
HAL Id: hal-00544891
https://hal.science/hal-00544891

Preprint submitted on 9 Dec 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Adaptive sampling-based approximation of the sign of
multivariate real-valued functions

Nicolas Perrin, Olivier Stasse, Florent Lamiraux, Eiichi Yoshida

To cite this version:
Nicolas Perrin, Olivier Stasse, Florent Lamiraux, Eiichi Yoshida. Adaptive sampling-based approxi-
mation of the sign of multivariate real-valued functions. 2010. �hal-00544891�

https://hal.science/hal-00544891
https://hal.archives-ouvertes.fr

1

Adaptive sampling-based approximation of the sign

of multivariate real-valued functions
Nicolas Perrin, Olivier Stasse, Florent Lamiraux and Eiichi Yoshida

Abstract—In this technical report, we present an algorithm
which approximates the sign of multivariate real-valued functions
through adaptive sampling, and demonstrate a convergence
result. The algorithm was specifically designed for real-time
robotics applications where quick evaluations are often needed.

Index Terms—approximation algorithm, adaptive sampling,
quadratic programming.

I. INTRODUCING THE ALGORITHM

Our algorithm is intended to approximate (or learn) the sign

of C, a continuous mapping from a bounded hyper-rectangle

B0 ⊂ R
m to R (bounded hyper-rectangles will be called

‘boxes from now on). We suppose that the zero level surface

{x ∈ B0|C(x) = 0} (the “frontier”) is of Lebesgue measure

zero.

C is typically an important function that needs to be

frequently called by a real-time application, and decisions

are made depending on the sign of the numbers returned

by C. Yet, C is originally implemented with a quite time

consuming algorithm, and the current computation cost makes

it unsuitable for real-time applications. Therefore we would

like to approximate the sign of C(x) offline in order to then

be able to quickly guess it online, without having to actually go

through any lengthy computation. This is the kind of context

in which the algorithm presented here is most useful.

For example in robotics or computer graphics, the algorithm

can be used in order to build implicit swept volume approxi-

mations that can be evaluated very fast (in that case the result

obtained is a bit similar to an Adaptive Distance Field, see [1]).

Indeed, if collisions have to be checked over and over for the

same trajectory of an object in different environments, it might

be very useful to approximate the sign of the corresponding

distance field (i.e. the distance to the volume swept by the

object along the trajectory). If the result of the approximation

is then stored in a very efficient data structure, a lot of time

can subsequently be saved during the collision checks. Fig. 1

shows the corresponding mapping C for a trajectory followed

by a cube; it also displays the result of our approximation

algorithm on this case example.

Back to the general case, the goal of the algorithm is to learn

the sign of C through adaptive sampling. The algorithm is a

slight variant of the one introduced in [4], and is articulated

around three principles:

N. Perrin is with CNRS/LAAS, Universit de Toulouse UPS, INSA, INP,
ISAE 7 avenue du colonel Roche, F-31077 Toulouse, France, and CNRS-AIST
Joint Robotics Laboratory, UMI3218/CRT, Tsukuba, Japan.

O. Stasse and E. Yoshida are with CNRS-AIST Joint Robotics Labora-
tory, UMI3218/CRT, Tsukuba, Japan.

F. Lamiraux is with CNRS/LAAS, Universit de Toulouse UPS, INSA,
INP, ISAE 7 avenue du colonel Roche, F-31077 Toulouse, France.

C(x) < 0

C(x) > 0

C(x) = 0

C(x) = min (dist(x, ci) − τ, i = 0, . . . , q)

The 2D plot on the bottom-left shows how the approximation algorithm
recursively divides the Euclidean space into small boxes in order to

plot on the bottom right.

A view of this swept volume approximation is displayed on the 3D

adaptively approximate the surface C(x) = 0. The approximated
surface defines an approximation of the volume swept by the cube.

On the left, a 2D representation of a cube
moving along a discretized trajectory. We
denote its successive configurations by c0,
c1, . . . , cq . For a point x of the Euclidean
space, C(x) is defined as the minimum
distance from x to any configuration of
the cube, minus a fixed margin τ . The
margin is important to avoid errors due to
the discretization, and besides, it makes the

thus easier to approximate.
level set {x ∈ R

3 | C(x) = 0} smoother,

Fig. 1. Case example: implicit approximation of the volume swept by a
cube.

1) Recursive Stratified Sampling: the initial input space

B0 is recursively partitioned into small boxes (a tree

structure keeps the trace of all splittings; the current

partition is formed by the “leaf-boxes”). Basically, a

box will be split when the local approximation process

fails, which can happen only when both positive and

negative samples are contained in box. Thus, the boxes

will be split a lot and become small near the frontier, i.e.

the zone where C changes its sign. This property will

enable an effective implementation of adaptive sampling

focusing on the frontier.

2) Farthest Point-like Sampling in two different scales:

• While selecting a leaf-box for sampling: we roughly

estimate for each leaf-box our “confidence in the

sign” of the local approximation, and select among

boxes of lowest confidence.

• While sampling inside a leaf-box: since there will

be a limited number of samples inside a leaf-box,

we can use a naive technique for an approached

farthest point-like sampling.

3) Solving small Quadratic Programming problems to ob-

2

tain local approximations with correct sign on the train-

ing data.

Let us call f the result of the approximation. f is constantly

updated during the execution of the algorithm, and like C,

it is a function from B0 ⊂ R
m to R. We denote by f|B

the restriction of f to a box B contained in B0. Below,

Algorithm 1 describes the algorithm structure, and leaves just

four questions, which we answer respectively in the four next

sections: “how to pick a new leaf-box?”, “how to get new

samples?”, “how to split the boxes?”, and “how to locally

approximate?”.

II. HOW TO PICK A NEW LEAF-BOX

It is very important to find a good method to pick new leaf-

boxes, because this choice is the core of the adaptiveness of the

sampling. We want to focus on the boxes where we know that

C changes its sign, but without forgetting to sample on other

boxes where a change of sign might have to be discovered

yet. It is very difficult to decide at which rate one should

sample near the frontier and at which rate one should sample

in regions where only positive (or only negative) samples have

been seen so far.

In [4], the mapping C was assumed to be K−Lipschitz

for some K ∈ R, and a formula for the “confidence in the

sign” of a local approximation was defined, with the aim of

picking only leaf-boxes with lowest confidence. The formula

used works well in general, but causes the algorithm to fail

to converge with some particular mappings C. In the variant

presented here, we use a different heuristic which this time

comes with a proof of convergence (section VI).

The set of leaf-boxes – let us call it Set of Leaves–

is divided in three disjoint subsets: the set of positive leaf-

boxes (containing only samples on which C is positive),

the set of negative leaf-boxes (containing only samples on

which C is negative), and the set of “frontier” leaf-boxes

(containing either no sample or both positive and negative sam-

ples). We denote these subsets by Set of PositiveLeaves,

Set of NegativeLeaves, and Set of FrontierLeaves.

We also denote by max value the maximum absolute value

of C seen on the samples collected so far. For a leaf-box

B containing the samples (s1, C(s1)), . . . , (sk, C(sk)), with

k ≥ 1, we define co(B), which is inspired by the value

conf(B) used in [4] (the “confidence in the sign”), but leads

to better convergence properties. The definition is divided into

two cases:

1) If B is a leaf-box with at least one sample on it, co(B) is

defined as follows (the measure of Lebesgue, or volume

of B is simply the product of its m lengths):

co(B) =
k

volume of B
+

1

max value
×

∑k
i=1 |C(si)|

volume of B
(1)

2) If B is a leaf-box with no sample, it has necessarily

just been created, and in that case either B is the input

space, B0, and we pose co(B) = (volume of B0)
−1, or

B has been created by splitting its parent box B′, and

we pose:

co(B) =
co(B′)

2
, (2)

where co(B′) is the value just before the split.

The important properties of co(B) are that first, it increases

when the density of samples (i.e. k

volume of B) on the leaf-

box increases, and second, co(B) has a component which

depends on the values of C on the samples: this helps to drive

the sampling towards regions where C takes relatively small

values. Indeed, considering only the density of samples is not

enough: if B1 is a box which contains 10 samples on which

the value of C is about 5, and B2 a box of same size with 9

samples on which the value of C is about 1, even though the

density of samples is higher on B1, it seems natural to sample

first on B2, because intuitively C has more chances to change

its sign on B2. co(B) gives us an arbitrary rule to know when

to stop sampling on B2 and start sampling on B1. The third

interesting property comes from the use of max value and

is that if we simply multiply C by a non-zero constant, the

behaviour of the sampling would remain unchanged: without

randomness it would lead exactly to the same samples and

the same leaf-boxes. Finally, one of the main advantage of

this definition of co(B) is that it is extremely easy to compute.

Algorithm 2 shows how co(B) is used to pick a new leaf-

box. We see that by default, this algorithm gives the same

importance to the two following tasks:

1) Select a leaf-box among Set of FrontierLeaves, i.e.

try to make the approximation more precise on the

known parts of the frontier of C.

2) Select a leaf-box among Set of PositiveLeaves ∪
Set of NegativeLeaves, i.e. try to discover new parts

of the frontier of C.

Two remarks:

• In some cases, it is better to customize the Algorithm 2.

For example, when C is a distance minus a small thresh-

old, the positive and negative regions are not symmetric

and should not be treated so. C will mainly be equal

to −τ (τ being the threshold) on the negative region,

which gives few information; thus in that case it seems

appropriate to focus more on the positive region than the

negative one. Another example is when the frontier is

known to have a simple shape: in that case it is arguably

better to pick “frontier” leaf-boxes with a probability

greater than 50%, thus boosting the focus on the frontier.

• Let us call selecting a leaf-box among

Set of FrontierLeaves the task 1), and selecting

a leaf-box among Set of PositiveLeaves ∪
Set of NegativeLeaves the task 2). Looking for

a good tradeoff between tasks 1) and 2) is very similar

to some issues raised by the so-called multi-armed

bandit problem, where a gambler is using a slot machine

with multiple levers. When pulled, each lever provides

a reward drawn from a distribution associated with

that specific lever. The objective of the gambler is to

maximize the sum of rewards earned through a sequence

of lever pulls. The crucial tradeoff the gambler faces

at each trial is between ”exploitation” of the lever that

has the highest expected payoff and ”exploration” to

get more information about the expected payoffs of the

3

Algorithm 1 The algorithm structure.

1: f ← the constant function 0.

2: Set of Leaves← {B0}
3: while (1) do

4: Pick (using Algorithm 2) a leaf-box B out of Set of Leaves (and remove it from Set of Leaves).

5: Get new samples in B.

6: if there are only positive samples in B then

7: Define f|B as any positive constant on B, for example choosing the minimum value of C on the samples in B.

8: else if there are only negative samples in B then

9: Define f|B as any negative constant on B, for example choosing the maximum value of C on the samples in B.

10: else

11: Temporary Stack ← {B}
12: while Temporary Stack 6= ∅ do

13: Pop a leaf-box Bcurrent out of Temporary Stack
14: Try to locally approximate C on Bcurrent, i.e. try to define a new value of f|Bcurrent

, the main constraint being

that f|Bcurrent
must have a correct sign on all the samples in Bcurrent.

15: if this attempt does not succeed then

16: Split Bcurrent into two son boxes of equal dimensions: Bleft and Bright, and push them both in

Temporary Stack.

17: else

18: Put Bcurrent in Set of Leaves.

19: end if

20: end while

21: end if

22: end while

other levers. In our problem, the task 1) can be seen as

the ”exploitation”, and the task 2) as the ”exploration”.

This similarity could be the starting point of a more

theoretical foundation for the Algorithm 2, and indeed a

few examples of adaptive sampling techniques based on

Bayesian or frequentist analyses of the bandit problem

exist in the litterature, such as in [3]. Yet in our case

the payoff is not very clear, or at least not known in

advance (it should quantify the improvement of the

frontier approximation), and furthermore one of our

priorities, computational efficiency, limits the range of

possible methods.

III. HOW TO GET NEW SAMPLES

Line 5 of Algorithm 1: new samples must be chosen inside

the leaf-box B.

In the default version of the algorithm, N new samples are

simply chosen independently and uniformly inside B, N being

decided by the user.

In a more advanced version, we can first draw more than N
samples (e.g. 10N), and then select a group of samples that

are far from each other and far from the samples already in

B. This version can be chosen if the evaluation of C is much

longer than the computation needed to obtain such samples.

In an even more advanced version, we allow the samples to

be drawn also a bit outside of B. This technique has already

been efficiently used in several adaptive algorithms, such as the

one presented in [2] for example; it allows samples to spill into

neighboring boxes and enables the adaptive sampling method

to “crawl” along the frontier of C.

IV. HOW TO SPLIT THE BOXES

We simply split the boxes cyclically. We give an order to

the dimensions: dim. 1, dim. 2,. . . , dim. m. The initial box

B0 is split in half orthogonally to dim. 1, the children boxes

will be split orthogonally to dim. 2, then dim. 3, etc. When

a box is split orthogonally to dim. m, its children boxes will

be split orthogonally to dim. 1, and so on. . .

If the input space has 2 or 3 dimensions, specific imple-

mentations with quadtrees or octrees can be advantageously

used.

V. HOW TO LOCALLY APPROXIMATE

Here is the context: a leaf-box Bcurrent contains a finite

number of samples, and we want to find a local approximation

which has a correct sign on these samples, or return “fail”.

The three first cases are simple: if there is no sample in

Bcurrent, we don’t modify f|Bcurrent
; if there are only positive

samples in Bcurrent, we define f|Bcurrent
as any positive

constant on Bcurrent (e.g. the minimum value of C on the

samples in Bcurrent); if there are only negative samples in

Bcurrent, we define f|Bcurrent
as any negative constant on

Bcurrent (e.g. the maximum value of C on the samples in

Bcurrent).

In the last possible case, Bcurrent contains both positive

and negative samples. Again, the user has set a parameter

Nmax > N , and if the box contains more than Nmax samples,

we return “fail” (and the box will be split, which will lead

to two smaller boxes with hopefully less samples, and local

approximations will be attempted again on each of them). This

parameter Nmax should be chosen so that only a small portion

4

Algorithm 2 The default algorithm for picking a new leaf-box.

1: Flip a coin.

2: if the flip is heads AND Set of FrontierLeaves is not empty then

3: Choose a leaf-box Bnew ∈ Set of FrontierLeaves s.t. co(Bnew) = min {co(B)|B ∈ Set of FrontierLeaves}.
4: else

5: Flip another coin.

6: if the flip is heads AND Set of PositiveLeaves is not empty then

7: Choose a leaf-box Bnew ∈ Set of PositiveLeaves s.t. co(Bnew) = min {co(B)|B ∈ Set of PositiveLeaves}.
8: else

9: Choose a leaf-box Bnew ∈ Set of NegativeLeaves s.t. co(Bnew) = min {co(B)|B ∈ Set of NegativeLeaves}.
10: end if

11: end if

of the computation time is spent on local approximations

(whose complexity depends on the number of samples); most

of the computation time should be spent at evaluating C.

Here, we present a simple technique for local approxi-

mation based on Quadratic Programming. The convergence

(Theorem VI.1) of the algorithm does not depend on local

approximations, but good local approximations will speed up

the convergence rate.

Let us call {(s1, C(s1)), . . . , (sl, C(sl))} the samples in

Bcurrent.

In the technique presented here, f|Bcurrent
is being searched

among the elements of a finite dimension vector space chosen

by the user (this vector space must contain constant functions).

Let us describe the basic case of the affine functions which

take the form:

g(x) = g(x1, x2, . . . , xm) = 〈w, (x1, x2, . . . , xm, 1)〉, (3)

with w ∈ R
m+1 and where 〈·, ·〉 denotes the dot product

on R
m+1. We solve the following Quadratic Programming

problem:

minimize
∑

i

(g(si)− C(si))
2

= 〈w,Mw〉+ 〈d, w〉+
∑

i

C(si)
2

subject to

{

∀i | C(si) > 0, g(si) > 0
∀i | C(si) ≤ 0, g(si) < 0

(4)

where M is a symmetric positive (m + 1)× (m + 1) matrix,

and d ∈ R
m+1.

The solution g found defines the new value for f|Bcurrent
.

If no solution is found, “fail” is returned.

Our implementation used the solver QL (see [5]).

VI. CONVERGENCE RESULT

Each leaf-box than can appear during the execution of the

algorithm can be defined by a finite list of booleans coding

a path in the infinite tree. Therefore there is a bijection

between theses boxes and N, and we can denote them by

B(1), B(2), B(3), . . .
The execution of the algorithm is entirely determined by an

infinite sequence of independant coin flips randomly drawn,

and for each box B(i), an infinite sequence of independant

samples uniformly drawn in it (when new samples are needed

in a box B, we just follow the sequence of samples corre-

sponding to this box). Let us call Rflips the sequence of coin

flips, and R
(i)
samples the sequence of samples on box B(i). Let

us denote by E(Rflips, (R
(i)
samples)i∈N) the execution of the

algorithm with random sequences Rflips and (R
(i)
samples)i∈N,

and let us also denote by fi the approximation obtained after

i iterations of the while loop (line 3 of Algorithm 1).

It can be shown that with probability 1, the following

properties are verified:

1) In the sequence of coin flips there are infinitely many

“tails” and infinitely many “heads”, and what’s more,

any finite sequence appears infinitely many times (e.g.

“tails-heads”, or “heads-heads-tails”, etc.).

2) For each box B(i), R
(i)
samples contains infinitely many

points in any non-empty open subset of B(i).

Under these assumptions, we have the following:

Theorem VI.1. For all compact subsets X ⊂ B0 such that

∀x ∈ X, C(x) 6= 0, there exists n0 ∈ N such that:

∀n > n0, ∀x ∈ X,

{

C(x) > 0⇒ fn(x) > 0
C(x) < 0⇒ fn(x) < 0

Since the frontier is assumed to be of Lebesgue measure

zero, we have the immediate corollary:

Corollary VI.1. The Lebesgue measure of Errn, the set of

points of B0 on which fn has not a correct sign, tends to zero

when n tends to +∞.

We will demonstrate Theorem VI.1 with the default version

of the algorithm, the one where groups of samples are simply

drawn uniformly, but with very small changes in the proof

we obtain the same theorem with the algorithm variants. But

before proving the theorem, we demonstrate three preliminary

lemmas:

Lemma VI.1. For any leaf-box B, we always have:

co(B) ≥
k + 1

4(volume of B)
,

where k is the number of samples in B.

Proof: It is true for the initial value of co(B0), and when

the equation (1) is used, we have co(B) ≥ k

(volume of B′
)
,

with k ≥ k+1
4 .

5

When the equation (2) is applied, it means that B con-

tains no sample, but the parent box B′ necessarily contained

samples (otherwise it wouldn’t have been split), so we had

co(B′) ≥ 1

(volume of B′
)

(by eq. (1)). Since the volume of

B is half the volume of B′, we obtain indeed:

co(B) ≥
1 + 0

4(volume of B)

Lemma VI.2. Let B be a leaf-box after iteration i of Algo-

rithm 1.

There exists j > i such that B will be selected by

Algorithm 2 at iteration j.

Proof: We prove it by contradiction. We assume that B
belongs to Set of PositiveLeaves, but the reasoning would

be the same with B ∈ Set of NegativeLeaves or B ∈
Set of FrontierLeaves.

Since B is never to be selected, the value co(B) will never

change.

Because of Lemma VI.1, the number of leaf-boxes B(i)

which can verify co(Bi) ≤ co(B) is finite (for the

boxes B(i) that are too small, namely such that co(B) <
(4(volume of B0))

−1, this inequality cannot be verified). Let

us call them B(i1), B(i2), . . . , B(iK).

Thanks to the assumption made on the sequence of

coin flips, it can be shown that Set of PositiveLeaves
will be selected infinitely many times by Algorithm 2.

Each time, some samples will be put in one of the

boxes B(i1), B(i2), . . . , B(iK). Since for those boxes we have

co(B(ik)) ≥ 1+0

4(volume of B(ik)
)
, each one of them can only

receive a finite number of samples (when the value co(B(ik))
exceeds co(B), co(B(ik)) cannot be chosen anymore).

So an infinite number of samples must be put in a finite

number of boxes which can all only receive a finite number

of samples. This is a contradiction, and we conclude that the

box B will be selected.

Lemma VI.3. Let B be a leaf-box that will eventually be split.

Then the intersection between B and the frontier is not empty.

Proof: If the intersection was empty, since C is continu-

ous, it would either be negative on all points of B, or positive

on all points of B. In that case f|B would always be defined

as a constant on B, and B would never be split.

Now we can prove the main theorem:

Proof of Theorem VI.1: Let X be a compact subset of

B0 such that ∀x ∈ X, C(x) 6= 0, and let us call d > 0 the

distance between X and the frontier. We call Xd/2 ⊃ X the

open set of points x ∈ B0 such that the distance between x
and the frontier is greater than d/2. Thanks to Lemma VI.3 we

know that after some iteration, all the leaf-boxes that have a

non-empty intersection with Xd/2 will never be split, because

in the opposite case, the minimum size of boxes that will

be split and have a non-empty intersection with Xd/2 would

endlessly decrease and tend to zero, which is a contradiction

because since the distance between Xd/2 and the frontier is

d/2 > 0, no box too small can both contain points of Xd/2

and points of the frontier.

So there exists n0 ∈ N
+ such that after iteration n0, all

the leaf-boxes having a non-empty intersection with Xd/2

are fixed. Let us consider one such leaf-box B(i). Thanks

to lemma VI.2, we know that B will be picked an in-

finite number of times, and as a result will receive an

infinite number of samples. Thus, B(i) will never belong

to Set of FrontierLeaves, because otherwise it would be

eventually split (see section V: with more than Nmax sam-

ples, leaf-boxes of Set of FrontierLeaves are automati-

cally split). As a consequence, f|B(i) has a constant sign,

which will never change. Besides, it is easy to show that the

intersection between B(i) and Xd/2 contains an open subset,

and sinceR
(i)
samples contains infinitely many points in any non-

empty open subset of B(i), we know that at some point a

sample of Xd/2 will be drawn. It follows that the sign of f|B(i)

is equal to the sign of C on a point of Xd/2∩B(i). But since C
is continuous, it can only have a constant sign on Xd/2∩B(i);

otherwise B(i) we could easily obtain a contradiction by

considering two open subsets of B(i), one on which C is

positive, and one on which C is negative. Since we know that

samples will eventually be drawn in these two open subsets,

B(i) would be transfered to Set of FrontierLeaves, which

as we have proved cannot happen.

Hence, the sign of f|B(i) is equal to the sign of C on every

point of Xd/2 ∩B(i). By extending this result to all the leaf-

boxes having a non-empty intersection with Xd/2, we deduce

that after iteration n0, f has a correct sign on the entire set

Xd/2, and a fortiori on X:

∀n > n0, ∀x ∈ X,

{

C(x) > 0⇒ fn(x) > 0
C(x) < 0⇒ fn(x) < 0

REFERENCES

[1] S.F. Frisken, R.N. Perry, A.P. Rockwood, and T.R. Jones. Adaptively
sampled distance fields: a general representation of shape for computer
graphics. In 27th annual conference on Computer graphics and interac-

tive techniques (SIGGRAPH’00), pages 249–254, 2000.
[2] Toshiya Hachisuka, Wojciech Jarosz, Richard Peter Weistroffer, Kevin

Dale, Greg Humphreys, Matthias Zwicker, and Henrik Wann Jensen.
Multidimensional adaptive sampling and reconstruction for ray tracing.
In SIGGRAPH ’08: ACM SIGGRAPH 2008 papers, pages 1–10, New
York, NY, USA, 2008. ACM.

[3] P. Hardwick and Q.F. Stout. Flexible algorithms for creating and analyz-
ing adaptive sampling procedures. In Developments and Applications in

Experimental Design, IMS Lec. Notes–Mono. Series 34, pages 91–105,
1998.

[4] N. Perrin, O. Stasse, F. Lamiraux, and E. Yoshida. Approximation of
feasibility tests for reactive walk on hrp-2. In IEEE Int. Conf. on Robotics

and Automation, pages 4243–4248, 2010.
[5] K. Schittkowski. Ql: A fortran code for convex quadratic programming

- user’s guide, version 2.11. Technical report, University of Bayreuth,
2005.

