
HAL Id: hal-00544901
https://hal.science/hal-00544901v1

Submitted on 9 Dec 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficient Scheduling of Conditional Behaviors for
High-Level Synthesis

Apostolos Kountouris, Christophe Wolinski

To cite this version:
Apostolos Kountouris, Christophe Wolinski. Efficient Scheduling of Conditional Behaviors for High-
Level Synthesis. ACM Transactions on Design Automation of Electronic Systems, 2002, 7 (3), pp.380-
412. �10.1145/567270.567272�. �hal-00544901�

https://hal.science/hal-00544901v1
https://hal.archives-ouvertes.fr

Efficient Scheduling of Conditional Behaviors
for High-Level Synthesis

APOSTOLOS A. KOUNTOURIS
Mitsubishi Electric ITE-TCL
and
CHRISTOPHE WOLINSKI
IRISA

As hardware designs get increasingly complex and time-to-market constraints get tighter there
is strong motivation for high-level synthesis (HLS). HLS must efficiently handle both dataflow-
dominated and controlflow-dominated designs as well as designs of a mixed nature. In the past
efficient tools for the former type have been developed but so far HLS of conditional behaviors lags
behind. To bridge this gap an efficient scheduling heuristic for conditional behaviors is presented.
Our heuristic and the techniques it utilizes are based on a unifying design representation appropri-
ate for both types of behavioral descriptions, enabling the proposed heuristic to exploit under the
same framework several well-established techniques (chaining, multicycling) as well as conditional
resource sharing and speculative execution which are essential in efficiently scheduling conditional
behaviors. Preliminary experiments confirm the effectiveness of our approach and prompted the
development of the CODESIS HLS tool for further experimentation.

Categories and Subject Descriptors: J.6 [Computer-Aided Engineering]: Computer-Aided De-
sign (CAD); B.5.2 [Register-Transfer-Level Implementation]: Design Aids—Automatic synthe-
sis, Optimization

General Terms: Design, Experimentation

Additional Key Words and Phrases: Design automation, high level synthesis (HLS), scheduling,
conditional behavior

1. INTRODUCTION

In spite of the fact that high-level synthesis (HLS) methodologies have many
advantages with respect to register-transfer-level (RTL) ones they still lack
general industrial acceptance. One of the main reasons for this is a gap in the
quality of the synthesized results between dataflow- and controlflow-dominated
behavioral descriptions. In much of the previous work on HLS these two
types of design descriptions have been treated separately. A result of such
separation is that efficient techniques have been developed for the HLS of

Authors’ addresses: A. A. Kountouris, Mitsubishi Electric ITE-TCL, Immeuble Germanium, 80,
Av. des Buttes de Coesmes, 35700 Rennes, France; email: kountouris@tcl.ite.mee.com; C. Wolinski,
IRISA, Rennes, France.
Permission to make digital /hard copy of part or all of this work for personal or classroom use is
granted without fee provided that the copies are not made or distributed for profit or commercial
advantage, the copyright notice, the title of the publication, and its date appear, and notice is given
that copying is by permission of the ACM, Inc. To copy otherwise, to republish, to post on servers,
or to redistribute to lists, requires prior specific permission and/or a fee.
C© 2002 ACM 1084-4309/02/0700-0380 $5.00

ACM Transactions on Design Automation of Electronic Systems, Vol. 7, No. 3, July 2002, Pages 380–412.

Efficient Scheduling of Conditional Behaviors • 381

dataflow-dominated behavioral descriptions but HLS of controlflow-dominated
descriptions still lags behind. This fact has stimulated considerable research
work in recent years. Also, as indicated by the excellent survey of Lin [1997], the
motivation behind the development of HLS is stronger than ever given the even
tighter time-to-market constraints in combination with the ever-increasing
system complexity at both the algorithmic as well as the implementation
levels.

To bridge this gap in HLS efficiency between data- and control-dominated
designs, in this article a twofold approach is proposed: a unifying intermediate
design representation is adopted called HCDG for hierarchical conditional de-
pendency graph, and, based on this design representation heuristics for HLS
activities/tasks have been developed to efficiently handle descriptions with com-
plex conditional structure as well. The main reason for using the HCDG is to
avoid the inconveniences of traditional design representations in representing
complex conditional behaviors. Furthermore, thanks to the HCDG dataflow na-
ture, dataflow-intensive behavioral descriptions can also be efficiently handled
by existing well-established techniques and heuristics.

Although the focus of the article is on the scheduling problem, it is commonly
agreed that the intermediate design representation is intimately related to the
quality of the scheduling results. The design representation is also important for
the simplification of the engineering of HLS techniques used to efficiently carry
out the HLS design activities (e.g., scheduling/optimization, datapath/controller
synthesis, allocation, and binding). HLS of control-intensive designs has long
been tied to CDFG-based representations. The inherent constraints of such
representations have been more or less countered by the development of opti-
mization techniques and by the adoption of extensions to the CDFG or GFG
models. In many cases key ideas adopted in HLS were suggested by research
in the compiler arena. We strongly believe that in the future dataflow-oriented
representations with more elaborate control representations will prove indis-
pensable for substantially improving HLS efficiency. At the same time such
representations will provide a unified framework for the HLS of both control-
and data-dominated systems as well as systems mixing both types of behaviors.
Through the study of the scheduling problem this article aims at demonstrat-
ing that all previously developed CDFG-based techniques are applicable to a
dataflow-oriented representation; in our case the HCDG.

Before going further it must be underlined that previous work by others has
been instrumental in the development of our understanding of the problem as
well as the involved techniques in working out efficient solutions, therefore so
this work is summarized in the following section.

1.1 Previous Work

Scheduling behaviors having a complex conditional structure have been thor-
oughly investigated in previous research work. This is mainly because tra-
ditional DFG-based scheduling heuristics are not adequate for efficiently
handling such descriptions as explained in Bergamaschi et al. [1997]. Ap-
proaches better adapted to this kind of problems have been proposed.

ACM Transactions on Design Automation of Electronic Systems, Vol. 7, No. 3, July 2002.

382 • A. A. Kountouris and C. Wolinski

These include both heuristics (e.g., Bergamaschi et al. [1997], Kim et al.
[1991], Wakabayashi and Yoshimura [1992]; Tseng et al. [1988], and
Lakshminarayama et al. [1999]) as well as exact methods (e.g., Redivojevic
and Brewer [1995, 1996] and Camposano [1991]1). In these approaches sev-
eral scheduling optimization techniques were developed. The quality of high-
level synthesis results depends heavily on the ability of the employed schedul-
ing algorithms to exploit conditional resource sharing [Kim at al. 1991;
Wakabayaschi and Yoshimura 1989; Radiovojvic and Brewer 1995; Camposano
1991; Huang et al. 1993] and speculative execution (also called preexecution)
possibilities [Wakabayaschi and Yoshimura 1992; Radivojevic and Brewer 1996;
Lakshminarayama et al. 2000; Huang et al. 1993]. Node duplication has also
been proven useful [Wakabayaschi and Yoshimura 1992] in optimizing schedul-
ing results. In resource-constrained scheduling these techniques permit bet-
ter utilization of the hardware resources in the datapath and obtaining better
schedules (lower number of control steps). This results in shorter execution
paths and less control logic. In time-constrained scheduling such techniques
also help obtain shorter schedules using less hardware resources. Furthermore,
exploiting speculative execution results in optimized controller synthesis Dos
Santos et al. 2000, Kifli et al. 1995.

At this point it is interesting to underline the commonalities in the re-
search areas of conditional behavior scheduling for HLS and compilation
for instruction-level-parallel (ILP) architectures. The resource-constrained
scheduling problem in HLS is essentially the same as scheduling for VLIW
or other ILP architectures. Work in Dos Santos et al. [2000] generalizes the
concept of code motions to counter the inherent limitations of CDFG and ba-
sic block-based representations in exploiting parallelism across basic block
boundaries and thus ameliorate scheduling results. For generalized code motion
techniques to control the compensation code, introduced to preserve program
semantics, were developed in Dos Santos [1997]. Code motion may result in
speculative execution and node duplication due to the introduction of compen-
sation code. The concept of code motion was developed by research in compila-
tion seeking to increase ILP. Its origins can be traced to percolation scheduling
Nicolau 1985 and synthesis Potasman et al. 1990 as well as trace scheduling
and its extensions Fisher 1981. The problem of more general code motion has
also been addressed in the Trailblazing approach Novack and Nicolau 1993
for scheduling for ILP processor architectures. The effectiveness of this ap-
proach has its roots in the Hirarchical task graph (HTG) representation pro-
posed in Girkar and Polychronopoulos [1992] addressing issues in automatic
parallelism extraction from sequential descriptions. Trace scheduling also in-
troduced the important concept of using execution profiling statistics in order
to account for the conditional nature of execution. This concept has been used in
Lakshminarayama et al. [1999] for HLS scheduling.

1Camposano [1991] refers to path-based sheduling (PBS); whether PBS can be considered as an
exact method depends on the particular formulation of the scheduling problem. Radivojevic in his
thesis as well as in published work with Brewer, explicitly qualifies PBS as a heuristic and the
discussion in Bergamaschi et al. [1997 Section B.3.b] also corroborates this.

ACM Transactions on Design Automation of Electronic Systems, Vol. 7, No. 3, July 2002.

Efficient Scheduling of Conditional Behaviors • 383

An important issue that has been either explicitly [Chaiyakul et al. 1992;
Bersamaschi 1998] or implicitly [Lin 1997] underlined in previous research
work concerns the effects of the syntactic variance of the input descriptions on
the synthesis results. These negative effects intervene in two distinct but inter-
related point: mutual exclusiveness detection (identification) and the schedul-
ing levels. For instance, CDFG-based techniques that detect mutual exclusive-
ness based on the struc-ture of the input description (e.g., Kim et al. [1994] and
Wakabayashi and Yoshimura [1992]) may produce quite different schedules
for semantically equivalent but syntactically different input descriptions due
to the variability of the amount of detected mutual exclusiveness [Chaiyakul
et al. 1992; Li and Gupta 1998]. Furthermore, CFG-based scheduling tech-
niques (e.g., PBS in Camposano [1991]) are very sensitive to the statement
order in the input description. The extension in Bergamaschi et al. [1997] alle-
viates this problem but only within the limits of basic blocks. Several techniques
have been employed, such as definition of coding style guidelines [SYNOPSYS],
graph restructuring techniques before scheduling in CFG-based approaches
[Bergamaschi et al. 1997; Huang et al. 1993], and finally, use of dataflow-
oriented design representations and presynthesis transformations to obtain
partially unique (canonical) design representations [Juan et al. 1994; Li and
Gupta 1998; Kountouris and Wolinski 1999a]. The first approach of coding
style guidelines becomes quite difficult to apply as designs get larger and more
complex. In some sense it also defeats the purpose of high-level synthesis by
necessitating that the designer produce input descriptions coping with the lim-
itations of existing tools, implying a certain knowledge of the employed algo-
rithms, as explained in Chaiyakul et al. [1992]. The second approach of graph
restructuring can be considered as a presynthesis transformation, but in the
context of CFG-based scheduling complex techniques are needed to evaluate
when such restructuring is to be applied. Even though these two approaches
are not of extreme elegance, they correspond to pragmatic solutions in the
context of existing high-level synthesis systems [SYNOPSYS; Bergamaschi
and Kuehlmann 1993]. The third approach represents a more elegant alter-
native with the potential to better scale with the size and complexity of the
handled designs. Using dataflow-oriented representations and formal graph
transformations coupled with extensive mutual exclusiveness detection tech-
niques [Juan et al. 1994; Kountouris and Wolinski 1999a], permits coping with
syntactic variance at both the mutual exclusiveness detection and schedul-
ing levels. Finally, in recent work the Wavesched approach [Lakshminarayama
et al. 1999]. focuses on efficiently scheduling descriptions containing loop struc-
tures. In a sense this approach offers a complementary set of optimization
techniques (i.e., loop unrolling and handling of concurrent loops) to further
ameliorate the scheduling results. With its extension in Lakshminarayama
et al. [2000], speculative execution is also exploited and considerable im-
provement with respect to Lakshminarayama et al. [1999] is demonstrated.
However the Wavesched approach suffers from the effects of syntactic vari-
ance as there is no advanced mechanism to handle conditional resource shar-
ing and, depending on the description style, different hints are given to the
scheduler.

ACM Transactions on Design Automation of Electronic Systems, Vol. 7, No. 3, July 2002.

384 • A. A. Kountouris and C. Wolinski

From the above discussion it is clear that in order to efficiently schedule
conditional behaviors and optimize the resulting controllers, we have to exploit
conditional resource sharing [Kim et al. 1991; Wakabayashi and Yoshimura
1989; Radivojevic and Brewer 1995; Camposano 1991] and speculative exe-
cution [Wakabayshi and Yoshimura 1992; Radivojevic and Brewer 1996; Dos
Santos et al. 2000; Kifli et al. 1995; Lakshminarayama et al. 2000], shorten
path lengths using node duplication techniques [Wakabayshi and Yoshimura
1992], and last but not least cope with syntactic variance [Chaiyakul et al.
1992]. All these techniques may be regarded as specific types of code motions
as formulated in Dos Santos et al. [2000]. Finally, once noniterative conditional
behaviors can be efficiently handled, scheduling techniques must consider de-
scriptions with iterative constructs that present further optimization opportu-
nities as explained in Lakshminarayama et al. [1999, 2000].

This by no means exhaustive review of previous work permits the identi-
fication of all the useful techniques that need to be considered to efficiently
address conditional behavior scheduling issues. Several of the shortcomings of
previous work are related to the inherent constraints of the adopted design rep-
resentations. In this article it is shown that using the HCDG representation
alleviates some of these limitations and that it is straightforward to combine
all the aforementioned techniques and enjoy their consolidated benefits.

1.2 Article Outline

In Section 2 background information on the HCDG representation is given. In
particular, in Section 2.1 the HCDG is compared to other similar representa-
tions. A small benchmark example used in the rest of the article for illustration
is given. Details are also given on the graph transformations and the HCDG
mutual exclusiveness identification and representation capabilities. These el-
ements are essential for obtaining optimized scheduling results. In Section 3
the HCDG-based list-scheduling heuristic is presented in detail. It efficiently
handles conditional behaviors by combining many scheduling techniques into
the same framework and by defining a novel probabilistic priority function. In
Section 4 experimental results on known benchmarks are given; Section 4.1
gives a direct comparison with other scheduling approaches based both on ex-
perimental results and qualitative arguments. Finally, in Section 5 conclusions
are drawn and topics of future work are identified.

2. HIERARCHICAL CONDITIONAL DEPENDENCY GRAPH

There is some agreement that design representation is not a mature topic in
HLS when intensive dataflow is combined with complex controlflow. The legacy
of CDFG-based approaches is strong, however, the HLS community is certainly
not looking forward to seeing yet another flavor of CDFG with special control
nodes (which, by the way, is not the case with HCDGs). Our answer to this is a
representation that is part of the research continuum and as such it builds upon
and extends previous work. It also introduces two new elements: a hierarchical
control representation and the explicit representation of both data and control

ACM Transactions on Design Automation of Electronic Systems, Vol. 7, No. 3, July 2002.

Efficient Scheduling of Conditional Behaviors • 385

dependencies with the possibility of incrementally rearranging the latter in
order to provide maximal parallelism exposure.

The HCDG is an elaborate representation suitable for designs where data
and control flow are entangled together within a complex design. The repre-
sentation is more general than traditional DFG or CFG representations and
simpler than most CDFG representations in the literature. Furthermore in a
hardware/software codesign context HCDGs can adequately accommodate sub-
systems targeting different implementation domains (software or hardware) in
a unified framework. For a custom hardware implementation, being able to ex-
press the maximum parallelism at the design representation stage is essential
since such implementations are potentially more parallel than a software im-
plementation executing on a fixed hardware platform. However, this last point
should be taken with caution since exploiting parallelism is also essential in
deriving efficient software for ILP architectures. In the rest of the article a case
is made in favor of the HCDG by considering the HLS scheduling problem, but
the HCDG is much more than just a convenient support for heuristics.

Although in the proposed representation many of its constituent concepts
were elaborated on in previous work, innovation stems from combining all of
them in a coherent framework. In order to better situate the HCDG in the design
representation landscape and see its merits, some comparative discussion is
needed.

2.1 The HCDG Compared to Other Design Representations

The shortcomings of traditional design representations were initially under-
lined by others in Chaiyakul et al. [1992] and in Bergamaschi et al. [1997];
in our previous work [Kountouris and Wolinski 1999a, b] it was thoroughly
explained and experimentally demonstrated why the adoption of a new inter-
mediate representation, such as the HCDG is a good idea in the context of
high-level synthesis to avoid the negative effects of syntactic variance. The
HCDG is a special kind of directed graph that represents both data and control
dependencies from a dataflow perspective. Although the HCDG conceptually
has many similarities to CDFG-based models, its main difference is a hierar-
chical control representation that permits us to safely and efficiently perform
HLS activities (i.e, scheduling, resource allocation, binding, etc.).

HCDG represents control and data dependencies at the same level of de-
tail from a pure dataflow perspective. Thus, for a description having no control
flow, the HCDG essentially reduces to a DFG. Therefore, it can be said that
HCDG includes the expressive power of DFGs for dataflow-dominated descrip-
tions and well-established DFG techniques and algorithms are readily appli-
cable on HCDGs. Compared to CFGs, the HCDG are also more general in the
sense that control flow does not prime over dataflow and both types of de-
pendencies are node (operation) precedence constraints. In HCDGs there is no
predefined node order dictated by the input description and thus we have the
possibility of choosing the most appropriate order according to the scheduling
optimization criteria. In this sense HCDGs are different from hierarchical task
graphs (HTGs) [Girkar and Polychronopoulos 1992], which also prime control

ACM Transactions on Design Automation of Electronic Systems, Vol. 7, No. 3, July 2002.

386 • A. A. Kountouris and C. Wolinski

over data dependencies. In addition, HCDGs represent a predicated static sin-
gle assignment (P-SSA) form [Carter et al. 1999] of a program whereas this
is not the case of HTGs. SSA, used in VLIW compilation, removes false data
dependencies across basic blocks that find their way into HTGs or other types
of controlflow-based representations. In respect to CDFGs there are conceptual
similarities and essential differences. For instance, fork nodes that define basic
block limits do not explicitly exist and thus ad hoc grouping (based on input
description) of operations into basic blocks is avoided. Thus by using HCDGs
we have a lot more flexibility in performing global dataflow analysis and discov-
ering parallelism across basic blocks (in CDFG terms). This in turn facilitates
considerably the application of optimizing graph transformations such as global
code motions and the associated bookkeeping. For instance, Dos Santos et al.
[2000] couple the CDFG to a BasicBlock-CFG in order to manage the com-
plexities associated with global code motions and bookkeeping in the CDFG
context. It is shown later that global code motions have equivalent represen-
tations in the HCDG context and essentially consist of a mix of control depen-
dency rearrangement (for lazy and speculative execution) and node replication
transformations.

Another point of comparison with other design representations is the special
control representation adopted in the HCDG. In previous work special con-
trol representations have also been defined and associated either with CFG
[Bergamaschi et al. 1992], CDFG Radivojevic and Brewer [1995, 1996], assign-
ment decision diagrams (ADD) [Juan et al. 1994], or other design representa-
tions proposed in the compiler literature such as hierarchical task graphs with
their execution tags [Polychronopoulos 1991]. Conceptually the control model
of Radivojevic and Brewer [1995, 1996], also used by the global scheduling ap-
proach of Dos Santos et al. [2000], is similar to ours. The originality in the HCDG
approach is the derivation of the control hierarchy (in a sense a hierarchical
BDD) representing guard inclusion relations which is important information
in optimizing the result of a variety of HLS activities. Perhaps the most con-
ceptually similar (but quite different in terms of implementation as well as
capabilities) to HCDG is the ADD [Chaiyakul et al. 1992] coupled with the CG
[Juan et al. 1994]. The major difference is that the CG has no explicit hierarchy
and since it is not based on BDDs it also has some inherent inefficiencies. In
addition, since control dependencies in the ADD remain implicit, optimizing
transformations for control dependency rearrangement during scheduling are
not obvious to engineer.

2.2 HCDG Overview

Even though the focus of this article is not on the HCDG and its merits as a
design representation, some basic notions that will help in understanding how
the HCDG is used are needed. In this section the HCDG is briefly presented
by means of a simple example which is used throughout the rest of the article
for illustration purposes. A brief overview of the HCDG construction and mu-
tual exclusiveness issues follows next. More details on the formal definitions
of the HCDG can be found in Le Guernic et al. [1991], Besnard [1991], and

ACM Transactions on Design Automation of Electronic Systems, Vol. 7, No. 3, July 2002.

Efficient Scheduling of Conditional Behaviors • 387

Guard Boolean Definition Guard Boolean Definition

H1 1 H6

H2 H7

H3 H8

H4 H9

H5 H10

y T1⋅

y y T1⋅

y y T1⋅ y T1 x⋅ ⋅+

y y T1⋅+ y T1 x⋅ ⋅

y y T1⋅ y T1 x⋅ ⋅+ + y T1 x⋅ ⋅

process jian(a, b, c, d, e, f, g, x, y)
in port a[8], b[8], c[8], d[8], e[8], f[8], g[8];
in port x, y;
out port u[8], v[8];
{
static T1, T2[8], T3[8], T4[8], T5[8];

T1 = (a +1 b) < c;

T2 = d +2 e;

T3 = c +3 1;

if (y) {
if (T1)

u = T3 +4 d; /* u1 */

else if (!x)
u = T2 +5 d; /* u2 */

if (!T1 && x)
v = T2 +6 e;

} else {
T4 = T3 +7 e;

T5 = T4 +8 f;

u = T5 +9 g; /* u3 */

}
}

H1

H2

H6

H10

H9

H3

Fig. 1. Jian benchmark description (left) and guard definitions (right).

Amagbegnon [1995]. Kountouris and Wolinski [1999a, b] give more details on
the effective use of guard information in HLS activities.

Our example, taken from Li and Gupta [1998], exhibits a high conditional
behavior. In the following it is referred to as the jian benchmark. Its textual de-
scription is shown on the left of Figure 1. The table on the right of Figure 1
lists the Boolean conditions, explicitly or implicitly present in the descrip-
tion, under which operations are executed and values are assigned to vari-
ables. A symbolic name Hi is given to each condition. For instance, opera-
tion +4 is executed under H6(y ·T1) and variable u is assigned a value under
H5 (ȳ + y ·T1 + y · T̄1 · x̄) which represents all three possible assignments to u
(H4, ȳ+ y ·T1, is simply a factor of H5). As explained later these conditions are
guards and are organized in a hierarchy through a Boolean factorization pro-
cess. In Figure 2, the textual benchmark description was parsed into an HCDG.
Some details on the HCDG construction is given in Section 2.3. To avoid clut-
tering Figure 2, guard details are shown separately in Figure 3.

In the HCDG graphical representation graph nodes are represented by rect-
angles and ovals. Rectangles correspond to guard condition nodes and ovals
to operation nodes (I/O, computation, data multiplexing, and storage elements
with either register or transparent latch semantics). Each operation node con-
tains the operation symbol. I/O nodes have their names prefixed by “?” and “!,”
respectively. Guards are identified by the guard name and have a dependency
from the subgraph corresponding to the Boolean expression defining them.
Graph edges are precedence constraints (dependencies) on the nodes shown
by dashed and solid arrows which represent control and data dependencies,

ACM Transactions on Design Automation of Electronic Systems, Vol. 7, No. 3, July 2002.

388 • A. A. Kountouris and C. Wolinski

Fig. 2. HCDG of the jian benchmark; guard details are shown separately.

Fig. 3. Guard dependency graph (left) and guard hierarchy (right).

ACM Transactions on Design Automation of Electronic Systems, Vol. 7, No. 3, July 2002.

Efficient Scheduling of Conditional Behaviors • 389

respectively. The former indicate the values of the nodes that need to be com-
puted before the value of another node is computed, and the latter indicate
which conditions need to evaluate to true before a data value can be computed
(and considered as valid). Each node has a control dependency from its guard.
Both HCDG nodes and edges are labeled by guards.

The HCDG obeys the static single assignment principle. For instance, in
Figure 2 the data multiplexing node u (shown as a triangle) is introduced to
enforce the single assignment principle for variable u (in the behavioral descrip-
tion) which has multiple definitions (u1, u2, u3) under mutually exclusive con-
ditions (guards H6, H10, H3, respectively). In this example we see that guards
can be defined by input Boolean variables (i.e., the true/false outcome of y
defines H2, H3 computed Boolean variables (i.e., the result of the ”<” node de-
fines H6, H7 which are under H2, or composite Boolean expressions defined by
means of other simpler guard Boolean definitions (e.g., H4 which is defined as
the Boolean sum of H3 and H6). In Figure 1 (right) the resulting guard Boolean
definitions are given.

Guards, as briefly explained earlier, are a special type of node representing
Boolean conditions that guard the execution of nodes operating on the data.
In a discrete-time model where time is considered as an infinite sequence of
logical instants, a guard is considered as the set of logical instants that the
Boolean condition defining it evaluates to true. The theoretical foundations
of the HCDG consider guards as sets and guard formulas as the application
of set operations on them. Equivalent representations of guard formulas as
Boolean functions can be obtained and vice versa [Amagbegnon 1995]. Guards
are equivalence classes of the HCDG nodes, meaning that nodes labeled by the
same guard are active (carry a value) at the same logical instants. What is
important is that inclusion relations can be determined on guards. Based on
this inclusion relation it can be said that a guard occurs more or less frequently
than another guard. Guards are organized in a treelike guard hierarchy (GH)
which represents these inclusion relations.

Inclusion Relation: Lets denote by hi the Boolean function corresponding to
guard Hi.hi evaluates to true whenever Hi is present and otherwise to false. The
inclusion relation represented by the treelike structure of the guard hierarchy
simply states that

∀(Hj ∈ descendants(Hi))⇒ Hj ⊂ Hi.

In terms of their Boolean definitions this translates to the implication relation:

h j = true⇒ hi = true.

In addition, inclusion can be extended to the following cases.

Hk = Hi∪Hj ⇒ Hi ⊂ Hk , Hj ⊂ Hk and Hk = Hi∩Hj ⇒ Hk ⊂ Hi, Hk ⊂ Hj ,

where the set operators union and intersection correspond to Boolean and and
or, respectively.

Such information is important in order to triangularize a larger number of
systems of guard equations than would be possible by using a rewriting sys-
tem based on the axioms of Boolean algebra [Besnard 1991]. In Amagbegnon

ACM Transactions on Design Automation of Electronic Systems, Vol. 7, No. 3, July 2002.

390 • A. A. Kountouris and C. Wolinski

[1995], the guard hierarchy is implemented as a hierarchy of BDDs. Using
BDDs two things are achieved: equivalence between guard formulas can be eas-
ily established resulting in a minimal representation by avoiding redundancy,
and, hierarchy, during the hierarchy process by factoring it is easy to find the
maximum depth in the tree to which a guard can be inserted, thus obtaining an
optimally refined inclusion hierarchy. Control representations based on BDDs
have already been used in previous work [Bergamaschi et al. 1992; Radivoje-
vic and Brewer 1995, 1996; Dos Santos et al. 2000]. The CG, described in Juan
et al. [1994], is another special control representation for which Radivojevic and
Brewer [1995] argue that is less efficient than a BDD-based one. The originality
of the hierarchical control representation as BDD trees, described in Besnard
[1991] and Amagbegnon [1995] and adopted in this work, lies on the hierar-
chy construction and not on the use of BDDs. BDDs are simply used for their
efficiency. Guard inclusion is very important in efficiently detecting mutual ex-
clusiveness minimizing the number of necessary mutual exclusiveness tests,
as demonstrated in Kountouris and Wolinski [1999a] and Kountouris [1998],
where free-from-syntactic-variance mutual exclusiveness detection techniques
were described.

2.3 Deriving HCDGs from High-Level Descriptions

To construct the HCDG internal representation from a behavioral description
the following methods are envisioned. The first consists of parsing source code
in some conventional high-level language and the second in using the SIGNAL
dataflow formal specification language. To construct an HCDG from descrip-
tions using standard description languages (e.g., C, VHDL, HardwareC, etc.)
necessitates a construction process similar to the one used in Chaiyakul et al.
[1992] or algorithms that compute the static single assignment form of imper-
ative programs [Cytron et al. 1989]; of particular interest for the HCDG is the
predicated static single assignment [Carter et al. 1999]. In addition the hierar-
chy process described in Besnard [1991] and Amagbegnon [1995] is also applied
to obtain a refined guard hierarchy. Guard exclusiveness information may also
be introduced including information about guards defined by arithmetic rela-
tions. How this information is obtained is described in detail in Kountouris
and Wolinski [1999a]. Finally, a third HCDG construction option is to auto-
matically obtain from an imperative style description its SIGNAL equivalent
applying strict translation rules. For instance a translation for Statecharts is
described in Beauvais et al. [1998].

Although in this article we deal with descriptions having no iterative con-
structs, the HCDG can handle them but the construction process becomes more
complicated; the aforementioned process applies for the loop bodies. Deriving
HCDGs of descriptions containing iterative constructs is the topic of current
work not yet completed. However, a brief overview is given here for the sake
of completeness. Our treatment of looping constructs is inspired by the ADD
approach [Chaiyakul et al. 1992], where loops imply state transitions and a
system FSM can be extracted by translating the program CFG into an FSM.
However, as pointed out in Lakshminarayama et al. [1999], this approach has

ACM Transactions on Design Automation of Electronic Systems, Vol. 7, No. 3, July 2002.

Efficient Scheduling of Conditional Behaviors • 391

the inconvenience that sequential execution semantics find their way in the
resulting graph implicitly in the state transition order and so parallel (inde-
pendent) loops (i.e., concurrent states) cannot be inferred. In our approach it
is as if instead of using the program CFG to derive the FSM, we used the cor-
responding hierarchical task graph [Girkar and Polychronopoulos 1992] where
loop parallelism is explicit and HTG execution tags correspond to the HCDG
activation guards of the composite HCDG nodes representing loops. Loop nest-
ing levels can be regarded as description hierarchy levels. Each level can be
represented by an HCDG containing composite HCDG nodes corresponding to
loop bodies. In this way a loop body can be abstracted by a composite HCDG
node with an activation guard as well as inbound and outgoing guarded data
and control dependencies. Inside, a composite HCDG node is represented by
an HCDG subgraph capturing the loop body processing. At each level data de-
pendency analysis permits us infer parallel loops. On the other hand, iterative
constructs in a system description imply system state. Therefore a description
can be analyzed to extract a hierarchical FSM that can be represented by an
HCDG (as the Statecharts translation [Beauvais et al. 1998] demonstrates).
The FSM hierarchy is the direct result of loop nesting. Parallel (independent)
loops result in concurrent FSMs within the global system FSM. Inferring the
system FSM permits the construction of a basic skeleton of the HCDG’s guard
hierarchy. A guard corresponds to each FSM state. These guards become the ac-
tivation guards of the composite HCDG nodes representing loop bodies. These
activation guards become in turn the root guards of the HCDG subgraph rep-
resenting the loop body. Under it, the loop condition defines complementary
guards corresponding to FSM state transitions. One corresponds to the loop
iteration condition; another one to the fall-through (or loop exit) condition. An
extra guard may correspond to the loop entry condition used for initialization of
loop variables (i.e., useful with for-loop constructs). Guards defined inside the
loop body are placed under the iteration condition guard.

2.4 Mutual Exclusiveness Discovery and Representation

The mutual exclusiveness of the conditions under which operations execute is
important information for the scheduling of conditional behaviors. This infor-
mation permits us to conditionally share resources and schedule operations
efficiently. Using the HCDG reasoning on condition mutual exclusiveness is
equivalent to reasoning on guard mutual exclusiveness. Guard exclusiveness is
denoted by⊗. Two guards are mutually exclusive if their intersection is empty:
(H1 ∩ H2=®)⇔ H1 ⊗ H2. To identify if two guards are mutually exclusive all
we have to do is find whether the Boolean product their BDD representations
in the guard hierarchy is false; that is, h1 ·h2= 0⇔ H1⊗H2. To identify mutual
exclusiveness of guards and include this information in the HCDG for later use,
the exclusiveness list of a guard is defined. This list, denoted by excl list(H), is
a set of guards satisfying the property excl list(H) = {(Hi ∈ NH) : H⊗Hi}, with
NH the set of all guards in the hierarchy. To construct these lists, the straight-
forward approach is to perform a test for mutual exclusiveness for each pair of
guards. For a large number of guards this can be very expensive. The inclusion

ACM Transactions on Design Automation of Electronic Systems, Vol. 7, No. 3, July 2002.

392 • A. A. Kountouris and C. Wolinski

Fig. 4. Guard mutual exclusiveness for jian (left) and MEG (right).

relations represented by the guard hierarchy can be used to reduce the number
of mutual exclusiveness tests [Camposano 1991]. In the worst case of a flat
guard hierarchy, for n guards we need to perform n!/(2! · (n − 2)! mutex tests
(n by 2 combinations). For the jian example (Figure 1) due to guard inclusion
relations, instead of 45 tests (for n= 10 guards), only 20 tests are needed. Also
conditions defined by simple arithmetic relations are treated as described in
Koutouris and Wolinski [1999a] and Kountouris [1998] increasing the capabil-
ities of our method with respect to other approaches [Radivojevic and Brewer
1995; Camposano 1991].

To efficiently represent and subsequently manipulate the exclusiveness in-
formation, we use a special graph representation named MEG. A mutual exclu-
siveness graph (MEG) is an undirected graph and consists of a set of vertices
V and a set of undirected edges E. Such graphs are mentioned in the litera-
ture as compatibility graphs. Each vertex v in V corresponds to a guard in the
HCDG and each edge e = (u, v) in E represents the mutual exclusiveness of the
guards represented by vertices u, v. For our example guard mutual exclusive-
ness information is shown in Figure 4. This graph representation facilitates
testing two guards for exclusiveness and it also facilitates finding groups of
pairwise mutually exclusive guards. Such groups correspond to MEG cliques.
Heuristics such as those in Tseng and Siewiorek [1986] to find max cliques and
minimum clique partitions (NP-complete problems [Garey and Johnson 1979])
can be used. A detailed discussion on these topics and experimental results can
be found in Kountouris and Wolinski [1999a] and Kountouris [1998].

2.5 HCDG Transformations

Graph transformations or graph restructuring is not a new concept. It has
been used often in previous work mainly related to scheduling optimization.
For instance, in tree-based scheduling [Huang et al. 1993] deriving the tree
representation form from the CFG necessitates code motions that correspond
to lazy execution as well as operation duplication into mutually exclusive con-
trol branches. In Juan et al. [1994] variable assignment conditions are com-
puted for lazy execution as well. An instance of CDFG node duplication is in-
troduced in Wakabayashi and Yoshimura [1989, 1992]. Speculative execution
has been either represented by code motion [Dos Santos et al. 2000] (in this case

ACM Transactions on Design Automation of Electronic Systems, Vol. 7, No. 3, July 2002.

Efficient Scheduling of Conditional Behaviors • 393

Fig. 5. Lazy execution transformation.

compensation code can be viewed as a sort of node replication), guard expres-
sion recalculation Radivojevic and Brewer [1996], or dynamic condition vectors
[Wakabayashi and Yoshimura 1992]. In Kim et al. [1994] conditional sharing
transformation is used before scheduling to reflect a priori decisions in condi-
tional resource sharing and in Chaiyakul et al. [1992] such a transformation
can be used either before or during scheduling. Finally, reasoning on false paths
was used to refine path enumeration in path-based scheduling [Bergamaschi
et al. 1997].

In the following HCDG transformations are explained in more detail and by
means of simple examples it is shown that their application on the HCDG is
quite simple. In Section. 3.1 HCDG transformations are revisited in order to
explain in more detail how they are used to optimize the results of HCDG-based
scheduling.

Lazy Execution Transformation. This transformation consists of replacing
the definition guards of the nodes by their use guards. The definition guard
(d guard) gives the condition under which a node is defined in the high-level
specification and corresponds to the condition under which a value is computed.
The use guard (u guard) corresponds to the condition under which a value is
used by other nodes in subsequent computations; it is calculated as the Boolean
sum of the guard conditions associated with a node’s outgoing edges. The rea-
soning in Chaiyakul et al. [1992] to determine assignment conditions is similar.
To find u guards a recursive HCDG traversal starting from the output nodes
and going upwards towards the input nodes is used. Figure 5 depicts a piece of
the HCDG of the jian example; the value of T1 is computed more often (under
H1) than it is used (under H2 as shown by the outgoing dependencies of node<)
so simply changing the control dependencies of nodes <,+1, ?a, ?b from guard
H1 to guard H2 (and consequently the data dependency labeling) enforces lazy
execution and a value for T1 is computed only as often as it is used.

The lazy execution transformation ensures that operations will be executed
only as often as their computed results will be used in subsequent computations.
In the case of a high- level specification written in some imperative language,
this transformation corresponds to downward code motion (i.e., from outside
conditionals we move statements inside conditionals as is the case in Dos Santos
et al. [2000] and Huang et al. [1993]).

Node Duplication Transformation. This transformation duplicates the
nodes whose results are used under mutually exclusive conditions; an example

ACM Transactions on Design Automation of Electronic Systems, Vol. 7, No. 3, July 2002.

394 • A. A. Kountouris and C. Wolinski

Fig. 6. Node duplication transformation.

Fig. 7. Specualtive execution transformation.

is shown in Figure 6. In many cases this transformation may reduce the length
of control paths and may also offer more possibilities for conditional resource
sharing. Even though the number of nodes increases this effect will be par-
tially undone during scheduling by the conditional resource sharing policy of
the scheduling algorithm. In order to limit the increase of replicated nodes we
may choose to apply this transformation after the lazy execution transformation
and impose as a constraint that a node is replicated as long as there is at least
a control path to one of the replicas that is shorter than the control path into
the initial node. Another type of node duplication (introduced in Wakabayashi
and Yoshimura [1989, 1992]) occurs when an operation node succeeding a data
merge node is moved before it. This necessitates replicating the operation node
at each incoming path to the data merge node and possibly creating a new data
merge node to connect the replicas to the successors of the initial operation
node.

Speculative Execution Transformation. This transformation consists of
changing the guard of a node for one of its ancestors higher up in the guard hi-
erarchy. Speculative execution in some cases can be considered as upward code
motion where a statement is moved before the control expression that defines a
basic block. In Figure 7 we take the example of Figure 6 a step further and we
see that by speculating node +3 1 we minimize the length of its control depen-
dency path. The initial node guard (H6) is substituted by one of its ancestors in
the guard hierarchy (H2) and control dependencies are changed accordingly.

False Path Elimination Transformation. In a behavioral description false
paths may be contained and thus unnecessary dependencies. With the HCDG

ACM Transactions on Design Automation of Electronic Systems, Vol. 7, No. 3, July 2002.

Efficient Scheduling of Conditional Behaviors • 395

Fig. 8. Transformation for false path elimination.

Fig. 9. Conditional resource sharing transformation.

it is very simple to identify and eliminate them since all the HCDG edges are
labeled by guards. If the Boolean product of the guards of the edges along a path
is always false then this path can be eliminated by dependency rearrangement.
This is shown in the example of Figure 8.

Resource Sharing Transformation. This transformation corresponds to
merging operation nodes that may conditionally share the same functional unit
into a single node. This necessitates introducing data merge nodes to multiplex
the inputs of the initial nodes into the inputs of the new common node. In order
to route the appropriate input data to the inputs of the new node the multi-
plexing control logic is derived from the guards of the merged nodes. Figure 9
graphically depicts this transformation for the example of Figure 2 based on

ACM Transactions on Design Automation of Electronic Systems, Vol. 7, No. 3, July 2002.

396 • A. A. Kountouris and C. Wolinski

the scheduling decisions about conditional sharing shown in Figure 13. The add
nodes +4, +5, +6, +8 have mutually exclusive guards and can be scheduled in
the same control step conditionally sharing the same FU.

3. HCDG-BASED LIST-SCHEDULING HEURISTIC

Our list-scheduling scheme under resource constraints has three inputs: the
HCDG, the priority function, and the scheduling constraints consisting of the
set of available functional units (FUs) and clock period (cycle time). The novelty
of this work is in the choice of the priority function and the policy of scheduling
nodes on the available resources. Moreover, our scheduling core supports oper-
ation chaining and multicycle operations. The advantage of using as input the
priority function is that the same scheduling core can be used with different
priority functions so different priority functions can be used for different types
of designs. In addition, as more effective priority functions become available
their integration into our system is straightforward.

It is worth mentioning at this point that the quality of the scheduling results
heavily depends on the application of HCDG transformations. Their mechanics
were described in Section. 2.5. Here before describing the scheduling philosophy
(Section. 3.2) several aspects of the HCDG transformations relevant to the
scheduling problem are presented first. These aspects concern mainly when
and how these transformations are applied.

3.1 HCDG Transformations for Scheduling Optimization

For conditional behaviors, represented by HCDGs, scheduling optimization
comes from two sources. Both rely on HCDG transformations. The first source
is transformations that are applied before scheduling to minimize the influence
of syntactic variance and the second source consists of transformations that are
applied during scheduling to optimize resource utilization.

The term syntactic variance describes semantically equivalent (i.e., same be-
havior) but syntactically different input descriptions. This is due to different
description styles such as statement order, statement location within condi-
tional constructs, and nesting of conditionals. In certain representations such
as CFG and CDFG, description style influences their construction and form.
So the scheduler may be given different input for the same behavior and thus
produce different results. In addition, if the employed algorithms rely on de-
scription structural information to extract information useful in their decision
making, such as condition mutual exclusiveness information, then results will
also be different. From the previous discussion and as explained in Chaiyakul
et al. [1992] and Li and Gupta [1998], syntactic variance influences synthe-
sis results at two different but closely related levels: the design representa-
tion construction and mutual exclusiveness detection both used in scheduling
conditional behaviors.

In the HCDG case syntactic variance influences the construction process of
the initial HCDG given as input to the scheduler. To cope with this we rely on
graph transformations applied before scheduling. Such prescheduling transfor-
mations mainly have the intention of obtaining an as much as possible “unique”

ACM Transactions on Design Automation of Electronic Systems, Vol. 7, No. 3, July 2002.

Efficient Scheduling of Conditional Behaviors • 397

representation (free from syntactic variance in the sense of Chaiyakul et al.
[1992]). This, in turn, for syntactically different design descriptions, will pro-
vide a common scheduling input and thus the same scheduling results will be
obtained for all of them when the same scheduling heuristic is used. These
transformations are applied on the HCDG in the order:

— false path elimination,
— lazy execution, and
—node duplication under the condition of control path length reduction.

In general terms syntactic variance influences the amount of explicit in-
formation that is useful in order to obtain good scheduling results. For op-
erations this information is of three types: parallelism, mobility, and mutual
exclusiveness.

Different representations of the same behavior make explicit different
amounts of these three types of information. After the prescheduling trans-
formations thanks to the dataflow nature of the HCDG operation parallelism
and operation mobility become explicit as much as possible. In addition, as ex-
plained in Section. 2.4, mutual exclusiveness detection using HCDGs does not
suffer from the effects of syntactic variance (discussed in Li and Gupta [1998]).
Thus the third type of information also becomes explicit as much as possible.
Since the results of mutual exclusiveness detection also influence scheduling
lengths by permitting more or less efficient resource utilization in each con-
trol step, this is also a first step in minimizing the effects of syntactic variance
relative to scheduling.

Finally, for the second time scheduling optimization comes into play. During
scheduling we apply on-the-fly several transformation combinations with the
intent of increasing resource utilization as much as possible in each control step.
Examples of such scheduling optimizing transformation combinations are:

—conditional resource sharing in combination with speculative execution,
—node duplication before data merge nodes in combination with conditional

resource sharing. This instance of node duplication is applied during schedul-
ing to increase the resource usage in previous control steps. As explained in
Section. 2.5, this necessitates replicating the successor node at each incom-
ing path to the data merge node. As long as all the replicas can be scheduled
in some previous control step the transformation is applied. This is simi-
lar to the node duplication transformation introduced in Wakabayashi and
Yoshimura [1989, 1992].

The exact mechanics of how these on-the-fly transformations are applied is
part of the scheduling policy described next. An interesting observation is that
transformations during scheduling effectively amortize on a need basis the
side effects of prescheduling transformations. Lazy execution may lengthen
several control paths. However, during scheduling this effect will be amor-
tized to a certain degree by the speculative scheduling of nodes used by our
scheduling algorithm. In a sense speculative execution shortens control paths
as needed and as permitted by the resource availability. The overall effect will

ACM Transactions on Design Automation of Electronic Systems, Vol. 7, No. 3, July 2002.

398 • A. A. Kountouris and C. Wolinski

H 3

+8

H 4

H 2

H 1

H 5

Guard Hierarchy

Aready scheduledl
guards at step s

Most
profound
already
scheduled
guard
ancestor

Fig. 10. Dynamic computation of sguards for spec nodes.

be an optimized scheduling result in terms of both schedule length and re-
source utilization. The conditional resource sharing transformation, which is
applied during scheduling to increase resource utilization, has the side effect of
undoing certain prescheduling node duplications; this happens whenever repli-
cas created under mutually exclusive guards are scheduled to share the same
resource.

3.2 Scheduling Policy Outline

At each scheduling step nodes that can be scheduled on the available resources
are partitioned into two sets, ready and spec, corresponding to nodes that can be
scheduled without and with speculative execution, respectively. Nodes in ready
observe both their data and control dependencies and nodes in spec fully observe
only their data and partially their control dependencies (weak dependencies
in Kifli et al. [1995] is a similar concept). For brevity the former are simply
called ready nodes and the latter spec nodes. At each step, ready nodes are
scheduled first, exploiting conditional resource-sharing possibilities (in Kifli
et al. [1995] spec nodes have lower priorities). Once no more ready nodes can be
scheduled (either due to resource constraints or because the ready set becomes
empty), we attempt to increase resource utilization by further conditionally
sharing already used resources with spec nodes. Finally, if unused resources
still remain we attempt to utilize them by conditionally sharing spec nodes.
Nodes are selected for scheduling on a priority basis; priorities are computed
by the priority function described in the next section.

Each schedulable node is associated with a schedule guard denoted by sguard
which indicates the condition under which the node will execute if it is sched-
uled in the current control step. For ready nodes the sguard corresponds to the
guard labeling the node in the HCDG; hence it is statically available. For spec
nodes the sguard has to be dynamically computed (similarly to guard smoothing
Dos Santos et al. [2000], dynamic guards Radivojevic and Brewer [1996], and
dynamic CVs Wakabayashi and Yoshimura [1992]). In the HCDG context this
sguard is found starting from the guard of the speculated (spec) node and go-
ing upwards following its ancestors in the guard hierarchy. The first scheduled
guard ancestor found becomes the speculated node’s sguard. For instance, in
Figure 10 node+8 is defined under guard H5. Once the data dependencies of+8

ACM Transactions on Design Automation of Electronic Systems, Vol. 7, No. 3, July 2002.

Efficient Scheduling of Conditional Behaviors • 399

are observed the node can be considered ready for scheduling in a speculative
manner. Its sguard has to be found among the ancestors of H5 in the guard hier-
archy (i.e., H4, H3, H1). Guard H4, which is the immediate ancestor of H5, does
not qualify because it is not yet scheduled; H3 is scheduled and so becomes the
sguard of spec node +8. This corresponds to the most profound already sched-
uled guard ancestor of the spec node’s guard in the guard hierarchy. At the end
of each scheduling step sguards of spec nodes have to be readjusted in order to
account for guards scheduled at the current control step that may correspond to
more profound guard ancestors of spec node guards. In our example if at some
point guard H4 is scheduled but +8 has not yet been scheduled then its sguard
will be adjusted to H4. Whenever H5 is scheduled, after sguard adjustment
+8 will become ready in a normal manner since now both its data and control
dependencies are observed. Using this sguard adjustment technique we maxi-
mally exploit conditional resource sharing possibilities even for nodes that are
speculatively executed.

3.3 An Adaptive Probabilistic Priority Function

To obtain the node priorities a special priority function based on guard hierarchy
information and node mobilities is elaborated. The priority function for a node
n, pr(n) is based on the three sorting keys:

pr1(n) = awurg(n), pr2(n) = ps(n), pr3(n) = wprd(n).

To sort nodes in the ready lists, every time the first key for two nodes is equal
the second is used, and if this is equal too then the third is used. This three-level
priority function accounts for the conditional nature of the scheduled behaviors
by weighting the priority measures using statically computed node execution
probabilities. The first key (pr1) represents a node’s scheduling urgency and
accounts for the node mobilities in a conditional execution context. The second
key (pr2) further takes into account the conditional nature of the scheduled
behaviors giving higher priority to more frequently executing nodes among
nodes of equal urgencies. Finally, the third key (pr3) provides a local measure
of how the available resources will be able to accommodate the future resource
demands provoked by scheduling a node in the current control step and permits
us to mitigate the horizon effect of list scheduling due to a limited observation
window. After this brief overview, the meaning of each of these three elements
is explained in more detail below.

For each guard its activation probability p is computed. The probability of the
root guard is set to 1. This reflects the fact that nodes labeled by the root guard
will execute at every execution instance (path). For other guards their proba-
bility is computed from their Boolean definition formulas. Every guard has a
sum-of-products definition and its probability is given by the sum of products
of the corresponding variable probabilities. For Boolean variables that are re-
sults of comparison operations and input Booleans a probability of 0.5 is given
to both true and false outcomes. Predicate probabilities have also been used in
Wakabayashi and Yoshimura [1989] exploiting the conditional nesting struc-
ture of the input description. For the example of Figure 2 the guard probabilities

ACM Transactions on Design Automation of Electronic Systems, Vol. 7, No. 3, July 2002.

400 • A. A. Kountouris and C. Wolinski

Table I. Guard Probabilities for the jian Benchmark

Guard H1 H2 H3 H4 H5 H6 H7 H8 H9 H10
Probability 1 0.5 0.5 0.75 0.875 0.25 0.25 0.375 0.125 0.125

Fig. 11. Node urgency adjustment.

are given in Table I. It is also possible to adjust the guard probability values
using application execution profiles obtained by simulation for test inputs in
order to obtain guard probabilities; this approach was first proposed for trace
scheduling [Fisher 1981] and is adopted in Wavesched [Lakshminarayama et al.
1999] as well. Profiling can be automatically performed on HCDGs as described
in Kountouris [1998]. This technique has its inconveniences but nevertheless
it is very useful.

Next, ASAP and ALAP schedules are used to obtain node mobilities when
both control and data dependencies are fully observed (mobc/d) and when only
data dependencies are observed (mobd). The urgency (urg) of a node n is then
defined as

urg(n) = 1/(1+mob(n))→
{

urgc/d = (1+mobc/d (n))
urgd = 1/(1+mobd (n)).

The initial weighted urgency of node n is given by: wurg(n)= ps(n) · urg(n);
depending on the case, either mobc/d or mobd is used in the formula; ps corre-
sponds to the probability of the node’s scheduling guard (sguard). As shown,
this coefficient is proportional to the probability of node execution and inversely
proportional to node mobility. With this urgency criterion more importance is
given to nodes having the highest execution probability. This is an important
consideration in a conditional execution context.

At the beginning of each scheduling step initial weighted urgencies of the
ready and spec nodes are adjusted. This adjustment becomes effective once a
node has remained unscheduled for a number of iterations higher than its mo-
bility since it became schedulable for the first time (i.e., its scheduling cstep un-
der ALAP is attained and the node remains unscheduled as shown in Figure 11).

After this point at each succeeding iteration the urgency is increased by the
node’s sguard probability. This is achieved by:

awurg = wurg(n)+ a(n) · Ps(n).

For ready and spec nodes wurgc/d and wurgd are used, respectively, for wurg
and a(n) is an adjustment coefficient for node n defined as

a(n) =
{

0 if ((currcstep− ALAP(n)) < 0)
1+ (currcstep− ALP(n)) otherwise.

ACM Transactions on Design Automation of Electronic Systems, Vol. 7, No. 3, July 2002.

Efficient Scheduling of Conditional Behaviors • 401

The currcstep step is calculated by the formula below where SchedulingTime-
OfNode is the time the processing of a node can start; this is not necessarily the
same as the start time of the control step due to operation chaining possibilities.

currcstep =

∑
∀Unit

schedulingTimeOfNode
executionTimeOfUnit(t)

|Unit| .

A weighted-projected-resource-demand (wprd) measure is also defined as

wprd(n) =

∑
|Rt |·

∑
p(h(n, s))

∀t ∀s ∈ succ(n, t)
|R| ,

where R is the set of all available resources with cardinality |R|, Rt is the set of
available resources of type t with cardinality |Rt |, succ(n, t) are the successors
of node n that can be scheduled on the next control step and can be mapped on
a resource of type t, h(n, s) is the guard of the dependency from node n to node
s, and p(h(n, s)) is its probability. With wprd we try to measure the impact of
the selection of node n in the current cstep on the occupation of functional units
in the next cstep. This is one possibility to limit the horizon effect of the list
scheduler.

3.4 Conditional Resource Sharing

Conditional resource sharing is performed accounting for the node priorities.
For each resource type a mutual exclusiveness graph, described in Section. 2.4,
is constructed. Each vertex, corresponding to a scheduling guard, has an asso-
ciated list of operation nodes being active under this guard and can be assigned
to the resource of that type. Operations in the list are sorted according to their
priorities with ready nodes sorted before spec nodes. The list of nodes that can
share a resource is constructed in the following steps.

Step1. ready nodes are considered; the clique containing the higher priority
node and a maximum number of other high priority nodes is iteratively
constructed.

Step2. spec nodes are considered; the clique found in Step 1 is enlarged with
guards of higher priority nodes that are candidates for speculative
execution.

Step3. For each guard in the clique the first node in its operation list is taken;
return list.

In this way the list of nodes that can be scheduled sharing a resource is ob-
tained. The best adapted algorithm to find such cliques is based on the initial-
graph-partition algorithm presented in Puri and Gu [1992]. Heuristics such
as those of Tseng and Siewiorek [1986] are not as well adapted to satisfy our
clique construction objectives since, in our case, clique maximality is not a good
optimization objective. A clique is iteratively constructed. At each iteration a
seed vertex containing the highest priority node is selected and the vertices not

ACM Transactions on Design Automation of Electronic Systems, Vol. 7, No. 3, July 2002.

402 • A. A. Kountouris and C. Wolinski

Nodes Sorted by Priority

a, g*, b, h, j*, f*, i*, e, c

H1

a - H5

h i

H2

b, c -

H7

- -

H3

e f

H4

- j

H6

- g

Nodes Sorted by Priority

a, g*, h, b, j*, f*, i*, e, c

MEG seed vertex

(a is the highest priority operation)

Scenario-2

Scenario-1

Fig. 12. Clique construction in cstepi for FU of type t.

connected to it will not be considered in future iterations. Initially, the seed ver-
tex corresponds to the highest priority node. Normally executing nodes (ready)
are considered before candidates for speculative execution (spec). Once there
are no more vertices the clique with the desired properties is returned. At each
scheduling iteration, the conditional resource-sharing process is repeated for
each resource type and for each available resource of such type. A clique found
in this way may be sometimes split due to chaining if the time necessary to
execute certain nodes in the clique is too important to fit all of them in the
same control step.

The searching process for cliques has the following characteristics: The list-
scheduling priority criterion is satisfied for the greatest number of distinct
execution instances (paths) simultaneously. The constructed clique contains the
highest priority node and the largest number of other higher priority nodes that
can share a resource with it. Further increase in resource utilization is achieved
by enlarging the initial clique with nodes that are candidates for speculative
execution. The list-scheduling priority criterion is also satisfied as before.

The example of Figure 12 graphically depicts the clique construction for op-
erations that can be scheduled, normally or speculatively, during a cstep on a
resource of a particular type. Two scenarios (Scenario-1, Scenario-2) for opera-
tions priorities that lead to different cliques are shown. Spec nodes are indicated
by ∗. Operations are partitioned by their scheduling guards and are inserted
in the operation lists of the MEG vertices (shown as rectangles) according to
their priority; ready and spec operations are kept in separate lists shown in
the rectangles under the guard name. MEG vertices with empty lists are not
considered during the clique construction process (their edges are shown as
dotted).

Operation a has the highest priority in both scenarios so it will be present in
the constructed clique in both cases. The shaded regions in Figure 12 delimit

ACM Transactions on Design Automation of Electronic Systems, Vol. 7, No. 3, July 2002.

Efficient Scheduling of Conditional Behaviors • 403

Fig. 13. Schedule obtained for the jian benchmark.

the constructed clique for each scenario. For the scenario shown at the bottom
when only ready operations are considered, the partial clique {H1, H2, H3} is
constructed in this order since pr(b)> pr(e); next spec operations are taken into
account and the clique becomes {H1, H2, H3, H4} and so operations a, b, e, j ∗ (i.e.,
first entries in the nonempty operation lists of the MEG vertices in the clique)
will conditionally share a resource of type t in this cstep. In the top scenario
where pr(h) > pr(b) a different clique will be constructed by the same process.
This is {H1, H5, H6} and in this case operations a, h, g∗ will conditionally share
the resource of type t in this cstep.

Finally, a point that needs some explanation is our choice of considering
normally ready operations before speculatively ready operations. If both are
considered simultaneously under tight resource constraints it may happen to
schedule a speculative candidate instead of a normally ready operation. In some
cases this may (but not necessarily) result in lengthening of the critical paths
in the lazy execution HCDG. Our objective is first to avoid lengthening such
critical paths and second to shorten them if possible by means of speculation.
This has been confirmed by experimentation; however, we acknowledge that
this issue needs to be further investigated.

Figure 13 shows the schedule obtained for the jian example benchmark us-
ing the CODESIS HLS tool. The first column corresponds to the available
functional units where the FU identifier and the type of operations it can per-
form are given. Each of the rest of the columns corresponds to a control step.
Each line corresponds to an FU. In each cstep operations are scheduled on FUs;
when multiple operations are scheduled on the same FU in the same cstep this
implies conditional resource sharing as shown in the figure for FUs Unit A,
Unit B in cstep #2. This schedule was obtained when node +3 was duplicated
using the transformation described in Section. 3.1 (Figure 6). This duplication

ACM Transactions on Design Automation of Electronic Systems, Vol. 7, No. 3, July 2002.

404 • A. A. Kountouris and C. Wolinski

start time

start time

end time

end timeStart time of
control step

Multi-cycle execution

Normal execution

Fig. 14. Start times of scheduled ops within and across cstep boundaries.

caused reduction of graph depth and improved conditional resource sharing.
Node plus 3 1 (+3 1) is scheduled in the first control step by speculation.

3.5 Considerations for Operation Chaining and Multicycle Operations

In the context of scheduling conditional behaviors under resource constraints
and with the possibility of conditional resource sharing, the notion of resource
(functional unit—FU) availability becomes more complicated. This complex-
ity further increases when operation chaining and/or multicycle operations are
considered. Thanks to guard information this complexity can be managed. Be-
fore going further, it should be said that in our system each operation can start
at any time within its scheduled control step and can finish either before the
end time of the control step, when no multicycle operations are allowed, or
in some subsequent control step if multicycle operations are allowed. This is
graphically depicted in Figure 14 and depends on the chosen scheduler mode
which is a scheduling parameter.

The following conditions must be satisfied to consider an FU as “not busy”
(available):

(NotBusy(FU) = true)

⇔ (1.Ta + Te ≤ Teac) and

 2.SN = [
or
3. ∀(Ga, Gb) ∈ {SG×SNG} ⇒ Ga⊗Gb,

where Tsac, Teac are, respectively, the start and end times of the current control
step; Ta is the current time; Te is the execution delay in time units of opera-
tions that can be scheduled on FU; SN, is the set of scheduled nodes on FU in
the interval I (I = Tsac − (Ta + Te)), SG is the set of guards associated with
nodes in SN; SNN, SNG are the sets of new nodes to schedule and the set of
their associated guards, respectively. The first condition says that an FU can be
considered as potentially available during a cstep only if there is enough time
remaining given a start time and an operation delay. Then either the second or
the third condition (or both) must also hold. The second condition means that
there is no operation currently scheduled on the FU. The third condition says
that even if operations are already scheduled on a unit this remains available
for all those ready operations whose sguards are pairwise mutex to the sguards
of the already scheduled operations. Next it is examined how this reasoning is
applied in order to handle the scheduling options for multicycle operations and
operation chaining.

ACM Transactions on Design Automation of Electronic Systems, Vol. 7, No. 3, July 2002.

Efficient Scheduling of Conditional Behaviors • 405

If multicycle operations are allowed (meaning that some types of operations
are allowed to have delays greater than the cstep duration) then we have to em-
ploy a mechanism to mark a unit as busy for a certain number of subsequent
csteps; this can be realized by means of a counter. In the case of conditional
behaviors where it is possible to follow a plurality of paths depending on the
control conditions, the terms busy and not busy have a more extended signif-
icance that relates the conditions (guards) under which an FU is currently
used, to the conditions (guards) of the operations that could be scheduled on
the FU on a subsequent cstep. The FU is considered busy only for the execu-
tion paths corresponding to the multicycle operation (or operations if the FU is
conditionally shared) currently assigned to it. This means that for operations
under sguards that are pairwise mutex to the sguards of already scheduled
operations on the FU, the FU may be considered as available (not busy). Thus
the busy counter mechanism needs to be extended to handle multiple execu-
tion instances: one counter for each execution instance is needed. Once again
guard information is very useful in making such distinctions and considerably
facilitates the scheduling task when multicycle operations are allowed.

Once scheduling of operations on the available FUs has been performed in
a cstep, if operation chaining is allowed several conditions must be satisfied.
First, there must be enough time left in the cstep to schedule an immediate
successor of some scheduled operation and second an FU must be available for
it. Note that immediate successors may conditionally share the available FU
under mutually exclusive guards. For this a clique is constructed for the succes-
sors of a scheduled node for each type for which an FU is still available; these
are the chaining candidates. When evaluating the chaining conditions guard
information needs to be considered at many points. First, whether enough time
remains needs to be evaluated for all possible execution instances (paths) due to
conditionally sharing an FU among mutex operations whose immediate succes-
sors are chaining candidates. For some chaining combinations it may happen
that there is not enough time remaining in the cstep. Second, a unit may be
available for chaining although it may be already used in the cstep as long as
the sguards of the chaining candidates are pairwise mutex to the sguards of the
operations already scheduled on the resource. As an example consider that +5,
+3 in Figure 2 are scheduled in a cstep and that two adders are available; then
+4, +7 which are successors of +3 but under mutex guards (H6⊗H3) can be si-
multaneously chained using the adder on which +5 is assigned since the guard
of +5, H10 is pairwise mutex to guards H6, H3 (see Figure 4). This example is
just a sample of how guard information can be used to maximize chaining pos-
sibilities. It is clear that flexible exploitation of chaining is more complicated
when scheduling conditional behaviors than in the classical case of dataflow
behaviors. Guard information is a valuable tool in coping with this complexity.

4. EXPERIMENTAL RESULTS

The HCDG-based list-scheduling heuristic exploiting conditional resource shar-
ing and speculative execution was tested on a set of benchmarks that have
appeared in previous related literature. These are: kim, waka, maha, and jian

ACM Transactions on Design Automation of Electronic Systems, Vol. 7, No. 3, July 2002.

406 • A. A. Kountouris and C. Wolinski

Table II. Insensitivity to Syntactic Variance

Benchmark waka maha kim jian
Resources cmp: 1

+: 1,−: 1
cmp: 1
ALU: 2

cmp: 0
+: 1,−: 1

cmp: 0
+: 2,−: 3

cmp: 2
+: 2,−: 1

cmp: 2
ALU: 2

cmp: 1
+: 1,−: 1

cmp: 1
+: 2,−: 1

descr. 1 7/7/4 7/7/4 5/5/4 4/4/2 6/6/6 6/6/6 4/4/4 4/4/2
descr. 2 7/7/4 7/7/4 5/5/4 4/4/2 6/6/6 6/6/6 4/4/4 4/4/2

.....
T3 = c +3 1;

if (y) {
if (T1)

u = T3 +4 d;

......
} else {

T4 = T3 +7 e;

......
}

.....
T3 = c +3 1;

if (!y)
T4 = T3 +7 e;

......
if (y && T1)

u = T3 +4 d;

......

descr. 1
maximal nesting
use of “if-then-else”

descr. 2
no nesting
“else” not used
diff. statement order

Fig. 15. Example of different description styles; descr.1 (left), descr.2 (right).

from Kim at al. [1991], Wakabayashi and Yoshimura [1989], Parker et al. [1986]
and Li and Gupta [1998], respectively. For each benchmark the HCDG was
constructed, the guard hierarchy was refined, and the guard mutual exclu-
siveness was established using the techniques described in Kountouris and
Wolinski [1999a]. Before scheduling is applied the HCDG is transformed for
lazy execution and the node duplication transformation is applied wherever
appropriate as previously described.

The first experiment (Table II) consists of evaluating the insensitivity of the
scheduling results to the effects of syntactic variance. For this our heuristic was
applied for each benchmark on two semantically equivalent but syntactically
different descriptions.

The first description (descr. 1) has a maximal conditional nesting as opposed
to the second one (descr. 2) where all conditions are flattened and each as-
signment statement is in its own conditional block. An example is given in
Figure 15; both descriptions result in the same HCDG and the same guard
mutual exclusiveness information.

The insensitivity of our approach to the effects of syntactic variance can
be attributed first to the dataflow nature of the HCDG (statement order does
not influence the results); second to the prescheduling transformations that
set different input descriptions into common form so that the scheduler is fed
with the same graph; and third to the guard hierarchy construction and the
mutual exclusiveness detection process that discovers the same amount of op-
eration exclusiveness for both descriptions. The “kim” benchmark is a good
example to illustrate how the proposed priority function can produce better re-
sults compared to a traditional one that does not account for the conditional
nature of the behavior. In Table III the benchmark is scheduled for various re-
source constraints using list-scheduling heuristics. The first uses a traditional
priority function based on mobility and number of immediate successors, ob-
serves only data dependencies to exploit speculative execution, and whenever

ACM Transactions on Design Automation of Electronic Systems, Vol. 7, No. 3, July 2002.

Efficient Scheduling of Conditional Behaviors • 407

Table III. Scheduling for “kim” Using a Probabilistic Priority Function

Heuristic Resource Constraints
cmp:2 ALU: 4 cmp:2 ALU: 3 cmp:2 ALU: 2

Classic List Sched. 5/5/4 6/6/6 8/8/7
ours 5/5/4 6/6/5 6/6/6

Resources
Schedule by approach

Kim Brewer ADD Dos ours

cmp: 2, +: 2, -: 1
cn: 1

8/8/6 - 6/6/5 - 6/6/6

cmp: 1, +: 2, -: 1
cn: 1

- -/6/- -/6/- 6/6/6

(d)

Resources
Schedule by approach

CVLS Kim PBS Brewer Dos ours

cmp: 1, +: 1, -: 1
cn: 1

7/7/5 7/7/4 - -/7/- -/7/- 7/7/4

cmp: 1, +: 1, -: 1
cn: 2

- 7/7/3 8/7/3 - -/7/- 6/6/3

cmp: 1, ALU: 2
cn: 1

- - - - - 7/7/4

cmp: 1, ALU: 2
cn: 2

- 6/6/3 6/6/3 - -/6/- 6/6/3

(b)

Resources
Schedule by approach

ours (cn=1) ours (cn=2)

cmp: 1, +: 1 4/4/3 4/4/3

cmp: 1, +: 2 4/4/2 3/3/2

(c)

Resources

Schedule by approach

Kim PBS
crit.
path

Brewer Dos ours

cmp: 0, +: 1, -: 1
cn: 1

8/8/3 - - -/5/- -/5/- 5/5/4

cmp: 0, +: 1, -: 1
cn: 2

6/5/2 9/5/2 8/8/- - - 5/5/4

cmp: 0, +: 2, -: 3
cn: 1

- - - -/4/- -/4/- 4/4/2

cmp: 0, +: 2, -: 3
cn: 3

3/3/2 - 4/4/- - - 3/3/2

cmp: 0, +: 2, -: 3
cn: 5

- 4/3/1 - - - 3/3/2

(a)

Fig. 16. Benchmark comparative scheduling results for: (a) “maha”; (b) “waka”; (c) “jian”; (d) “kim”.

control dependencies are observed exploits conditional sharing. The second is
our heuristic as described in Section 3.

As resource constraints get tighter, the probabilistic priority function consid-
ering candidates for speculative execution afterwards yields better results. For
instance, the schedule for two ALUs when only data dependencies are observed
results in a total of eight control steps instead of six mainly because all paths
are considered equiprobable and speculatively scheduled nodes may displace
normally scheduled nodes with higher probability.

4.1 Comparative Results

Finally, the HCDG-based list-scheduling heuristic is compared to other similar
heuristics. The obtained results are given in Figure 16 for various resource
constraints (one cycle resources) in terms of total/longest path/shortest path
numbers of states. Published results of other approaches (i.e., Kim [Kim et
al. 1991], CVLS [Wakabayashi and Yoshimura 1989, 19992], PBS [Camposano
1991], Brewer [Radivojevic and Brewer 1996], ADD-FDLS [Chaiyakul et al.
1992], Dos [Dos Santos et al. 2000]), when available for the particular resource
constraints, are also given. Some approaches assume that comparison results

ACM Transactions on Design Automation of Electronic Systems, Vol. 7, No. 3, July 2002.

408 • A. A. Kountouris and C. Wolinski

are available at the same control step (e.g., ADD in Figure 16 (d) which results
in longer clock cycles. For each benchmark, our results are at least as good as the
best previously published results. Chaining (indicated by cn) is also considered
and it is worth noting that even without it (cn = 1) good results are obtained.
The differences in terms of the higher number of states in the shortest paths
can be explained by the fact that usually the total number of states is lower
than in other approaches and thus resources are better utilized at each step
because of conditional sharing and speculative execution.

The HCDG-based scheduling approach effectively exploits all of the exist-
ing scheduling optimization techniques enjoying their combined benefits. Both
speculative execution and conditional resource sharing are combined in a uni-
form and consistent framework similarly to the dynamic CVs of Wakabayashi
and Yoshimura [1992] and guards in Radivojevic and Brewer [1995, 1996]. Op-
eration chaining during scheduling and multicycle operations which are nec-
essary in a practical scheduling approach as indicated in Bergamaschi et al.
[1997] are also supported. Even more, HCDG-based scheduling does not suffer
from the effects of syntactic variance at both the mutual exclusiveness detection
and scheduling levels, as it is the case with CDFG, CFG-based approaches. The
hierarchical control representation permits us to minimize the number of mu-
tual exclusiveness tests and develop probabilistic priority functions accounting
for the conditional nature of a design.

With respect to Chaiyakul et al. [1992] and Radivojevic and Brewer [1996],
speculative execution is considered only after normally executing nodes have
been scheduled. Control dependencies are not observed only if in a control step
there are unused resources or resources that can be conditionally shared. In
this way the risk of lengthening execution paths by displacing normally execut-
ing operations in favor of speculatively executing ones is avoided. Conditional
resource sharing is exploited during scheduling and not before. In this way the
risk of lengthening of execution paths due to inappropriate conditional resource
sharing (i.e., Kim et al. [1991, 1994]) is avoided. In our case, conditional resource
sharing considers multiple execution instances simultaneously; operations in
different conditional trees can effectively share the same resource and syntac-
tic variance effects, due to differences in conditional nesting (i.e., Wakabayashi
and Yoshimura [1989, 1992]), are avoided. With respect to Camposano [1991]
and Bergamaschi et al. [1997] the order of statements in the description does
not influence the results thanks to the uniform dataflow representation of both
control and data dependencies. Complex graph restructuring whose results are
not surely positive (i.e., Bergamaschi et al. [1997]) is not needed. Finally, specu-
lative execution and conditional resource-sharing information obtained by the
HCDG-based scheduling heuristics can be modeled by transforming the initial
HCDG similar to transformations described in Chaiyakul et al. [1992]. This can
be quite advantageous in HLS environments where the final design is obtained
by many iterations of scheduling allocation.

Our approach was not compared to the most recent results of the
Wavesched approach provided in Lakshminarayama et al. [1999] and especially
Lakshminarayama et al. [2000] which incorporates speculative execution. This
is because currently our approach does not handle loops in addition to the

ACM Transactions on Design Automation of Electronic Systems, Vol. 7, No. 3, July 2002.

Efficient Scheduling of Conditional Behaviors • 409

important loop-related optimizations, and so a fair comparison is difficult. Most
of the benchmarks used in Lakshminrayama et al. [1999, 2000] put the em-
phasis on these aspects. In the future we hope to integrate such ideas into our
framework. However, it seems to us that if the loop bodies are not unrolled then
the Wavesched approach suffers from some of the major drawbacks of CDFG-
based approaches, namely, syntactic variance and limitations in exploiting con-
ditional sharing and speculative execution within the bounds of a single itera-
tion. Our approach is to be able to derive the most compact scheduling for loop
bodies using to the greatest possible extent a combination of well-established
concepts and in the future apply loop-specific optimization. As an indication,
the very elementary loop bodies of the cordic and gcd benchmarks (used in
Lakshminarayama et al. [1999, 2000] resp.) for the same resource constraints
are scheduled in three and two control steps, respectively.

5. CONCLUSIONS

The HCDG is a powerful internal design representation and can effectively
accommodate design descriptions with dataflow-intensive and/or controlflow-
intensive behaviors. Existing HLS heuristics successful for dataflow designs
can be easily adapted to HCDG and novel scheduling heuristics for conditional
behaviors like the one presented in this work can complete the picture. The
hierarchical control representation, mutual exclusiveness identification capa-
bilities, and formal graph transformations lead to our HCDG-based schedul-
ing approach effectively exploiting all of the existing scheduling optimization
techniques and enjoying their combined benefits. Both speculative execution
and conditional resource sharing are combined in a uniform and consistent
framework. Recent work applying a constraint logic programming algorithm
on HCDGs [Kuchcinski and Wolinski 2001] indicates that schedules provided
by the described heuristic are close to optimal.

The proposed approach and the presented techniques have been imple-
mented in CODESIS, a graphical interactive tool using the HCDG as the in-
ternal design representation. This system was developed for both research
and educational purposes and presently is under intensive testing. Further
work is also needed in order to extend the capabilities of the CODESIS tool
with complementary optimization techniques such as the ones proposed in
Lakshminarayama et al. [1999] for loops which so far have not been considered.
Also, the pipelining (structural and functional) issues need to be addressed; am-
ple hints in the literature exist for doing so. The time-constrained scheduling
problem [Park and Kyung 1993] has not been addressed and thus this can
also be a topic of future investigation. Finally, for large designs, applying the
prescheduling transformations may lead to very large graphs and so investiga-
tion of cost functions that would help to selectively apply these transformations
may be needed. Further experimentation with larger designs will help us gain
more insight into such issues.

It is worth mentioning that in CODESIS it is possible to follow either one of
two implementation paths. The first relies on generation from the HCDG of in-
termediate behavioral source code, such as VHDL, which is accepted as input by

ACM Transactions on Design Automation of Electronic Systems, Vol. 7, No. 3, July 2002.

410 • A. A. Kountouris and C. Wolinski

existing high-level synthesis tools. Code generators for C and VHDL already ex-
ist in CODESIS. In this context prescheduling transformations, the scheduling
process, and postscheduling transformations are considered as a presynthe-
sis optimization process [Kountouris and Wolinski 1999b]. The second imple-
mentation path is to perform the entire behavioral synthesis using the HCDG
to produce an efficient RTL description (datapath+ control FSM). Then using
HCDG code generation facilities we can access existing RTL synthesis tools.
For this implementation path efficient tools for scheduling, allocation/binding,
register allocation, datapath, and control FSM synthesis were developed based
on the HCDG. Details of how these activities are performed in CODESIS can be
found in Kountouris and Wolinski [2001]. It is important to remember that the
control representation by a hierachy helps considerably in optimizing the re-
sult of the aforementioned design activities. Mutual exclusiveness information
is successfully used for efficient register allocation (another form of conditional
resource sharing) and the same approach can be used in sharing other types
of resources such as interconnects. In this sense guards and mutual exclusive-
ness define a generic resource-sharing framework. Finally, in the future we
hope to extend CODESIS into a full system-level synthesis framework with a
hardware/software codesign orientation.

ACKNOWLEDGMENTS

Thanks go to our colleagues at the EPATR team of IRISA for their fruitful
interactions and discussions. Also, many thanks to the anonymous reviewers
for their constructive comments which greatly helped us in completing and
improving the manuscript.

REFERENCES

AMAGBEGNON, T. P. 1995. Forme canonique arborescente des horloges de SIGNAL. PhD Thesis
(December), University of Rennes I.

BEAUVAIS, J. R., GAUTIER, T., LE GUERNIC, P., HOUDEBINE, R., AND RUTTEN, E. 1998. A translation of
statecharts into Signal. In Proceedings of the IEEE International Conferance on Application of
Concurrency to System Design (CSD’98, Japan, March), 52–62.

BERGAMASCHI, R. A. 1998. Behavioral synthesis: an overview. IBM Tech. Rep. RC20944.
BERGAMASCHI, R. A., CAMPOSANO, R., AND PAYER, M. 1992. Allocation algorithms based on path

analysis. Integration: VLSI J. 13, 3 (Sept.), 283–299.
BERGAMASCHI, R. A. AND KUEHLMANN, A. 1993. A system for production use of high-level synthesis.

IEEE Trans. VLSI Syst. 1, 3, 233–243.
BERGAMASCHI, R. A., RAJE, S., NAIR, I., AND TREVILLYAN, L. 1997. Control-flow versus data-flow based

scheduling: Combining both approaches in an adaptive scheduling system. IEEE Trans. VLSI 5,
1, 82–100.

BESNARD, L. 1991. Compilation de SIGNAL: Horloges, dependances, environment. PhD Thesis,
University of Rennes I.

CAMPOSANO, R. 1991. Path-based scheduling for synthesis. IEEE Trans. CAD 10, 1, 85–93.
CARTER, L., SIMON, B., CALDER, B., CARTER, L., AND FERRANTE, J. 1999. Predicated static single as-

signment. In Proceedings of the IEEE PACT—International Conferance on Parallel Architectures
and Compilation Techniques (October), 245–255.

CHAIYAKUL, V., GAJSKI, D. D., AND RAMACHANDRAN, L. 1992. Minimizing syntactic variance with
assignment decision diagrams. UCI Tech. Rep. ICS-TR-92-34 (April).

CYTRON, R., FERRANTE, J., ROSEN, B. K., WEGMAN, M. K., AND ZADECK, F. K. 1989. An efficient method
of computing, static single assignment form. In Proceedings of the Sixteenth Annual ACM Sym-
posium on Principles of Programming Languages, 25–35.

ACM Transactions on Design Automation of Electronic Systems, Vol. 7, No. 3, July 2002.

Efficient Scheduling of Conditional Behaviors • 411

DOS SANTOS, L. C. V. 1997. A method to control compensation code during global scheduling.
Proceedings of the ProRISC CSSP97 Workshop, 457–464.

DOS SANTOS, L. C. V., HEIJLIGERS, M. J. M, EIJK, C. A. J., VAN EIJNDHOVEN, J. T. J., AND JESS, J. A. G.
2000. A code motion pruning technique for global scheduling. ACM Trans. Des. Autom. Electron.
Syst. 5, 1, 1–38.

FISHER, J. A. 1981. Trace scheduling: A technique for global microcode compaction. IEEE Trans.
Comput. 30, 7, (July), 478–490.

GAREY, M. R. AND JOHNSON, D. S. 1979. Computers and Intractability, a Guide to the Theory of
NP-Completeness. W.H. Freeman, San Francisco.

GIRKAR, M. AND POLYCHRONOPOULOS, C. 1992. Automatic extraction of functional parallelism from
ordinary programs. IEEE Trans. Par. Dist. Syst. 166–178.

HUANG, S. H., JEANG, Y. L., HWANG, C. T., HSU, Y. C., AND WANG, J. F. 1993. A tree-based scheduling
algorithm for control dominated circuits. In Proceedings of the ACM/IEEE Design Automation
Conference, 578–582.

JUAN, H.-P., CHAIYAKUL, V., AND GAJSKI, D. D. 1994. Condition graphs for high quality behavioral
synthesis. In Proceedings of ICCAD’94 (San Jose, Calif.).

KIFLI, A., GOOSSENS, G., AND DE MAN, H. 1995. A unified scheduling model for high-level synthesis
and code generation. In Proceedings of the EDTC’95 (Paris, March), 234–238.

KIM, T., LIU, J. W. S., AND LIU, C. L. 1991. A scheduling algorithm for conditional resource sharing.
In Proceedings of the ICCAD 91, 84–87.

KIM, T., YONEZAWA, N., LIU, J. W. S., AND LIU, C. L. 1994. A scheduling algorithm for conditional
resource sharing—A hierarchical reduction approach. IEEE Trans. CAD 13, 4 (April), 425–
438.

KOUNTOURIS, A. 1998. Outils pour la validation temporelle et l’optimisation de programmes syn-
chrones. PhD Thesis, University of Rennes 1 (October).

KOUNTOURIS, A. AND WOLINSKI, C. 1999. Hierarchical conditional dependency graphs for mutual
exclusiveness identification. In Proceedings of the VLSI’99 (January), IEEE CS Press, Los Alami-
tos, Calif.

KOUNTOURIS, A. AND WOLINSKI, C. 1999. High level pre-synthesis optimization steps using
ierarchical conditional dependency graphs. In Proceedings of the 25th Euromicro Conference,
Milano, Italy, (September), IEEE CS Press, Los Alamitos, Calif.

KOUNTOURIS, A. AND WOLINSKI, C. 2001. High-level synthesis using hierarchical conditional depen-
dency graphs in the CODESIS system. J. Syst. Arch. 47, 293–313.

KUCHCINSKI, K. AND WOLINSKI, C. 2001. Synthesis of conditional behaviors using hierarchical con-
ditional dependency graphs and constraint logic programming. In Proceedings of the Euromicro
Conference, Poland, (September), IEEE CS Press. Los Alamitos, Calif.

LAKSHMINARAYAMA, G., KHOURI, K. S., AND JHA, N. K. 1999. Wavesched: A novel scheduling technique
for control-flow intensive designs. IEEE Trans. CAD 18, 5 (May), 505–523.

LAKSHMINARAYAMA, G., RAGHUNATHAN, A., AND JHA, N. K 2000. Incorporating speculative execution
into scheduling of control-flow intensive designs. IEEE Trans. CAD 19, 3 (March), 308–324.

LE GUERNIC, P., LE BORGNE, M., GAUTIER, T., AND LE MAIRE, C. 1991. Programming real-time appli-
cations with SIGNAL. Proc. IEEE 79, 9 (Sept.), 1321–1336.

LI, J. 1998. Timed decision tables and its applications in pre-synthesis and partial synthesis of
digital circuits. PhD Thesis, UIUC.

LI, J. AND GUPTA, R. K. 1998. An algorithm to determine mutually exclusive operations in behav-
ioral descriptions. In Proceedings of the DATE’98 (Paris, February).

LIN, Y.-L. 1997. Recent developments in high-level synthesis. ACM Trans. Des. Autom. Electron.
Syst. 2, 1 (Jan.), 2–21.

NICOLAU, A. 1985. Percolation scheduling: A parallel compilation technique. Tech. Rep. TR85-678,
Cornell University, Computer Science Department (May).

NOVACK, S. AND NICOLAU, A. 1993. Trailblazing: A hierarchical approach to percolation scheduling.
In Proceedings of the International Conference on Paralel Processing (2, August), 120–124.

PARK, I. C. AND KYUNG, C. M. 1993. FAMOS: An efficient scheduling algorithm for high-level syn-
thesis. IEEE Trans. CAD 12, 10 (Oct.), 1437–1448.

PARKER, A. C., PIZARRO, J. T. AND MLINER, M. 1986. MAHA: A program for data path synthesis. In
Proceedings of the 23rd DAC, 252–258.

ACM Transactions on Design Automation of Electronic Systems, Vol. 7, No. 3, July 2002.

412 • A. A. Kountouris and C. Wolinski

POLYCHRONOPOULOS, C. 1991. The hierarchical task graph and its use in auto-scheduling. In Pro-
ceedings of the ACM International Conference on Supercomputing, 252–263.

POTASMAN, R., LIS, J., NICOLAU, A., AND GAJSKI, D. 1990. Percolation based synthesis. In Proceedings
of the ACM/IEEE Design Automation Conference, 444–449.

PURI, R. AND GU, J. 1992. An efficient algorithm for microword length minimization. In Proceedings
of the DAC’92, 651–656.

RADIVOJEVIC, I. AND BREWER, F. 1995. Analysis of conditional resource sharing using a guard- based
control representation. In Proceedings of the ICCD’95 (October), 434–439.

RADIVOJEVIC, I. AND BREWER, F. 1996. A new symbolic technique for control dependent scheduling.
IEEE Trans. CAD 15, 1, 45–57.

RIM, M. AND JAIN, R. 1992. Representing conditional branches for high-level synthesis applica-
tions. In Proceedings of the 29th DAC (June), 106–111.

STOK, L. 1994. Data path synthesis. Integration: VLSI J. 18, 1 (December), 1–71.
SYNOPSYS, Behavioral Compiler online documentation.
TSENG, C. J., WEI, R. S., ROTHWEILER, S. G., TONG, M. M., AND BOSE, A. K. 1988. Bridge: A versatile

behavioral synthesis system. In Proceedings of the 25th DAC (June), 415–420.
TSENG, C. J. AND SIEWIOREK, D. P. 1986. Automated synthesis of data paths on digital systems.

IEEE Trans. CAD 5, 3 (July), 379–395.
WAKABAYASHI, K. AND YOSHIMURA, T. 1989. A resource sharing and control synthesis method for

conditional branches. In Proceedings of the IEEE ICCAD-89, 62–65.
WAKABAYASHI, K. AND YOSHIMURA, T. 1992. Global scheduling independent of control dependencies

based on condition vectors. In Proceedings of the 29th DAC.

Received February 2001; accepted February 2002

ACM Transactions on Design Automation of Electronic Systems, Vol. 7, No. 3, July 2002.

