| ≤ C 1 2

  .13) Note that ψ(E) -ψ 0 (E) is the solution of equation (1.1) in D ′ = B(0, 1) \ B(0, 1/3) with potential v 0 ≡ 0 and boundary condition ψ| r=1 = 0. From Lemma 3.2 we have that

  24) and combining (3.22) and (3.23) we obtain that

Lemma 4 . 2 .

 42 For the interval I = [a, b] with a < b and γ > 0 consider ellipse W I,γ ∈ C

. 6 )

 6 For given f (z) in case of n ≤ n δ we take d n to be one of the closest elements of Y δ to c n . Since |c n | ≤ 2πC, this ensures |c n -d n | ≤ 2δ ′ . For n > n δ we take d n = 0. We have then|c n -d n | ≤ 6π -2 (n + 1) -2 δ.(4.7)

  .18) where the constant C ′ depends only on s, d and I. Denote Y jpiq is δ jpiq -net from Lemma 4.2 with constant C = sup l (1 + l) 2s+d 4ρ 2 -l , where δ jpiq = (1 + max(j, i)) -2s-d δ. We set Y = {(a jpiq (E)) | a jpiq (E) ∈ Y jpiq for max(j, i) ≤ l δs , a jpiq (E) = 0 otherwise} . (4.19)

I

  j assertion follows immediately, taking η to be in K times more and Y as composition (Y 1 , . . . , Y K ) of δ-nets for each interval.

For α = n + 1 / 2 (- 1 )(- 1 )- 1 π n- 1 m=0

 12111 α big enough we get|J ′ α (z)| ≤ |J α-1 (z)| + | we have Y α = (-1) n+1 J -α .Consider its series expansion, see(6.5).J -α (z) = ∞ m=0 m (z/2) 2m-α m! Γ(m -α + 1) = ∞ m=0 c m (z/2) 2m-α . (6.11) Note that |c m /c m+1 | = (m + 1)|m -α + 1| ≥ n/2.As corollary we obtain that|Y α (z)| = (|z|/2) -α |Γ(-α + 1)| (1 + θ) = 1 π (|z|/2) -α Γ(α)(1 + θ), m (z/2) 2m+n m!(m + n)! Γ ′ (m + 1) Γ(m + 1) + Γ ′ (m + n + 1) Γ(m + n + 1) = = 2 π J n (z) ln z 2 cm (z/2) 2m-n -1 π ∞ m=0b m (z/2) 2m+n .(6.13)

  Note also that |c m /c m+1 | = (m + 1)(n -m -1) ≥ n/2. Combining it with (6.13) and (6.14),

	m | <	ln(m + 1) + ln(n + m + 1) m!(n + m)!	<	2(n + m) m!(n + m)!	<	1 m!	.	(6.14)
	we obtain that							
	|Y n (z)| = (|z|/2) 2n | ln(z/2)| Γ(n) + ≤ 3π |θ| ≤ 3 max (1, (|z|/2) 2n+1 ) 1 (|z|/2) -n Γ(n)(1 + θ), π n-1 m=1 |z| 2 2n 2m + (|z|/2) 2n Γ(n) Γ(n) + |z| 2 /2n 1 -|z| 2 /2n + (|z|/2) 2n e |z| 2 /4 ∞ (|z|/2) 2m m! m=0 Γ(n) .	≤

  Combining reqirements for n, stated above, we get that for any n ≥ N + 1 all inequalities of Lemma 3.3 are fullfiled, where N such that

	≤	3 2π	(|z|/2) -α+1 Γ(α -1) +	α |z|	α z (|z|/2) α Γ(α) ≤ Y α (z)| ≤ 3 π (|z|/2) -α-1 Γ(α + 1).	(6.17)
			          	N > 3, exp C 2 /4 N + 1 3π max 1, (C/2) 2N +1 Γ(N) -1 ≤ 1/2, +	C 2 2N -C 2 +	Γ(N) (C/2) 2N e C 2 /4	≤ 1/2.	(6.18)

.16)

Taking n big enough, we get that

|Y ′ α (z)| ≤ |Y α-1 (z)| + |
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