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Abstract

The following open problem is presented and motivated : Are there
physical systems whose state spaces do not compose according to ei-
ther the Cartesian product, as classical systems do, or the usual tensor
product, as quantum systems do ?

"History is written with the feet ...”

Ex-Chairman Mao

1. Non-Cartesian Systems

The state spaces of systems within Classical Mechanics compose ac-
cording to the Cartesian product. Namely, let XY be two such sys-
tems, each with the respective state spaces given by the sets E, F',
then the state space of the composite system ” X andY” is the Carte-
sian product B x F.



Here one can note that composing classically X and Y need not nec-
essarily mean that the two systems shall interact, or that the states of
the two systems may enter into a correlation. And if they do not, then
the state space of ” X andY” will be the whole of ¥ x F. However,
if they interact, and certain states of the component systems become
correlated, then the state space of "X andY” can in fact be a strict
subset of £ x F.

Except for that classical way of composing systems, it appears that
there is only one alternative known, namely, the quantum way of sys-
tem composition. Namely, let X, Y be two quantum systems, each
with the respective state space given by the Hilbert spaces F, I, then
the state space of the composite quantum system "X andY” is the
tensor product E Q) F.

Now, the considerable novelty in the non-Cartesian quantum way
of composing systems is that the resulting quantum composite state
space Q) I is significantly larger than the classical composite state
space F x F. Indeed, if for instance F and F' are finite dimensional
Hilbert spaces, with the respective dimension n and m, then the di-
mension of F @) F' is no less than n.m, while the dimension of £ x F
is only n + m. Furthermore, one has the injective mapping

(1.1) ExF>(zy — z2Qye EQF

and for convenience of notation, we shall often identify the Cartesian
product E x F with its image through the injective mapping (1.1) in
the tensor product £ Q) F.

Now, the considerable number of composite states in

(1.2) (EQF)\(ExF)

which therefore do not correspond to any pair of component states
r € F and y € F, and thus provide a typical quantum convenient
feature that does not existent in the classical situation. This wealth
of composite states



(1.3) ze(EQRQF)\(EXxF)
which are, therefore, not of the form
(14) z=zQy

for any x € F and y € F, are called entangled. And as noted lately,
they constitute a major and critically important resource in quantum
computation and information.

In usual terms in quantum physics, entanglement is a property of com-
posite states

(15) 2= icq n®y € (EQF)\(EXxF)

where x1,...,2, € E,y1,...,yr € F, of not being of the particu-
lar simple form (1.4), thus of not admitting £ = 1 in (1.5), in other
words, of not belonging to F x F.

As for correlations, they are about the various z; and y; in (1.5) which
are involved in a situation that is not like in (1.4).

In other words, correlation of states x; € F and y; € F' can only oc-
cur relative to a composite state z € F' @) F' in which these states are
components.

By the way, x € E and y € F' in (1.4) are not correlated in the com-
posite state z € EQ) F.

2. Is Tensor Product the Only Non-Cartesian Composition
of Physical Systems ?

Tensor product may so far be the only known way non-Cartesian sys-
tem compose, yet it has a rather strange history in quantum theory.
The following citation from a recent paper, [2], of several physicists
involved in state of the art research in quanta may be quite illustrative
in this regard :



"In the beginning of modern quantum theory, the notion of entangle-
ment was first noted by Einstein, et.al., [3], and by Schrdédinger, [8].
While in those days quantum entanglement and its predicted physical
consequences were - at least partially - considered as an un-physical
property of the formalism - a 'paradox’ - the modern perspective on
this issue is very different. Now quantum entanglement is seen as an
experimentally verified property of nature, that provides a resource
for a vast variety of novel phenomena and concepts such as quantum
computation, quantum cryptography, or quantum teleportation.”

And the fact remains that, even at present, by far most of the 101
Quantum Mechanics courses do not mention entanglement ...

As for the possibility of the existence of physical systems which are
non-Cartesian and at the same time non-quantum either, a surprising
behaviour of a classical system presented in [1] may be worth attention.

In order to make a few first preparatory steps towards the study of
the possible existence of physical systems which are non-Cartesian
and at the same time non-quantum, in [4-7] a study was started on
the deeper, simpler and more general roots of tensor products, and
therefore, of entanglement as well. And as it turns out, mathemati-
cally there are indeed considerable generalizations of tensor products
and entanglement, far beyond all algebraic structures. In particular,
any finite or infinite family of sets of state spaces F), with A € A,
can be composed in infinitely many different rather natural ways, and
according to one’s choice, into a generalized tensor product &), £,
and the generalization of (1.1) holds, with an injective mapping

(2.1)  Tlhea Bx 3 (@)rea = @xea Tx € Qpcp B

Furthermore, as in (1.2), there is in general a large amount of com-
posite states in

(22)  (Qaea Bx)\ (ILiea B2)

which thus do not correspond to any single family of component states
(wa)rer € [Ihen Ea- Therefore, the composite states in (2.2) can be



seen as the generalization of the usual entangled states in the sense of
quanta.

We note that in (2.1) and (2.2), and similar to section 1, we made
the identification of the Cartesian product [[,., £\ with its image in
@ ea Ex through the injective mapping in (2.1).

3. Open Problem

The above lead to the following

Open Problem :

Are there physical systems whose state spaces do not com-
pose according to either the Cartesian product, as classical
systems do, or the usual tensor product, as quantum sys-
tems do ?
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